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ME525 Applied Acoustics Lecture 23, Winter 2024
Method of Normal Modes

Peter H. Dahl, University of Washington

Normal Modes

The method of images yields a ”theoretical” exact solution to the problem of a point source
within a waveguide, with upper boundary condition (at z = 0) of p(0) = 0, and lower boundary
condition (at z = H) of ∂p

∂z
(H) = 0–provided enough images are used to reach a degree of conver-

gence.

Figure 1: An apparent problem with the method of images once two boundaries at z = 0, H introduced.

The negative image source above the z = 0 boundary combines with true source within the
waveguide to satisfy the boundary condition at z = 0, and the positive image below the z = H

boundary combines with the true source to satisfy the boundary condition a z = H . However the
true source plus positive image now require a second negative image source to satisfy boundary
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condition at z = 0. The process of balancing out positive and negative image sources continues on
to infinity or until some degree of convergence is reached.

This solution is from Frisk (Eq. 4.82, p. 83). It’s relatively easy to code up, though care is
needed to keep track of the expanding set of sources, whether they are negative or positive sign,
and the ever changing magnitude of |r⃗− r⃗i|. There is also an analogy between rays and images, for
example take the middle plot of Fig. 1; the direct ray from source to receiver is the black path and
surface-reflected ray generated by the image is the surface-reflected path.

To reach convergence in this example I needed about 80 images, although perhaps consider-
ably fewer might suffice for an approximate solution. In contrast a simpler approach involves the
method of normal modes (Fig. 2). From this figure one can tell that about 2 or 3 modes were
needed. What are these modes?

Figure 2: Comparison of image method of 80 images (blue line) and method of normal modes (green-dashed
line) requiring 2 modes. Red line is Lloyd’s mirror problem involving two images, and black-dashed line
represents cylindrical spreading.

Before turning our attention to underwater waveguides, Fig. 3 shows the pressure distribution
within a tube for which in one case (left side) the frequency f is such that f < c

1.7d
where d is

tube diameter, and one axial mode is excited. This frequency f tube, diameter d, criterion was first
discussed in Lectures 17 and 19 relating to the impedance tube and the single expansion chamber
Muffler problems, rrespectively. Increasing the frequency (right side) produces excitation of more
modes within the tube the single, axial mode approximation used to study the Muffler no longer
applies.

We now focus on the underwater waveguide and an excellent experiment to understand modes
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Figure 3: Left: pressure distribution within a bent tube frequency f is such that f < c
1.7d where d is tube

diameter; thus only one axial mode shown. Right: pressure distribution frequency f > c
1.7d and several

modes are excited.

in this environment comes from the study by Frisk, Lynch and Rajan (1989). Figure 4 shows the
experimental geometry to measure mode in Nantucket sound. There are two acoustic receivers
(hydrophones) on a buoy at depth 7.1 m and 12.5 m, and the average water depth is 14.6 m. An
acoustic source suspended from a research vessel slowly moves away (opens in range) from these
receivers, which are recording continuous wave (cw), or narrowband, sound at center frequency
140 Hz and 220 Hz. Thus, in terms of modeling of the receive sound the frequency content, and
time dependence t. can be described with e−iωt where ω = 2πf and f is either 140 Hz or 220 Hz.

Figure 4: Geometry of experiment off Nantucket. Figure is Fig. 1 of Frisk, Lynch and Rajan (1989).

As the ship slowly opens in range from receivers which transmitting at these frequencies, modal
interference patterns (Fig. 5) that depend on frequency and receiver depth, will be registered. One
can tell right off that there about two modes in the interference pattern for 220 Hz shown in Fig.
5. Increasing the frequency well beyond 220 Hz will lead to a more complicated pattern owing to
more than two modes, while decreasing the frequency substantially below 220 Hz will eventually
yield just one mode. Lowering the frequency even further, say to about 100 Hz, then no modes are
propagating: the cutoff frequency for this waveguide of depth about 15 m as been reached. This
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estimate (with notation and form recast slightly) originates from (Frisk, 1994)

fn =
cw
2H

[
n− 1/2√
1− c2w/c

2
b

] (1)

where fn is the cutoff frequency for the nth mode, H is water depth, and cw, cb are water and seabed
sound speeds, respectively. Using H = 14.6 m and typical values for cw, cb, find fn ∼ 100 Hz applies
to the case of n = 1.

