Figure: Schematic of the PEKERIS problem.
This problem involves a homogeneous fluid layer with a sound speed of overlying a faster bottom with sound speed and density of .
'Pekeris problem' 10.0 1 'NVF' 500 0.0 5000.0 0.0 1500.0 / 5000.0 1500.0 / 'A' 0.0 5000.0 2000.0 0.0 2.0 / 1400.0 2000.0 1000.0 ! RMAX (km) 1 500.0 / ! NSD SD(1:NSD) 1 2500.0 / ! NRD RD(1:NRD)
KRAKEN- Pekeris problem Frequency = 10.00 NMEDIA = 1 N2-LINEAR approximation to SSP Attenuation units: dB/mkHz VACUUM Z ALPHAR BETAR RHO ALPHAI BETAI ( Number of pts = 500 RMS roughness = 0.000E+00 ) 0.00 1500.00 0.00 1.00 0.0000 0.0000 5000.00 1500.00 0.00 1.00 0.0000 0.0000 ( RMS roughness = 0.000E+00 ) ACOUSTO-ELASTIC half-space 5000.00 2000.00 0.00 2.00 0.0000 0.0000 CLOW = 1400.0 CHIGH = 2000.0 RMAX = 1000.000000000000 Number of sources = 1 500.0000 Number of receivers = 1 2500.000 Mesh multiplier CPU seconds 1 5.49 2 6.21 I K ALPHA PHASE SPEED 1 0.4188332253E-01 0.0000000000E+00 1500.164010 2 0.4186958032E-01 0.0000000000E+00 1500.656385 3 0.4184666447E-01 0.0000000000E+00 1501.478167 4 0.4181455674E-01 0.0000000000E+00 1502.631092 5 0.4177323161E-01 0.0000000000E+00 1504.117605 6 0.4172265636E-01 0.0000000000E+00 1505.940862 7 0.4166279103E-01 0.0000000000E+00 1508.104751 8 0.4159358848E-01 0.0000000000E+00 1510.613904 9 0.4151499439E-01 0.0000000000E+00 1513.473722 10 0.4142694720E-01 0.0000000000E+00 1516.690399 11 0.4132937809E-01 0.0000000000E+00 1520.270954 12 0.4122221089E-01 0.0000000000E+00 1524.223270 13 0.4110536194E-01 0.0000000000E+00 1528.556132 14 0.4097873993E-01 0.0000000000E+00 1533.279285 15 0.4084224568E-01 0.0000000000E+00 1538.403485 16 0.4069577186E-01 0.0000000000E+00 1543.940567 17 0.4053920272E-01 0.0000000000E+00 1549.903522 18 0.4037241363E-01 0.0000000000E+00 1556.306582 19 0.4019527072E-01 0.0000000000E+00 1563.165317 20 0.4000763035E-01 0.0000000000E+00 1570.496741 21 0.3980933859E-01 0.0000000000E+00 1578.319442 22 0.3960023053E-01 0.0000000000E+00 1586.653720 23 0.3938012967E-01 0.0000000000E+00 1595.521741 24 0.3914884708E-01 0.0000000000E+00 1604.947725 25 0.3890618058E-01 0.0000000000E+00 1614.958141 26 0.3865191380E-01 0.0000000000E+00 1625.581942 27 0.3838581509E-01 0.0000000000E+00 1636.850824 28 0.3810763645E-01 0.0000000000E+00 1648.799530 29 0.3781711221E-01 0.0000000000E+00 1661.466183 30 0.3751395766E-01 0.0000000000E+00 1674.892680 31 0.3719786754E-01 0.0000000000E+00 1689.125136 32 0.3686851438E-01 0.0000000000E+00 1704.214399 33 0.3652554677E-01 0.0000000000E+00 1720.216633 34 0.3616858743E-01 0.0000000000E+00 1737.194000 35 0.3579723130E-01 0.0000000000E+00 1755.215440 36 0.3541104368E-01 0.0000000000E+00 1774.357560 37 0.3500955866E-01 0.0000000000E+00 1794.705659 38 0.3459227830E-01 0.0000000000E+00 1816.354868 39 0.3415867360E-01 0.0000000000E+00 1839.411384 40 0.3370818983E-01 0.0000000000E+00 1863.993688 41 0.3324026217E-01 0.0000000000E+00 1890.233379 42 0.3275436107E-01 0.0000000000E+00 1918.274423 43 0.3225014368E-01 0.0000000000E+00 1948.265834 44 0.3172824619E-01 0.0000000000E+00 1980.312832
Figure: Transmission loss for the PEKERIS problem.