Next:
Introduction
Up:
The KRAKEN Normal Mode
Previous:
The KRAKEN Normal Mode
Contents
Introduction
Mathematical Formulation
Derivation
The Isovelocity Problem
A Generalized Derivation
Derivation of the Normalization Formula
A Deep Water Problem: the Munk Profile
Elastic Media
Boundary and Interface Conditions
Perfectly Free Boundary (Dirichlet BC)
Perfectly Rigid Boundary (Neumann BC)
Acoustic Half-space Conditions (Robin BC)
Elastic Half-space Conditions
Tabulated Reflection Coefficients
Loss Mechanisms
Material Absorption
in nepers/m
in dB/meter
in dB/wavelength
in dB/(km Hz)
Q
Twersky Scatter Theory
Kirchhoff Scatter Theory
Interfacial Roughness
Perturbational Treatment of Loss Mechanisms
Normal Modes for Range-Dependent Environments
Coupled Modes
One-way Coupled Modes
The Adiabatic Approximation
Example: A Warm-Core Eddy
Normal Modes for 3-D Varying Environments
Horizontal Refraction Equations
Numerical Solution of the Modal Equation
Finite-Difference Discretization
Treatment of Interfaces
Mode Normalization
Solving the Discretized Problem
Method I: Sturm Sequences
Method II: Deflation
Elastic Media
Richardson Extrapolation
Running the Program
Structure of the KRAKEN model
The Main Program
notes.hlp
kraken.hlp
Acoustic Field Calculations
field.hlp
field3d.hlp
Plotting routines
plotfield.hlp
plotgrn.hlp
plotmode.hlp
plotslice.hlp
plotssp.hlp
plottld.hlp
plottlr.hlp
plottri.hlp
The BELLHOP ray/beam model
bellhop.hlp
plotray.hlp
The SCOOTER FFP model
scooter.hlp
fields.hlp
The SPARC pulse model
sparc.hlp
plotts.hlp
The BOUNCE reflection coefficient model
bounce.hlp
plotrth.hlp
Test Problems
PEKERIS
TWERSKY
DOUBLE
SCHOLTE
FLUSED
ELSED
ATTEN
NORMAL
ICE
References
About this document ...
Michael B. Porter
Tue Oct 28 13:27:38 PST 1997