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Notes on ME525 Applied Acoustics Lecture 7 Winter 2024

Complex Intensity, Active and Reactive Intensity

Peter H. Dahl, University of Washington

Complex Intensity, Active and Reactive Intensity

Returning to the red and blue ”envelope” curves (Fig. 1) first shown for the Jacobsen data in
Lecture 6 Recall that at kr << 1 the situation is characterized by reactive intensity, and at kr >>

1 the situation is characterized by active intensity. These curves emerge through the concept or
complex intensity I⃗c =

1
2
pu⃗⋆ which was first formulated by Heyser (1986), and is discussed further in

Fahy (1995) and Jacobsen and Juhl (2015).

Figure 1: Jacobsen Ezperiment left: near field with kr << 1, right: far field with kr >> 1. (See also Lecture
6)

This is subtle concept, best first demonstrated by a model. Use our standard model for the
acoustic pressure from a spherical wave p(r, t) = A

r
eikr−iωt, and form 1

2
pu⃗⋆, using in this case only a

radial component ur for u⃗. This yields

Ic =
|A|2

2ρ0c
(
1

r2
− i

1

r2kr
). (1)

so in this case, complex intensity Ic has only one component in the radial direction to mirror ur.
Confirm Eq.(1) yourself.

The real part Ic equals the active intensity and identify I = Re{Ic}. The imaginary part equals
the reactive intensity and identify Q = Im{Ic} (in the general case these are vectors I⃗ and Q⃗). Thus
according to this model active intensity (limited to the r direction) is

Ir =
|A|2

2ρ0cr2
(2)
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Recall the corresponding Umov vector for this same model for pressure (Lecture 6)

Sr(r, t) =
|A|2

r2ρ0c
{cos2(kr − ωt+ ϕA)−

cos(kr − ωt+ ϕA) sin(kr − ωt+ ϕA)

kr
} (3)

Observe: the time average of Sr(r, t) identified formally as ⟨Sr(r, t)⟩ also yields the result for I in
Eq.(2). Since the problem involves harmonic variables of single frequency f where ω = 2πf , time
average is carried out over a period T = 1/f . Check out the time average: the first time equals
1/2 and the second terms = 0. Henceforth associate active intensity I⃗ as a time average, in some
reasonable sense, of the Umov vector.

With this simple model the result ⟨Sr(r, t)⟩ no longer shows time variation, only the spatial
variation by way of range r. With real data there can be slowly-varying changes, for example, going
back to the Jacobsen data, case kr >> 1, observe the red line (a rough sketch we added to the data)
is describing in some sense a kind of ”running average” of the Umov vector. For example, time
variation could reflect changes in active intensity caused by changing the volume of the speaker
used in the experiment.

The imaginary part, reactive intensity, is more subtle. The second term of Sr(r, t) in Eq. (3)–the
“0 time-averaged part” –is suggestive of reactive intensity insofar as this term has a different range
dependence, going as ∼ 1/r3, compared to active intensity that goes as ∼ 1/r2. But using complex
intensity we find it exactly as

Qr = − |A|2

2ρ0cr2kr
(4)

(Note this subtle point: the sign of reactive intensity is not of physical significance, and depends on
which convention e±iωt is used. )

How does this running average idea work with Qr? Interpret reactive intensity as some measure
of the “strength” of the Umov vector, even though that vector may have time average of zero. In
other words, interpret reactive intensity as the strength of an Umov vector that oscillates in sign.
For example, in Fig. 1, case kr << 1 observe the blue line tracing the envelope of the Umov vector,
which is seen upon inspection to have a near-zero time average. In constrast, for Fig. 1, case
kr >> 1 the Umov vector clearly has a non-zero time average, is basically of one sign, and thuse
the reactive intensity is small.