Figure 5: Transmission loss data for frequency 220 Hz, measured at depth 12.5 m versus range from source.
Figure constitutes a portion of Fig. 3 of Frisk, Lynch and Rajan (1989). (The on-line version of the figure does
not reproduce phase variation for this 1989 publication.)

The similarity between the simple model demonstration in Fig. 2 and the real data in Fig. 5
should be clear, both representing about two modes, and both showing an interference pattern
with deep nulls, where the level of acoustic field drops precipitously then rises again. But some
caution is needed to understand the obvious differences in notation between Figs. 2 and 5. In Fig.
2, a Green’s function g(z, r; z0) is computed as function of range r, receiver depth z and source depth
z0, e.g., using both the method images (80 image case) and method of normal modes (2 modes). The
plot is −20 log10

|g(z,r;z0)|
|g(z,r=1m;z0)| , so the value at r = 1 m equals 0 dB; though highly oscillatory, upon

increasing range r the field decays in strength, or more precisely in value of |g(z, r; z0)|2. Thus plot-
ting −20 log10

|g(z,r;z0)|
|g(z,r=1m;z0)| yields a positive result. Such a plot is often referred to as ”Transmission

Loss” or TL and plotting in this manner gives the intuitive result of increasing TL with increasing
range.

The Frisk et al. results appear as ”Pressure magnitude” as in −20 log10 |p|, but also appear to be
normalized in some manner, perhaps as −20 log10

|p(12.5,r;6.1)|
|p(12.5,r=1m;6.1)| , where 12.5 and 6.1 represent the

receiver and source depths, respectively. For example, in Fig. 5 the |p| at range 500 m relative to |p|
at 1 m, appears to be about 30 to 40 dB less, which is not too different from Fig. 2 suggesting TL is
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in about this range (just as a very rough comparison as frequencies).

The Method Normal Modes

The waveguide coordinate system (Fig. 6) is expressed in cylindrical coordinates (r, θ, z). There
is symmetry in the θ direction, and the field is independent of θ; we need only to find the depen-
dence in the r, z plane (white, dashed box in Fig. 2). The θ independence also means the final
solution applies to any rotation about the z− axis in Fig. 6. Thus the new problem involves the
Laplacian operator in cylindrical coordinates without dependence on θ

∇2 =
1

r

∂

∂r
(r

∂

∂r
) +

∂2

∂z2
. (2)

and we seek a new Green’s function which satisfies the inhomogeneous Helmholtz equation for a
point source at z = zs and r = 0

(∇2 + k2)g(r, z, zs) = −2
δ(r)

r
δ(z − zs). (3)

The delta function expression on the right is different from the one we encountered previously.
Here it represents a point source at source located at z = zs and r = 0 in cylindrical coordinates
(Frisk, 1994, Kinsler et al., 1980).

Figure 6: Cylindrical coordinate system for solving the wave equation in a waveguide. A source point (red)
is located at depth z0 with r = 0, and two receiver points (black) located at r, θ, z and r, 0, z. The analysis
assumes no dependence in the θ direction.
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Equation (3) is separable, meaning separate solutions for range Rn(r) and depth Un(z) are found
and multiplied together for solution in r, z. In doing so, multiple solutions corresponding modes
will be found, where for example, Un(z) corresponds to the nth mode. These are summed for the
final solution

g(r, z, zs) =
∑
n

Rn(r)Un(z). (4)

The key effort involves finding the solution for the depth or z-dependent part, Un(z) which is
responsible for satisfying the boundary conditions at the z = 0, H

(
∂2

∂z2
+ γ2

n)Un = 0. (5)

Equation (5) is a familiar 1D wave equation (Helmholtz equation) along the depth dimension z,
although here the wavenumber k first seen in the Helmholtz equation, is replaced by its vertical
component, where γ2

n = k2 − k2
rn. The vertical γn and radial or horizontal krn components of the

wavenumber k vary according to mode number n but always satisfy γ2
n + k2

rn = k2.
This is relation is depicted in Fig. 7 and one can imagine, approximately, that a high order mode

(large n) corresponds to a ray with high grazing angle (steep ray) and low order mode (small n)
corresponds to ray with shallow angle. This approximate correspondence between modes and rays
is useful to keep in mind.

