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ME525 Applied Acoustics Lecture 26, Winter 2024
Range dependence and adiabatic modes

Peter H. Dahl, University of Washington

A Range-dependent waveguide and mode cut-off

Problems studied thus far using normal modes are based on range-independent waveguide,
where, although sound speed can change with depth (e.g., see Fig. 3 of Lecture 24), neither depth
nor sound speed conditions change with range. This is a reasonable approximation for many prob-
lems but there are many instances where the approximation fails. One is the problem of upslope
propagation where a sound source is off shore and the bathymetry is gradually changing towards
shore. Jensen and Kuperman (1980) first addressed this problem for the idealized case of sound
propagation in waters of depth 200 m over the first 5 km of range, after which the depth reduces
linearly to effectively 0 m at range 12 km from the original source (Fig. 1). To solve this problem
they used, instead of normal modes, the parabolic wave equation (PE) approach which is directly
amenable to solving range dependent problems. For more details on the PE approach the text by
Jensen, Kuperman, Porter and Schmidt (2011) is an excellent starting point.

However for given range independent waveguide the complex acoustic field, or g(r, z, zs) pro-
duced by the PE is similar (within a very close approximation) to that produced by normal modes,
even though normal modes are not an output of PE computations per se. For example, in Fig. 1 ob-
serve an interference pattern with depth in effect over the first 5 km that is suggestive of 3 trapped
modes. Once the depth begins to change (reduce) modes begin to “cut off” one by one, starting
with the first mode.

Seeing the modes cut-off in order of mode number n = 3, 2, 1 it’s interesting to check out the
formula for the approximate number of trapped modes in a underwater waveguide given in Eq.(2)
of Lecture 25. Using the parameters of the problem, including frequency 25 Hz, Fig. 2 seems
reasonably predictive concerning the water depth interval that can support 3 modes, then 2 modes,
then 1 mode, and ultimately 0 modes.
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Figure 1: Modes in waveguide of depth 200 m up to range 5 km, after which there is a gradual decrease in
depth following Jensen Kuperman problem (1980). Thin, white line shows the changing depth with range.
Three trapped modes are originally supported for 25 Hz source within the 200 m depth region. As depth
decreases modes begin to cut-off starting with highest mode first. Eventually no modes can propagate in
this waveguide. Simulation by P. H. Dahl using parabolic wave equation.

Figure 2: Number of trapped modes estimated by Eq. (2) of Lecture 25, for the waveguide shown in Fig. 1
based on water depth H reducing from 200 m to 0 m.

Adiabatic modes

One way to handle a degree of range-dependence using normal modes is through the technique
know as adiabatic modes. Indeed the problem in Fig. 1 can be solved in this manner. The basic idea
is that the acoustic field is determined by (i) conditions (e.g., water depth, sound speed and density
properties) in effect at source range, (ii) conditions at the receiver range, and (ii) and some average
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of the conditions between these two points. For (iii) this average for a given mode n is characterized
by the average horizontal wavenumber krn between these two points. It is not hard to implement,
and good starting reference is Kuperman and Roux (2007).

To a simple example is the geometry of the Nantucket experiment (Fig. 3). A source is placed at
depth 6.1 m in waters 14.6 m deep. This depth is maintained for about 660 m, after which the depth
reduces to 13.9 m. A receiver is another 660 m downrange at depth 12.5 m. So, approximately
the first half the waveguide has H = 14.9 m and second half has H = 13.9 m. Thus the average
horizontal wavenumber krn will be given by 0.5(k1

rn + k2
rn where 1, 2 identify the first and second

half of the propagation range, respectively. In this case 1, 2 also correspond to the conditions as
the source and receiver, respectively. This is a particularly simple case where the average of just
two horizontal wavenumber is needed. In general there may some waited average, e.g. were
the propagation range not divided evenly into two parts. Using this technique to solve the wedge
problem in Fig. 1 requires many “stair steps” to approximate the slope and the appropriate average
must be taken.

Figure 3: Geometry of experiment off Nantucket. Figure is Fig. 1 of Frisk, Lynch and Rajan (1989).

The adiabatic solution which accommodates (i-iii) is given by modifying Eq.(5) of Lecture 25 to

g(r, z, zs) =
πi

ρ1

∑
n

Ar
n sin(γ

r
nz)A

s
n sin(γ

s
nzs)H

1
0 (krnr). (1)

The key differences are: rather than A2
n, there are As

n and Ar
n computed separately based on condi-

tions at the source s and receiver r, similarly, instead of γn there is γs
n and γr

n, and finally there is
krn.

Taking the Nantucket geometry, with frequency 220 Hz cw = 1503 m/s and cb = 1700 m/s,
ρw, rhob = 1000 and 1500 kg/m3 respectively, I produced a simple adiabatic result (Fig. 4) for
source depth 6.1 m and receiver depth 12.5 m. The effect of the change in depth for this two-mode
pattern is transition in modal interference at range 660 m which occurs smoothly.
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Figure 4: Geometry of experiment off Nantucket. Figure is Fig. 1 of Frisk, Lynch and Rajan (1989).