In Fig 1 the active (red) and reactive (blue) lines are sketched in (more or less guessed at, since
they are not given in original article). Another better demonstratio is one based on our own mea-
surements at the Army Research Laboratory’s anachoic chamber made by my colleague Dr. David
Dall’Osto, and me. Besides testing the instrument we were developing at the time, another strong
motivation was for us to duplicate the Jacobsen experiment. Shown are results from two ranges,
0.28 m and 2.28 m, from a speaker source transmitting at frequency 160 Hz, with a typical condi-
tions for air of c = 343 m/s and ρ0 = 1.2 kg/m3.
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Figure 2: Acoustic pressure (top) acoustic velocity (middle) and intensity measures (bottom) based on mea-
surements at 160 Hz, at two ranges completed at the Army Research Laboratory anachoic chamber, Dall’Osto
and Dahl

At range 0.28 m, kr ∼ 0.8, not quite kr << 1, but clearly not kr >> 1. We anticipate a mixture of
active and reactive intensity. This is suggested by inspecting the pressure and velocity time series,
for which there is a small difference phase between pressure and velocity. Taking a pure average
⟨Sr(r, t)⟩ over this 0.1 s time period, yields one value = 1.96 10−4 W/m2, and the active intensity
Ir (red line), approximately captures this number, though varies somewhat at the start. The active
intensity is again single component in the r-direction. The reactive intensity Qr (blue line) is mixed
in with the active component and evidently higher strength or value. At range 2.28 m kr ∼ 6,
notice that oscillations in pressure and velocity align much better, though not perfectly, and we can
anticipate the observation that Qr will have diminished considerably relative to I .

How do we find the complex intensity, real (red line) and imaginary (blue line) parts when
working with this type of real-valued measurement data? In matlab a simple solution is to form
the Hilbert transform pair of the data using, v_complex = hilbert(v); where v is the matlab
variable representing a time series of velocity, and v_complex is the Hilbert transformed pair
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result. Recover a conjugate form of the velocity in matlab using conj(v_complex), or recover
the original real-valued time series using real(v_complex).

Another example from real data involves measurement of a sonar pulse at range 500 m (Fig 3).
In this case the Umov vector is in 3-components x, y, z. The Sx and Sy vectors point in opposite
directions–telling us something about the bearing of this pulse relative to the sensor. Notice how
the vertical component Sz is ocscillatory, indicative of reactive intensity. This is typical in underwa-
ter acoustics and we’ll continue exploring this data a bit more next week.

Figure 3: A frequency-modlulated (FM) pulse from a sonar measured at range 500 m from a vector sensor.
Top row: Acoustic pressure, Middle row: aoustic velocity in x, y, z directions, bottom row: Umov vector
Sx,y,z and corresponding active (red) and reactive (cyan) intensities.

Summarizing:

• When acoustic pressure and velocity are 90◦ out of phase, as in the Jacobsen data for kr << 1

there exists reactive intensity, ⟨Sr(r, t)⟩ ∼ 0, and reactive intensity Q will describe the envelope
of Sr(r, t)

• When acoustic pressure and velocity in phase, as in the Jacobsen data for kr >> 1 there exists
active intensity I , ⟨Sr(r, t)⟩ is non-zero,

the above given in term of a single radial component, but in general there is S⃗, I⃗ and Q⃗.
We have now encountered multiple definitions relating to word intensity, all of which should

have as their basic dimension Watts/m2, or J/sec/m2. Intensity is in general a vector quantity for
which the following forms have been introduced
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• Umov vector S⃗
S⃗(r, t) = Re{p(r, t)}Re{u⃗(r, t)} (5)

• Complex intensity I⃗c

I⃗c =
1

2
p(r, t)u⃗⋆(r, t) (6)

• active intensity I⃗ = Re{I⃗c} and reactive intensity Q⃗ = Im{I⃗c}

• plane wave intensity p2rms

ρ0c
This is sometimes referred to as plane wave intensity as it is precisely

the intensity one finds from a plane wave. The expression is handy to use with real data–but
be careful with it usage (let’s examine in a small homework problem)
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ME525 Applied Acoustics Lecture 8, Winter 2024
Concluding remarks on Active and Reactive Intensity
Radiated acoustic power from spherical source,
The ka << 1 limit, point source and Green’s function

Peter H. Dahl, University of Washington

Concluding remarks on Active and Reactive Intensity

The following are some concluding remarks on active I⃗ and reactive Q⃗ intensity; these concepts
take practice to sink in (especially for Q⃗). We’ll not have time to study them further in ME 525,
so the take home message at this point is: when pressure and velocity are in phase, there exists
active intensity. When they are out of phase, there exists active intensity, and there can be many
gradations of this.

