Figure: Schematic of the ICE problem.
This problem is loosely based on an Arctic scenario with an elastic ice-canopy. Here the elastic medium lies above the acoustic media. Note that the KRAKEN result disagrees with both KRAKENC and SCOOTER . This is expected since KRAKEN ignores attenuation in elastic media.
'Ice problem' 10.0 2 'NVW' 50 0.0 30.0 0.0 3000.0 1400.0 1.0 0.3 1.0 30.0 3000.0 1400.0 1.0 0.3 1.0 500 0.0 5000.0 30.0 1500.0 0.0 1.0 0.0 0.0 5000.0 1500.0 0.0 1.0 0.0 0.0 'A' 0.0 5000.0 2000.0 0.0 2.0 0.0 0.0 1400.0 2000.0 1000.0 ! RMAX (km) 1 500.0 / ! NSD SD(1:NSD) 1 2500.0 / ! NRD RD(1:NRD)
KRAKEN- Ice problem Frequency = 10.00 NMEDIA = 2 N2-LINEAR approximation to SSP Attenuation units: dB/wavelength VACUUM Z ALPHAR BETAR RHO ALPHAI BETAI ( Number of pts = 50 RMS roughness = 0.000E+00 ) 0.00 3000.00 1400.00 1.00 0.3000 1.0000 30.00 3000.00 1400.00 1.00 0.3000 1.0000 ( Number of pts = 500 RMS roughness = 0.000E+00 ) 30.00 1500.00 0.00 1.00 0.0000 0.0000 5000.00 1500.00 0.00 1.00 0.0000 0.0000 ( RMS roughness = 0.000E+00 ) ACOUSTO-ELASTIC half-space 5000.00 2000.00 0.00 2.00 0.0000 0.0000 CLOW = 1400.0 CHIGH = 2000.0 RMAX = 1000.000000000000 Number of sources = 1 500.0000 Number of receivers = 1 2500.000 Mesh multiplier CPU seconds 1 11.5 2 16.6 I K ALPHA PHASE SPEED 1 0.4188333139E-01 0.0000000000E+00 1500.163692 2 0.4186961576E-01 0.0000000000E+00 1500.655115 3 0.4184674417E-01 0.0000000000E+00 1501.475307 4 0.4181469833E-01 0.0000000000E+00 1502.626004 5 0.4177345263E-01 0.0000000000E+00 1504.109646 6 0.4172297425E-01 0.0000000000E+00 1505.929388 7 0.4166322309E-01 0.0000000000E+00 1508.089111 8 0.4159415182E-01 0.0000000000E+00 1510.593445 9 0.4151570588E-01 0.0000000000E+00 1513.447784 10 0.4142782343E-01 0.0000000000E+00 1516.658320 11 0.4133043533E-01 0.0000000000E+00 1520.232066 12 0.4122346498E-01 0.0000000000E+00 1524.176900 13 0.4110682824E-01 0.0000000000E+00 1528.501608 14 0.4098043325E-01 0.0000000000E+00 1533.215930 15 0.4084418017E-01 0.0000000000E+00 1538.330622 16 0.4069796094E-01 0.0000000000E+00 1543.857521 17 0.4054165894E-01 0.0000000000E+00 1549.809621 18 0.4037514862E-01 0.0000000000E+00 1556.201159 19 0.4019829503E-01 0.0000000000E+00 1563.047712 20 0.4001095339E-01 0.0000000000E+00 1570.366306 21 0.3981296844E-01 0.0000000000E+00 1578.175543 22 0.3960417391E-01 0.0000000000E+00 1586.495737 23 0.3938439178E-01 0.0000000000E+00 1595.349077 24 0.3915343149E-01 0.0000000000E+00 1604.759805 25 0.3891108916E-01 0.0000000000E+00 1614.754417 26 0.3865714660E-01 0.0000000000E+00 1625.361895 27 0.3839137032E-01 0.0000000000E+00 1636.613972 28 0.3811351037E-01 0.0000000000E+00 1648.545423 29 0.3782329915E-01 0.0000000000E+00 1661.194409 30 0.3752045003E-01 0.0000000000E+00 1674.602864 31 0.3720465592E-01 0.0000000000E+00 1688.816938 32 0.3687558766E-01 0.0000000000E+00 1703.887506 33 0.3653289237E-01 0.0000000000E+00 1719.870752 34 0.3617619171E-01 0.0000000000E+00 1736.828840 35 0.3580508009E-01 0.0000000000E+00 1754.830681 36 0.3541912307E-01 0.0000000000E+00 1773.952815 37 0.3501785613E-01 0.0000000000E+00 1794.280405 38 0.3460078429E-01 0.0000000000E+00 1815.908349 39 0.3416738384E-01 0.0000000000E+00 1838.942465 40 0.3371710848E-01 0.0000000000E+00 1863.500635 41 0.3324940638E-01 0.0000000000E+00 1889.713529 42 0.3276376704E-01 0.0000000000E+00 1917.723716 43 0.3225987273E-01 0.0000000000E+00 1947.678269 44 0.3173836536E-01 0.0000000000E+00 1979.681448
Figure: Transmission loss for the ICE problem.