References

F.B. Jensen, W.A. Kuperman, Sound propagation in a wedge-shaped ocean with a penetrable bot-
tom. J. Acoust. Soc. Am. 67, 1564–1566 (1980)
F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, Computational Ocean Acoustics, (Springer, New
York, 2011)
W.A. Kuperman and P. Roux, Propagation of Sound, In: Springer Handbook of Acoustics, T. D.
Rossing (Ed.), (Springer, 2007)
Frisk, G. V., J. Lynch and S. Rajan, ”Determination of the compressional wave speed profiles using
modal inverse techniques in a range-dependent environment in Nantucket sound,” J. Acoust. Soc.
Am. 86, Nov. 1989.

Copyright © 2024 P. H. Dahl. All Rights Reserved.



1

ME525 Applied Acoustics Lecture 27, Winter 2024
Mode group and phase velocity

Peter H. Dahl, University of Washington

Mode group and phase velocity

An important property of underwater acoustic waveguide propagation is the phenomenon of
the speed of energy transport for a given mode, which depends on frequency. Since the modes
depend on geometry, i.e., primarily water depth H , this is known as geometric dispersion (e.g.
Frisk, 1994).

An initial pathway towards understanding this is to revert to the original, simplified problem
of a waveguide with rigid boundary conditions. Revisit Table 1 of Lecture 24, find the horizontal
wavenumbers krn for modes 1 and 2 to be 1.0280 and 0.9271, respectively. Corresponding “pre-
ferred angles” for these two modes as defined by krn cos θn = k are 8.7◦, 29.9◦, respectively based
on the frequency, 240 Hz, and water sound speed, 1450 m/s, which establish k. Imagine next mode
1 traveling down the waveguide via its equivalent “ray”, with horizontal angle 8.7◦, reflecting off
the rigid seabed boundary and air-water boundary at this same angle. This applies to mode 2 but
now the angle is 29.9◦. Evidently the speed by which mode 1 propagates through the waveguide
is faster than mode 2 given mode 1 has fewer up/down cycles since the equivalent ray is more
horizontal. Thus, mode 1 has a faster group velocity than mode 2 for this particular example.

The above is simplified but gets the point across although the topic of group velocity is con-
siderably more complicated. Additional insight is found by studying the propagation of a short
pulse of sound consisting of many frequencies all initially transmitted at once. An example of this
so-called broadband pulse is sound from an explosive source. Figure 1 (upper) shows a simulated
time series for such a broadband pulse, at range 12000 m based on conditions approximated by
a Pekeris waveguide with water speed cw = 1468m/s, sediment speed cb = 1830 m/s and water
depth H = 74 m.

Observe that the ”main” pulse arrives after a delay of abou 8 s, consistent with nominal value
of range divided by cw. However prior to the main pulse there exists low-amplitude arrival which
slowly grows in amplitude. This is the ground wave which has traveled at the faster speed in the
sea bed. The pulse continues to evolve, with different frequency content arriving at different times.
This is dispersion.

This evolution of time and frequency properties for the arrival of the pulse is seen with time-
frequency analysis based on a spectrogram of the simulated time series (Fig. 1, lower). This shows
the evolving mode structure: mode 1 is spans the largest frequency range (left side of spectrogram)
and mode 5 the smallest frequency range (upper right of spectrogram). To further clarify, use
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Figure 1: Upper: synthetic broad band pulse computed for received range of 12000 m for the Pekeris waveg-
uide discussed in text. Lower: spectrogram of the received pulse showing 5 modes.

again the formula for approximate number of trapped modes Eq. (2) of Lecture 25. This equation
produces the five frequencies: 9, 25, 41, 58 and 74 Hz representing the approximate onset of modes
1 through 5, respectively. For example, below about 9 Hz, there appears to be little on no energy
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support in the spectrogram, and thus ∼ 9 Hz is the cut-off frequency for mode 1 for this waveguide.
Similarly the support is missing below about 25 Hz for mode 2, and so on.

Furthermore mode 1 arrives first: starting about 7 sec at low amplitude, reaching higher ampli-
tude at about 8 sec. Mode 5 arrives last with its influence not seen until after 9 sec. Thus we can
intuit that mode 1 generally has faster group velocity, Vn, n = 1 than mode 5, not unlike the previous
simple example based on increasing propagation angles for increasing mode number.

Imagine now turning the pattern in Fig. 1 (lower) 90◦ clockwise, so time is on the vertical axis,
and 8 s represents a faster speed than 8.5 s and so on. For example 8 s corresponds to approximately
1400 m/s and 9 s to approximately 1300 m/s. This rotated figure represents the dispersion curves
as function of frequency f for modes 1-5, or Vn(f) n =1 to 5. The exact set of dispersion curves
for this case through modes 1-4 are shown in Fig. 2. Note this figure also includes the phase
velocities Cn–these are simple to compute: given the horizontal wavenumber for each mode krn,
then Cn = ω

krn
. The very interesting minimum in Vn(f) for each mode is known as the Airy phase.