Back to the remarks: The acoustic vector field v⃗ should now be one of the familiar acoustic small
variables, e.g., as used in acoustic radiation from a spherical source, where v⃗ = vr. In acoustics we
understand that ∇ × v⃗ = 0, in other words the curl of the acoustic velocity field equals zero and
acosutic velocity field is said to be irrotational. But this is not the case for active intensity I⃗ equal to
Umov vector time average, ⟨S⃗⟩ or derived from complex intensity, I⃗c = 1

2
pu⃗⋆, then taking the real

part I⃗ = Re{I⃗c}.
An example (Fig. 1) comes from our research in underwater sound. Here an underwater sound

source is towed at speed 1.6 m/s transmitting at frequency 43 Hz. The source is moving toward, or
closing, on the vector acoustic receiver, so there is slight up (Doppler) shift in frequency to ∼ 43.04
Hz. The received acoustic field, highly filtered to be close to 43.04 Hz, exemplifies narrow band
sound, e.g., sound that can analyzed assuming the time dependence is e−iωt where ω = 2π43.04.
We thus exploit I⃗c and study I⃗ and its companion Q⃗.

At a point in space and at a particular frequency, sound can undergo destructive interference
(discussed in future lectures), with the sound field almost vanishing or fading. For example, inspect
closely the FM pulse from Lecture 7 where the frequency increases in time from about 150 to 250
Hz. The pressure envelope modulates with time as some frequencies fade in and out. At such
points of strong fading an active intensity vortex can form, and an example is depicted in Fig. 1 (a)
which is generated with model based on the conditions of experiment. Streamlines trace out the
course of the changing I⃗ (black arrows) and show the direction of active intensity vector as it swirls
around the vortex point (white disk). Clearly, ∇× I⃗ is not zero. To get the intensity on back on track
and on its way, the vortex point has a companion stagnation point (cross mark). This combination
of points is called vortex region, and field observations of this region and similar points as function
of towing range, are discussed in the reference. These observations involve different combinations
of measured I⃗ and Q⃗.

For comparison Fig 1 (b) and (c) show a vortex region based on modeling in air at much higher
frequency (2070 Hz). Note the cm-scales compared to m-scales in Fig. 1 (a), but otherwise similar
features are shown. In Fig. 1 (b) arrows corresponding to I⃗ would form (if plotted) streamlines for
which the vortex and stagnation points are easily visualized. In Fig. 1 (c) streamlines of reactive
intensity Q⃗ are shown; note that ∇× Q⃗ = 0 and this vector points towards the vortex singularity.
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Figure 1: (a) The vortex region at range 755-760 m, and depth 71-75.5 m, from a narrow band acoustic field
frequency ∼ 43 Hz, in waters depth 77 m. Streamlines of acoustic vector field I⃗ (energy flux streamlines)
shown flowing around the vortex center (white disk) and towards the stagnation point (cross mark). Color
background depicts the degree of ∇× I⃗ . Figure from Dahl,Dall’Osto,Hodgkss, J. Acoust. Soc. Am., 2023. (b)
streamlines of I⃗ and (c) Q⃗ for vortex region modeled at different scale for sound in air. Figure from Mann,
Tichy and Romano, J. Acoust. Soc. Am., 1987.

