Figure: Schematic of the ICE problem.
This problem is loosely based on an Arctic scenario with an elastic ice-canopy. Here the elastic medium lies above the acoustic media. Note that the KRAKEN result disagrees with both KRAKENC and SCOOTER . This is expected since KRAKEN ignores attenuation in elastic media.
'Ice problem'
10.0
2
'NVW'
50 0.0 30.0
0.0 3000.0 1400.0 1.0 0.3 1.0
30.0 3000.0 1400.0 1.0 0.3 1.0
500 0.0 5000.0
30.0 1500.0 0.0 1.0 0.0 0.0
5000.0 1500.0 0.0 1.0 0.0 0.0
'A' 0.0
5000.0 2000.0 0.0 2.0 0.0 0.0
1400.0 2000.0
1000.0 ! RMAX (km)
1 500.0 / ! NSD SD(1:NSD)
1 2500.0 / ! NRD RD(1:NRD)
KRAKEN- Ice problem
Frequency = 10.00 NMEDIA = 2
N2-LINEAR approximation to SSP
Attenuation units: dB/wavelength
VACUUM
Z ALPHAR BETAR RHO ALPHAI BETAI
( Number of pts = 50 RMS roughness = 0.000E+00 )
0.00 3000.00 1400.00 1.00 0.3000 1.0000
30.00 3000.00 1400.00 1.00 0.3000 1.0000
( Number of pts = 500 RMS roughness = 0.000E+00 )
30.00 1500.00 0.00 1.00 0.0000 0.0000
5000.00 1500.00 0.00 1.00 0.0000 0.0000
( RMS roughness = 0.000E+00 )
ACOUSTO-ELASTIC half-space
5000.00 2000.00 0.00 2.00 0.0000 0.0000
CLOW = 1400.0 CHIGH = 2000.0
RMAX = 1000.000000000000
Number of sources = 1
500.0000
Number of receivers = 1
2500.000
Mesh multiplier CPU seconds
1 11.5
2 16.6
I K ALPHA PHASE SPEED
1 0.4188333139E-01 0.0000000000E+00 1500.163692
2 0.4186961576E-01 0.0000000000E+00 1500.655115
3 0.4184674417E-01 0.0000000000E+00 1501.475307
4 0.4181469833E-01 0.0000000000E+00 1502.626004
5 0.4177345263E-01 0.0000000000E+00 1504.109646
6 0.4172297425E-01 0.0000000000E+00 1505.929388
7 0.4166322309E-01 0.0000000000E+00 1508.089111
8 0.4159415182E-01 0.0000000000E+00 1510.593445
9 0.4151570588E-01 0.0000000000E+00 1513.447784
10 0.4142782343E-01 0.0000000000E+00 1516.658320
11 0.4133043533E-01 0.0000000000E+00 1520.232066
12 0.4122346498E-01 0.0000000000E+00 1524.176900
13 0.4110682824E-01 0.0000000000E+00 1528.501608
14 0.4098043325E-01 0.0000000000E+00 1533.215930
15 0.4084418017E-01 0.0000000000E+00 1538.330622
16 0.4069796094E-01 0.0000000000E+00 1543.857521
17 0.4054165894E-01 0.0000000000E+00 1549.809621
18 0.4037514862E-01 0.0000000000E+00 1556.201159
19 0.4019829503E-01 0.0000000000E+00 1563.047712
20 0.4001095339E-01 0.0000000000E+00 1570.366306
21 0.3981296844E-01 0.0000000000E+00 1578.175543
22 0.3960417391E-01 0.0000000000E+00 1586.495737
23 0.3938439178E-01 0.0000000000E+00 1595.349077
24 0.3915343149E-01 0.0000000000E+00 1604.759805
25 0.3891108916E-01 0.0000000000E+00 1614.754417
26 0.3865714660E-01 0.0000000000E+00 1625.361895
27 0.3839137032E-01 0.0000000000E+00 1636.613972
28 0.3811351037E-01 0.0000000000E+00 1648.545423
29 0.3782329915E-01 0.0000000000E+00 1661.194409
30 0.3752045003E-01 0.0000000000E+00 1674.602864
31 0.3720465592E-01 0.0000000000E+00 1688.816938
32 0.3687558766E-01 0.0000000000E+00 1703.887506
33 0.3653289237E-01 0.0000000000E+00 1719.870752
34 0.3617619171E-01 0.0000000000E+00 1736.828840
35 0.3580508009E-01 0.0000000000E+00 1754.830681
36 0.3541912307E-01 0.0000000000E+00 1773.952815
37 0.3501785613E-01 0.0000000000E+00 1794.280405
38 0.3460078429E-01 0.0000000000E+00 1815.908349
39 0.3416738384E-01 0.0000000000E+00 1838.942465
40 0.3371710848E-01 0.0000000000E+00 1863.500635
41 0.3324940638E-01 0.0000000000E+00 1889.713529
42 0.3276376704E-01 0.0000000000E+00 1917.723716
43 0.3225987273E-01 0.0000000000E+00 1947.678269
44 0.3173836536E-01 0.0000000000E+00 1979.681448
Figure: Transmission loss for the ICE problem.