Figure: Schematic of the SCHOLTE problem.
This problem is a version of the Pekeris waveguide but with an elastic half-space as the bottom. This type of problem has a Scholte mode with a phase velocity less than the slowest speed in the problem. (Since the source and receiver are many wavelenghts from the interface the Scholte mode is not actually important for the transmission loss calculation.)
'Scholte waveguide' 10.0 1 'NVM' 500 0.0 5000.0 0.0 1500.0 / 5000.0 1500.0 / 'A' 0.0 5000.0 4000.0 2000.0 2.0 / 1400.0 2000.0 1000.0 ! RMAX (km) 1 500.0 / ! NSD SD(1:NSD) 1 2500.0 / ! NRD RD(1:NRD)
KRAKEN- Scholte waveguide Frequency = 10.00 NMEDIA = 1 N2-LINEAR approximation to SSP Attenuation units: dB/m VACUUM Z ALPHAR BETAR RHO ALPHAI BETAI ( Number of pts = 500 RMS roughness = 0.000E+00 ) 0.00 1500.00 0.00 1.00 0.0000 0.0000 5000.00 1500.00 0.00 1.00 0.0000 0.0000 ( RMS roughness = 0.000E+00 ) ACOUSTO-ELASTIC half-space 5000.00 4000.00 2000.00 2.00 0.0000 0.0000 CLOW = 1400.0 CHIGH = 2000.0 RMAX = 1000.000000000000 Number of sources = 1 500.0000 Number of receivers = 1 2500.000 Mesh multiplier CPU seconds 1 5.61 2 6.51 4 4.64 I K ALPHA PHASE SPEED 1 0.4400982929E-01 0.0000000000E+00 1427.677728 2 0.4188306870E-01 0.0000000000E+00 1500.173101 3 0.4186856672E-01 0.0000000000E+00 1500.692715 4 0.4184439022E-01 0.0000000000E+00 1501.559773 5 0.4181052921E-01 0.0000000000E+00 1502.775838 6 0.4176696933E-01 0.0000000000E+00 1504.343123 7 0.4171369148E-01 0.0000000000E+00 1506.264510 8 0.4165067147E-01 0.0000000000E+00 1508.543581 9 0.4157787955E-01 0.0000000000E+00 1511.184643 10 0.4149527997E-01 0.0000000000E+00 1514.192774 11 0.4140283053E-01 0.0000000000E+00 1517.573853 12 0.4130048217E-01 0.0000000000E+00 1521.334613 13 0.4118817854E-01 0.0000000000E+00 1525.482682 14 0.4106585562E-01 0.0000000000E+00 1530.026639 15 0.4093344142E-01 0.0000000000E+00 1534.976071 16 0.4079085559E-01 0.0000000000E+00 1540.341632 17 0.4063800914E-01 0.0000000000E+00 1546.135118 18 0.4047480418E-01 0.0000000000E+00 1552.369538 19 0.4030113364E-01 0.0000000000E+00 1559.059197 20 0.4011688100E-01 0.0000000000E+00 1566.219793 21 0.3992192010E-01 0.0000000000E+00 1573.868514 22 0.3971611492E-01 0.0000000000E+00 1582.024153 23 0.3949931943E-01 0.0000000000E+00 1590.707232 24 0.3927137754E-01 0.0000000000E+00 1599.940135 25 0.3903212305E-01 0.0000000000E+00 1609.747258 26 0.3878137986E-01 0.0000000000E+00 1620.155170 27 0.3851896232E-01 0.0000000000E+00 1631.192776 28 0.3824467597E-01 0.0000000000E+00 1642.891500 29 0.3795831866E-01 0.0000000000E+00 1655.285463 30 0.3765968244E-01 0.0000000000E+00 1668.411654 31 0.3734855636E-01 0.0000000000E+00 1682.310086 32 0.3702473075E-01 0.0000000000E+00 1697.023903 33 0.3668800348E-01 0.0000000000E+00 1712.599409 34 0.3633818906E-01 0.0000000000E+00 1729.085975 35 0.3597513167E-01 0.0000000000E+00 1746.535736 36 0.3559872314E-01 0.0000000000E+00 1765.002998 37 0.3520892659E-01 0.0000000000E+00 1784.543272 38 0.3480580404E-01 0.0000000000E+00 1805.211941 39 0.3438954040E-01 0.0000000000E+00 1827.062890 40 0.3396044231E-01 0.0000000000E+00 1850.148255 41 0.3351886824E-01 0.0000000000E+00 1874.521915 42 0.3306503451E-01 0.0000000000E+00 1900.250643 43 0.3259872074E-01 0.0000000000E+00 1927.433091 44 0.3211925126E-01 0.0000000000E+00 1956.205410 45 0.3162787575E-01 0.0000000000E+00 1986.597316
Figure: Transmission loss for the SCHOLTE problem.