Figure 2: Further analysis of data measured at the Army Research Laboratory (Fig. 2 of Lecture 7) at kr ∼ 0.8
based on splitting the total velocity v into in-phase component vp and out-of-phase component vq. Left :
comparison of pressure and total velocity v . Middle: pressure and in-phase velocity (vp), Right: pressure
and out-of-phase velocity (vq)

Let’s conclude with a more practical demonstration on the take home message about pressure
and velocity. Return to the data taken in Army Research Laboratory’s anechoic room (Fig. 2 of
Lecture 7), at range such that kr ∼ 0.8. We split the acoustic velocity into two parts: vp which
represent a velocity that is exactly in-phase with pressure p, and vq which represents a velocity that
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is exactly 90◦ out of phase with pressure, using

vp =
⟨pv⟩p
⟨p2⟩

. (1)

This amazingly simple algorithm is discussed in Stanzial et al. 2012. where p and v are the pressure
and total velocity as shown in Lecture 7, Fig. 2 for the case kr ∼ 0.8. The component of pressure
out of phase is vq, is defined such that vq = v − vp.

The partition of velocity into these two components is shown in Fig. 2 (this lecture). The time av-
erage of the Umov vector ⟨pv⟩ would be the same as taking ⟨pvp⟩ as the pvq contribution would not
yield any time average. Active intensity is to be associated with pvp, pressure and velocity clearly
having the same phase relation, and reactive intensity is to associated with pvq. The concludes our
discussion on active I⃗ and reactive Q⃗ intensity.

The spherically symmetric source in ka << 1 limit, and the monopole source

Recall p(r, t) = A
r
eikr−iωt for the complex representation of a spherically symmetric pressure

wave, and find the RMS pressure

prms =
1√
2

|A|
r

(2)

and the time-average of the Umov vector ⟨S⟩ for this case is

⟨S⟩ = p2rms

ρ0c
(3)

There is an easy way (think active intensity) and hard way to confirm Eq.(3) and means to Eq.
(2) should come from inspection. This is also a measure commonly estimated with real data, and
it applies generally to harmonic waves (e.g., a single frequency), but also is sometimes applied to
transient sounds as in explosive waveform (multiple frequency content), and ambient noise. The
intensity metric p2rms

ρ0c
is referred to as plane wave intensity because it is formally the intensity from a

plane wave. One must apply some caution because measuring the pressure and forming p2rms and
dividing by ρ0c does not generally create the vector quantity required, for example, which can be
used to find total radiated acoustic power, Π from an acoustic source.

To obtain this measure in a true sense the average rate at which energy flows through a closed
spherical surface of radius r that surrounds the source, a control surface Sc, is computed as follows

Π =

∫
Sc

⟨S⟩ · ds⃗ (4)

So in general the dot product of the component of ⟨S⟩ normal to the differential area ds⃗ is com-
puted and summed or integrated over the surface Sc. However using the spherically symmetric
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pressure field (pretty good model in many cases) the integral is done by inspection, yielding

Π = 2π
|A|2

ρ0c
(5)

Observe that the average rate of energy flow through any control surface surrounding the spherical
source, or the acoustic power Π, is independent of the radius of that control surface, which is
consistent with conservation of energy in a lossless medium. In practice, sound absorption can
reduce the total Π (Kinsler, et al. 1982.)

Apply the result found earlier for a spherical source of radius a, wavenumber k, ρ0c and radial
velocity amplitude u0 at the surface of the sphere giving complex amplitude A and find

Π = 2πa2|u0|2ρ0c
(ka)2

1 + (ka)2
. (6)

It should be more obvious now that effective radiation of acoustic power for a small source as
characterized by ka << 1 is more difficult (think of combination of small earpod and low frequency
versus high frequency sounds) as the small ka limit shows that Π ∼ (ka)2.

Continuing with this spherical wave of the form

p(r, t) =
A

r
eikre−iωt (7)

and again with boundary condition ur(r = a) = u0e
−iωt, with A given by

A = ρ0c u0a(
ka

ka+ i
)e−ika, (8)

and study the factor in parenthesis in the limit of ka << 1. One finds A ≈ −kρ0cu0a
2, based on

ka
ka+i

= −ika plus order (ka)2. With minor rearrangement the pressure can now be expressed as

p(r, t) = −iω(ρ0u04πa
2)
eikr

4πr
e−iωt (9)

Note the −iω (time derivative) and the ρ0u04πa
2 (a mass) corresponding to a mass flow of (dimen-

sion M/T). Thus the strength of this acoustic source is defined by the time derivative of mass flow,
or described another way, it is the rate of change of mass flow introduced per unit volume.