Figure 2: Theoretical curves for group Vn(f) and phase Cn(f) velocity as a function of frequency for modes
1-4, for the waveguide properties discussed in text. Phase velocity curves are distinguished by the black
symbol place on each curve. Lower horizontal dashed line equals water speed cw and upper horizontal
dashed line equals the seabed speed cb; all group velocity curves theoretically reach the higher seabed speed
though some curves do not owing to numerical issues.
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It can be observed in real data representing the reception of an initially broad pulse, such as from
an explosive source or air gun used in geophysical exploration, after that pulse has traveled a
sufficient range for dispersion to be observed. Examine now closely the time-series simulation in
Fig. 1 around time 8.5 s and 9 s, where the frequency appears to be somewhat lower. These regions
likely correspond to the Airy phase contribution from modes 1 and 2, respectively.

Figure 3: Theoretical curves for group Vn(f) and phase Cn(f) velocity as a function of frequency for modes
1-4, for the waveguide properties discussed in text. Phase velocity curves are distinguished by the black
symbol. All group velocity curves theoretically reach the higher seabed speed c2 though some curves do not
owing to numerical issues.

Figure 2 is a somewhat classic figure showing group Vn(f) and phase Cn(f) velocities for a
Pekeris waveguide where the sound speed in the seabed is constant. For these conditions each
mode supported has one Airy phase region representing the minimum group velocity for that
mode. The group velocity in this Airy phase region is relatively constant of over band of frequen-
cies or stationary. The view in Fig. 2 is both a useful and parsimonious model with which to
compare with observations, particularly if there is little known about the seabed properties. How-
ever, more complex seabed sound variation, such a sediment layer within sediment sound varies
with a linear gradient, can produce group velocity curves Vn(f) that manifest multiple stationary
regions, corresponding to both high and low group velocities. An example (Fig. 3) is for conditions
represented by cw = 1488.5 m/s and cb = 1630 + az over the first 20 m of sediment where the gra-
dient a = 61 s and z is sediment depth; for sediment depth greater than 20 m cb = 1740 m/s. In this
case modes 3 and 4 show two Airy phase regions.

One standard way to compute Vn is through the following formal definition:

Vn =
dω

dkrn
(1)

Copyright © 2024 P. H. Dahl. All Rights Reserved.



5

where krn is the horizontal wavenumber for the nth mode. This can be quite delicate to compute
numerically–typically one needs to evaluate modes over a fine frequency spacing, take the finite
difference and hope it works. For the Pekeris waveguide involving just two media water and
sediment, each with separate sound speeds and densities, Frisk (1994, pp. 152-154) also provides a
handy analytical formulas, with results for the case under discussion shown in Fig. 2.

An interesting alternative way (Chapman and Ellis, 1983) is

Vn =

∫∞
0

U2
n(z)/ρ(z)dz

Cn

∫∞
0

U2
n(z)/(ρ(z)c(z)

2)dz
(2)

where Un(z) is the unique normal mode function at a given frequency. Check the dimension of
Eq.(2)–does it make sense? Some care is still needed to evaluate this integral. For example, the
behavior of the normal mode function for a more realistic Pekeris waveguide changes from sin(γnz)

to decaying exponential for z > H (see Fig. 4 of Lecture 25).
As a simple test, use the case of the rigid boundary condition on the seabed. Here, the integral

in Eq.(2) is limited to between 0 and water depth H . The result (Fig. 4) for case of H = 20 m, and
water sound speed of 1525 m/s for the first four modes shows that the cut-off frequency for this
waveguide is about 19 Hz. Notice that Vn for this rigid boundary case are quite different from the
Pekeris case in Fig. 2, with the notable absence of an Airy phase.

The phase velocities, however, are somewhat more realistic. Indeed this property is often ex-
ploited in a technique known as ”warping” (Fig. 5), which takes a spectrogram from a received
broadband signal and ”warping” it, or straightening it, to follow the phase velocities of an ”equiv-
alent” rigid boundary waveguide. For example, the thin red lines in the lower right panel of Fig. 5
shows such phase velocities.

Figure 4: The group Vn(f) and phase Cn(f) velocities as a function of frequencies for waveguide of depth H
20 m, water speed 1525 m/s, and rigid boundary condition for water-seabed interface.
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Figure 5: Figure supplied by my colleague Julien Bonnel, of Woods Hole Oceanographic Institution. See also
Bonnel and Chapman, 2011.

References

Frisk, G. V. Ocean and Seabed Acoustics (Prentice Hall, Englewood Cliffs, NJ, 1994)
D. M. F. Chapman, and D.D. Ellis, ”The group velocity of normal modes,” J. Acoust. Soc. Am. 78,
983-979, 1983
J. Bonnel and N. R. Chapman, ”Geoacoustic inversion in a dispersive waveguide using warping
operators” J. Acoust. Soc. Am. EL101, 2011

Copyright © 2024 P. H. Dahl. All Rights Reserved.


	Notes_L26
	Notes_L27

