Figure: Schematic of the NORMAL problem.
Mode normalization is checked using several density changes. Due to the shear in the lower halfspace, there is a Scholte wave with a phase velocity of about 1393 m/s. It has been excluded from the calculation.
'Mode normalization test' 10.0 2 'NVF' 300 0.0 3000.0 0.0 1500.0 / 3000.0 1500.0 / 200 0.0 5000.0 3000.0 1500.0 0.0 2.0 / 5000.0 1500.0 0.0 2.0 / 'A' 0.0 5000.0 4000.0 2000.0 3.0 / 1400.0 2000.0 1000.0 ! RMAX (km) 1 500.0 / ! NSD SD(1:NSD) 1 2500.0 / ! NRD RD(1:NRD)
KRAKEN- Mode normalization test Frequency = 10.00 NMEDIA = 2 N2-LINEAR approximation to SSP Attenuation units: dB/mkHz VACUUM Z ALPHAR BETAR RHO ALPHAI BETAI ( Number of pts = 300 RMS roughness = 0.000E+00 ) 0.00 1500.00 0.00 1.00 0.0000 0.0000 3000.00 1500.00 0.00 1.00 0.0000 0.0000 ( Number of pts = 200 RMS roughness = 0.000E+00 ) 3000.00 1500.00 0.00 2.00 0.0000 0.0000 5000.00 1500.00 0.00 2.00 0.0000 0.0000 ( RMS roughness = 0.000E+00 ) ACOUSTO-ELASTIC half-space 5000.00 4000.00 2000.00 3.00 0.0000 0.0000 CLOW = 1400.0 CHIGH = 2000.0 RMAX = 1000.000000000000 Number of sources = 1 500.0000 Number of receivers = 1 2500.000 Mesh multiplier CPU seconds 1 5.55 2 6.40 4 4.54 I K ALPHA PHASE SPEED 1 0.4188367900E-01 0.0000000000E+00 1500.151242 2 0.4186658699E-01 0.0000000000E+00 1500.763678 3 0.4184753177E-01 0.0000000000E+00 1501.447049 4 0.4180919493E-01 0.0000000000E+00 1502.823797 5 0.4176674150E-01 0.0000000000E+00 1504.351329 6 0.4171909765E-01 0.0000000000E+00 1506.069321 7 0.4164470397E-01 0.0000000000E+00 1508.759748 8 0.4158680917E-01 0.0000000000E+00 1510.860158 9 0.4149472381E-01 0.0000000000E+00 1514.213069 10 0.4140185763E-01 0.0000000000E+00 1517.609515 11 0.4131280307E-01 0.0000000000E+00 1520.880899 12 0.4117924681E-01 0.0000000000E+00 1525.813557 13 0.4108058576E-01 0.0000000000E+00 1529.478022 14 0.4093552018E-01 0.0000000000E+00 1534.898123 15 0.4078858493E-01 0.0000000000E+00 1540.427381 16 0.4065836697E-01 0.0000000000E+00 1545.360961 17 0.4046343001E-01 0.0000000000E+00 1552.805905 18 0.4032142497E-01 0.0000000000E+00 1558.274617 19 0.4012239980E-01 0.0000000000E+00 1566.004361 20 0.3991798210E-01 0.0000000000E+00 1574.023780 21 0.3974491332E-01 0.0000000000E+00 1580.877849 22 0.3948540371E-01 0.0000000000E+00 1591.267840 23 0.3929733220E-01 0.0000000000E+00 1598.883424 24 0.3904083516E-01 0.0000000000E+00 1609.388037 25 0.3877585468E-01 0.0000000000E+00 1620.386026 26 0.3855610943E-01 0.0000000000E+00 1629.621194 27 0.3822733064E-01 0.0000000000E+00 1643.636948 28 0.3799085539E-01 0.0000000000E+00 1653.867817 29 0.3766977091E-01 0.0000000000E+00 1667.964831 30 0.3734233184E-01 0.0000000000E+00 1682.590507 31 0.3706900744E-01 0.0000000000E+00 1694.996910 32 0.3666482678E-01 0.0000000000E+00 1713.681983 33 0.3637907870E-01 0.0000000000E+00 1727.142504 34 0.3598056675E-01 0.0000000000E+00 1746.271911 35 0.3559408137E-01 0.0000000000E+00 1765.233169 36 0.3525354551E-01 0.0000000000E+00 1782.284652 37 0.3477030998E-01 0.0000000000E+00 1807.054729 38 0.3443753112E-01 0.0000000000E+00 1824.516771 39 0.3393983898E-01 0.0000000000E+00 1851.271395 40 0.3351944923E-01 0.0000000000E+00 1874.489424 41 0.3307617837E-01 0.0000000000E+00 1899.610419 42 0.3254372213E-01 0.0000000000E+00 1930.690436 43 0.3214824698E-01 0.0000000000E+00 1954.441034 44 0.3155272679E-01 0.0000000000E+00 1991.328784
Figure: Transmission loss for the NORMAL problem.