Next bundle everything by putting q = −iω(ρ0u04πa
2) and call this an effective source strength.

Thus
p(r, t) =

q

4πr
eikr−iωt (10)

where the source is at the center of the coordinate system and pressure is function only of radial
coordinate r.
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A further idealization is made as follows: consider the hypothetical case of a becoming progres-
sively smaller while u0 becomes larger such that q remains constant. This is the concept of a point
source or acoustic monopole (Pierce, 1989), for which the source is idealized to originate from a single
point. The idealization is required to confine the source within an infinitely small space, or single
point, however in practice any small source with time-varying mass of fluid in any small volume
enclosing the source has all the attributes of a point source (Pierce, 1989).

Before moving on recall the wave equation, e.g., Eq.(10) from Lecture 3, which (in the context of
that lecture) was written as

(∇2 − 1

c2
∂2

∂t2
)p = 0 (11)

(where p is now used to represent acoustic pressure). Moving forward, the discussion with respect
to modeling will most often involve harmonic variables with time dependence e−iωt, and thus the
operator ∂2

∂t2
translates to −ω2. Based on this fact the Helmholtz form for the wave equation will be

convenient, which is
(∇2 + k2)p = 0. (12)

As written, Eq.(12) is homogeneous, being equal to 0, and there is no term on the right-hand-side
(RHS) to represent the source. This issue is resolved in the following discussion.
The Green’s function

We further generalize things to find the pressure at a field point r⃗, given a source at an arbitrary
source point r⃗0 that need not be at origin (Fig. 3) as follows:

p(r, t) =
q

4π|r⃗ − r⃗0|
eik|r⃗−r⃗0|−iωt. (13)

Equation (13) satisfies the inhomogeneous Helmholtz equation, for which the delta function on
the RHS represents a point source of strength q at position r⃗0 such that

(∇2 + k2)p = −qδ(r⃗ − r⃗0) (14)
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Figure 3: An acoustic source at the source point r⃗0 producing the acoustic field at field point r⃗.

Here are the key properties of the delta function δ(r⃗ − r⃗0):
(1) δ(r⃗ − r⃗0) = 0 for r⃗ ̸= r⃗0

(2)
∫
V
δ(r⃗ − r⃗0)dV = 1

(3)
∫
V
f(r⃗)δ(r⃗ − r⃗0)dV = f(r⃗0) which is known as the ”sifting property” of the delta function. See

also Fahy (2001).
We further compress notation by defining R = |r⃗ − r⃗0|, such that

g =
eikR

4πR
(15)

and call g the free space Green’s function (Pierce 1989, Morse and Ingard, 1968) because g satisifies

(∇2 + k2)g = −δ(r⃗ − r⃗0) (16)

in an unbounded medium. By unbounded medium we mean there are no nearby boundaries to re-
flect sound, and therefore the sound spreads uniformly away from the source while decaying in
amplitude as ∼ 1/R, where R is range from source.

A purely unbounded medium might be represented by two people having a conversation–
each in their separate helium balloons far above land. But approximately unbounded media are
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everywhere. An excellent one you might experience this winter is being on snow and listening
to sounds or speaking with someone nearby– the air above is unbounded and the snow below is
highly absorptive of sound, hence sound reflection from the snow boundary is very weak. The
opposite effect is experienced by having a conversation inside a stairwell where there are multiple
echoes from the nearby reflective walls. Clearly the data from underground garage demo of Lecture
1 was not recorded in an unbounded medium

Note the physical dimension of g is 1/L. As currently constructed, g embodies all the range-
dependent and phase properties of a sound field with point source located at r⃗0, but to bring a
more useful dimension of pressure, g must be multiplied by some calibration constant.

