Figure: Schematic of the NORMAL problem.
Mode normalization is checked using several density changes. Due to the shear in the lower halfspace, there is a Scholte wave with a phase velocity of about 1393 m/s. It has been excluded from the calculation.
'Mode normalization test'
10.0
2
'NVF'
300 0.0 3000.0
0.0 1500.0 /
3000.0 1500.0 /
200 0.0 5000.0
3000.0 1500.0 0.0 2.0 /
5000.0 1500.0 0.0 2.0 /
'A' 0.0
5000.0 4000.0 2000.0 3.0 /
1400.0 2000.0
1000.0 ! RMAX (km)
1 500.0 / ! NSD SD(1:NSD)
1 2500.0 / ! NRD RD(1:NRD)
KRAKEN- Mode normalization test
Frequency = 10.00 NMEDIA = 2
N2-LINEAR approximation to SSP
Attenuation units: dB/mkHz
VACUUM
Z ALPHAR BETAR RHO ALPHAI BETAI
( Number of pts = 300 RMS roughness = 0.000E+00 )
0.00 1500.00 0.00 1.00 0.0000 0.0000
3000.00 1500.00 0.00 1.00 0.0000 0.0000
( Number of pts = 200 RMS roughness = 0.000E+00 )
3000.00 1500.00 0.00 2.00 0.0000 0.0000
5000.00 1500.00 0.00 2.00 0.0000 0.0000
( RMS roughness = 0.000E+00 )
ACOUSTO-ELASTIC half-space
5000.00 4000.00 2000.00 3.00 0.0000 0.0000
CLOW = 1400.0 CHIGH = 2000.0
RMAX = 1000.000000000000
Number of sources = 1
500.0000
Number of receivers = 1
2500.000
Mesh multiplier CPU seconds
1 5.55
2 6.40
4 4.54
I K ALPHA PHASE SPEED
1 0.4188367900E-01 0.0000000000E+00 1500.151242
2 0.4186658699E-01 0.0000000000E+00 1500.763678
3 0.4184753177E-01 0.0000000000E+00 1501.447049
4 0.4180919493E-01 0.0000000000E+00 1502.823797
5 0.4176674150E-01 0.0000000000E+00 1504.351329
6 0.4171909765E-01 0.0000000000E+00 1506.069321
7 0.4164470397E-01 0.0000000000E+00 1508.759748
8 0.4158680917E-01 0.0000000000E+00 1510.860158
9 0.4149472381E-01 0.0000000000E+00 1514.213069
10 0.4140185763E-01 0.0000000000E+00 1517.609515
11 0.4131280307E-01 0.0000000000E+00 1520.880899
12 0.4117924681E-01 0.0000000000E+00 1525.813557
13 0.4108058576E-01 0.0000000000E+00 1529.478022
14 0.4093552018E-01 0.0000000000E+00 1534.898123
15 0.4078858493E-01 0.0000000000E+00 1540.427381
16 0.4065836697E-01 0.0000000000E+00 1545.360961
17 0.4046343001E-01 0.0000000000E+00 1552.805905
18 0.4032142497E-01 0.0000000000E+00 1558.274617
19 0.4012239980E-01 0.0000000000E+00 1566.004361
20 0.3991798210E-01 0.0000000000E+00 1574.023780
21 0.3974491332E-01 0.0000000000E+00 1580.877849
22 0.3948540371E-01 0.0000000000E+00 1591.267840
23 0.3929733220E-01 0.0000000000E+00 1598.883424
24 0.3904083516E-01 0.0000000000E+00 1609.388037
25 0.3877585468E-01 0.0000000000E+00 1620.386026
26 0.3855610943E-01 0.0000000000E+00 1629.621194
27 0.3822733064E-01 0.0000000000E+00 1643.636948
28 0.3799085539E-01 0.0000000000E+00 1653.867817
29 0.3766977091E-01 0.0000000000E+00 1667.964831
30 0.3734233184E-01 0.0000000000E+00 1682.590507
31 0.3706900744E-01 0.0000000000E+00 1694.996910
32 0.3666482678E-01 0.0000000000E+00 1713.681983
33 0.3637907870E-01 0.0000000000E+00 1727.142504
34 0.3598056675E-01 0.0000000000E+00 1746.271911
35 0.3559408137E-01 0.0000000000E+00 1765.233169
36 0.3525354551E-01 0.0000000000E+00 1782.284652
37 0.3477030998E-01 0.0000000000E+00 1807.054729
38 0.3443753112E-01 0.0000000000E+00 1824.516771
39 0.3393983898E-01 0.0000000000E+00 1851.271395
40 0.3351944923E-01 0.0000000000E+00 1874.489424
41 0.3307617837E-01 0.0000000000E+00 1899.610419
42 0.3254372213E-01 0.0000000000E+00 1930.690436
43 0.3214824698E-01 0.0000000000E+00 1954.441034
44 0.3155272679E-01 0.0000000000E+00 1991.328784
Figure: Transmission loss for the NORMAL problem.