Figure: Schematic of the DOUBLE problem.
The ocean profile is converted to one involving three piecewise linear segments defining a double-duct profile.
'Double-duct problem' 10.0 3 'NVF' 100 0.0 1000.0 0.0 1500.0 / 1000.0 1550.0 / 200 0.0 3000.0 1000.0 1550.0 / 3000.0 1500.0 / 200 0.0 5000.0 3000.0 1500.0 / 5000.0 1550.0 / 'A' 0.0 5000.0 2000.0 0.0 2.0 0.0 0.0 1400.0 2000.0 1000.0 ! RMAX (km) 1 500.0 / ! NSD SD(1:NSD) 1 2500.0 / ! NRD RD(1:NRD)
KRAKEN- Double-duct problem Frequency = 10.00 NMEDIA = 3 N2-LINEAR approximation to SSP Attenuation units: dB/mkHz VACUUM Z ALPHAR BETAR RHO ALPHAI BETAI ( Number of pts = 100 RMS roughness = 0.000E+00 ) 0.00 1500.00 0.00 1.00 0.0000 0.0000 1000.00 1550.00 0.00 1.00 0.0000 0.0000 ( Number of pts = 200 RMS roughness = 0.000E+00 ) 1000.00 1550.00 0.00 1.00 0.0000 0.0000 3000.00 1500.00 0.00 1.00 0.0000 0.0000 ( Number of pts = 200 RMS roughness = 0.000E+00 ) 3000.00 1500.00 0.00 1.00 0.0000 0.0000 5000.00 1550.00 0.00 1.00 0.0000 0.0000 ( RMS roughness = 0.000E+00 ) ACOUSTO-ELASTIC half-space 5000.00 2000.00 0.00 2.00 0.0000 0.0000 CLOW = 1400.0 CHIGH = 2000.0 RMAX = 1000.000000000000 Number of sources = 1 500.0000 Number of receivers = 1 2500.000 Mesh multiplier CPU seconds 1 5.60 2 6.18 I K ALPHA PHASE SPEED 1 0.4171018652E-01 0.0000000000E+00 1506.391084 2 0.4147891740E-01 0.0000000000E+00 1514.790091 3 0.4131862874E-01 0.0000000000E+00 1520.666464 4 0.4123681174E-01 0.0000000000E+00 1523.683583 5 0.4117017415E-01 0.0000000000E+00 1526.149801 6 0.4104029641E-01 0.0000000000E+00 1530.979515 7 0.4091561041E-01 0.0000000000E+00 1535.645013 8 0.4080128302E-01 0.0000000000E+00 1539.947973 9 0.4074949725E-01 0.0000000000E+00 1541.904988 10 0.4068324597E-01 0.0000000000E+00 1544.415928 11 0.4057281144E-01 0.0000000000E+00 1548.619650 12 0.4046123964E-01 0.0000000000E+00 1552.889967 13 0.4035440690E-01 0.0000000000E+00 1557.001029 14 0.4024224926E-01 0.0000000000E+00 1561.340487 15 0.4011172669E-01 0.0000000000E+00 1566.421051 16 0.3996592323E-01 0.0000000000E+00 1572.135660 17 0.3980769235E-01 0.0000000000E+00 1578.384713 18 0.3964207800E-01 0.0000000000E+00 1584.978796 19 0.3946677171E-01 0.0000000000E+00 1592.019067 20 0.3927946746E-01 0.0000000000E+00 1599.610614 21 0.3907987820E-01 0.0000000000E+00 1607.780166 22 0.3886748929E-01 0.0000000000E+00 1616.565778 23 0.3864545686E-01 0.0000000000E+00 1625.853546 24 0.3841222010E-01 0.0000000000E+00 1635.725634 25 0.3816711818E-01 0.0000000000E+00 1646.229951 26 0.3790948500E-01 0.0000000000E+00 1657.417743 27 0.3763853318E-01 0.0000000000E+00 1669.349142 28 0.3735627690E-01 0.0000000000E+00 1681.962398 29 0.3706135033E-01 0.0000000000E+00 1695.347107 30 0.3675356291E-01 0.0000000000E+00 1709.544548 31 0.3643204686E-01 0.0000000000E+00 1724.631430 32 0.3609604877E-01 0.0000000000E+00 1740.685067 33 0.3574683553E-01 0.0000000000E+00 1757.689937 34 0.3538311960E-01 0.0000000000E+00 1775.757869 35 0.3500480248E-01 0.0000000000E+00 1794.949511 36 0.3461083089E-01 0.0000000000E+00 1815.381239 37 0.3420046728E-01 0.0000000000E+00 1837.163585 38 0.3377442369E-01 0.0000000000E+00 1860.338274 39 0.3333144286E-01 0.0000000000E+00 1885.062502 40 0.3287145204E-01 0.0000000000E+00 1911.441362 41 0.3239342265E-01 0.0000000000E+00 1939.648482 42 0.3189739326E-01 0.0000000000E+00 1969.811532
Figure: Transmission loss for the DOUBLE problem.