To summarize, the function g given here represents a sound source (to within a calibration
constant) that is concentrated at a point in the manner of a delta function in space, and g is as a
solution is known as the Green’s function for the problem at hand (Frisk, 1994). A formal proof of
this solution is given at the end of these notes. This solution can either be a harmonic or an impulsive
Green’s function, depending on the time function characteristic of the source, e±iωt or δ(t).

A Green’s function concentrated in space and impulsive time is discussed in Pierce (1989), see
also Tolstoy (1973). In this course we use primarily harmonic Green’s function solutions, represent-
ing a single-frequency, or narrow band condition, and by Fourier superposition we can combine
multiple frequencies to obtain a pulse of time duration τ and bandwidth ∼ 1/τ .

Finally, notice that since |r⃗ − r⃗0| = |r⃗0 − r⃗| then one can exchange the field point and the source
point with the result unchanged. This important property is call reciprocity, and the reciprocity
principal is often exploited for calibrating microphones and hydrophones (Kinsler et al., 1982). Fur-
thermore, we no longer need to stick with spherically symmetric coordinates. For example, r⃗ and
r⃗0 are easily identified in Cartesian coordinates, as in r⃗ = [x, y, z] and r⃗0 = [x0, y0, z0].

We discuss the effect of boundaries, or boundary conditions, in later lectures. For example a
major boundary condition to address with a sound source underwater is presence of sea surface
and seabed boundary.

Acoustically compact source

Following the exercise concerning the ka << 1 we arrive an extraordinarily useful rule: if the
characteristic scale L of source is such that L << λ where λ is the acoustic wavelength, then the
source is acoustically compact. Once the source is deemed acoustically compact the scale L is no
longer relevant.

The source can be modeling as Eqs. (10) or (13) where the source strength, q is determined
empirically by measurement. For example, if prms is measured at range R m from the source, then
we can estimate |q| as follows

|q|
4π

1√
2

1

R
= prms (17)
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giving at least a value for |q|. Often that is all we need anyway, as the real physics relating to sound
propagation is embodied in Green’s function g.

Lecture 8 Appendix: Formal proof of the Green’s function g being a solution to the Helmholtz
equation for a point source of sound

Let us next prove that g satisfies Eq.(16). First put the point source location r⃗0 at the center of a
coordinate system with no loss of generality. Then examine g = eikr

4πr
as a solution to

∇2g + k2g = −δ(r) (18)

where r is now an ordinary radial coordinate from the origin and there is no need to vectorize.
Now consider a volume V that does not include the origin; under these circumstances we have

∇2g+k2g = 0 in view of the properties of the delta function. The fact that g, a spherically symmetric
wave so defined, is a solution to this homogeneous Helmholtz equation is already a settled issue. For
example one can put G = rg and G will be a plane wave solution as demonstrated previously.

Next we show that

∇2 e
ikr

r
+ k2 e

ikr

r
= −4πδ(r) (19)

over a small volume V that encloses the source at the origin. Set this up as follows:∫
V

∇2 e
ikr

r
dV + k2

∫
V

eikr

r
dV = −4π (20)

where the −4π again emerges from the basic property of the delta function.
Examine the two volume integrals separately, put the first equal to I1 and the second equal to I2.

For I1 use the divergence theorem to convert the I1 volume integral into a surface integral giving

I1 =

∫
Aϵ

n⃗ · ∇eikr

r
dA (21)

where Aϵ is area of a ”very small” sphere that encloses the source point. Carefully lay out this
surface integral as

I1 =

∫ 2π

0

dϕ

∫ π

0

[
d

dr

eikr

r
]ϵ2 sin θdθ (22)

the factor [ d
dr

eikr

r
] is evaluated at r = ϵ, and observe that this will be ikϵ−1

ϵ2
. Thus in the limit of ϵ → 0

we find I1 = −4π.
For I2, recognize that dV equals dϕϵ2 sin θdθ and thus this integral will equal 0 as ϵ → 0. There-

fore, Eq. (18) is satisfied.
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