Underwater waveguide modes Un(z), analogous to modes of vibration of a guitar string, are
functions that satisfy the boundary conditions in this case at the end points z = 0 and z = H . As
in the guitar string, there can be many modes satisfying the boundary conditions; for the guitar
string the boundary condition is that the string is clamped at both ends and therefore does not
vibrate at those points. For the waveguide case, the surface and bottom boundary conditions are
solved with Un(z) = An sin(γnz) where γn = (n−1/2)π

H
, and An is a normalization constant (discussed

later). Note: the boundary condition was expressed in the form of pressure. The modes are not
of dimension pressure per se but they are proportional pressure, or surrogate for pressure as in the
Green’s function. Thus if the Un(z) satisfy the boundary conditions, so too does pressure.

The first three modes n = 1, 3 (Fig. 8) for the underwater waveguide with same (idealized)
boundary conditions used in Fig. 2, are shown frequency of 240 Hz and depth 10 m. One might call
these mode functions, or eigenfunctions; observe that these functions all equal 0 at z = 0, and the
vertical derivative equals 0 at z = H . A key property: the correspondence between mode number
n and the number of times the mode function equals 0 over the depth span, or zero-crossings. The
modes in this example appear to be some fraction of a sin wave, which in fact they are provided
the sound speed within the water column does not change. This is a simplifying, but often realistic,
assumption particularly in very shallow water as in Nantucket case where water sound speed is
taken as a constant 1503 m/s. In deeper water, e.g., see Figs. 3 and 7 (Munk profile) of Lecture 21,
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Figure 7: Interpretation of the wavenumber k in terms of its vertical γn and horizontal krn components.

variation in sound speed with depth changes the mode function shape which must be determined
numerically.

Figure 8: Eigenfunctions, or mode functions, for the first three modes for the case of frequency 240 Hz, depth
10 m. All modes have a zero-crossing at the surface, at z = 0, which constitutes the only zero-crossing for
mode 1.
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Looking ahead to the next lecture the final solution is

g(r, z, zs) =
2πi

H

∑
n

sin(γnz) sin(γnzs)H
1
0 (krnr) (6)

where H1
0 is the zeroth-order Hankel function of the first kind, and is a member of the cylindrical

Bessel family. Note the dimension for the Green’s function g(r, z, zs) is L−1 (spherically spreading)
just as with the free-space Green’s function and method of images. However upon combining all
these modes (or combining all those images in the method of images), we get a solution for pressure
in the underwater waveguide that somewhat magically translates to pressure ∼ 1

√
(r) where r is

range from source.
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ME525 Applied Acoustics Lecture 24, Winter 2024
Method of Normal Modes

Peter H. Dahl, University of Washington

Details on the Green’s function g derived from the Method of Normal Modes

The goal is to find a Green’s function, g that satisfies the inhomogeneous Helmholtz equation
for a point source at z = zs and r = 0

(∇2 + k2)g(r, z, zs) = −2
δ(r)

r
δ(z − zs). (1)

The structure of the delta function in Eq. (1) applies to a cylindrical coordinate system (Fig. 1).
The equation is separable into its r-dependent and z-dependent parts, and now we find g(r, z, zs)

in terms of the sum of mode functions Un(z) multiplied by the corresponding Rn(r), as in

g(r, z, zs) =
∑
n

Rn(r)Un(z). (2)

This yields a considerably useful and flexible solution approach.

Figure 1: Cylindrical coordinate system for solving the wave equation in an underwater waveguide. A
source point (red) is located at depth z0 with r = 0, and two receiver points (black) located at r, θ, z and
r, 0, z. The analysis assumes no dependence in the θ direction.

The radial part Rn(r) has only one boundary condition known as the Sommerfeld radiation
condition (e.g., see Frisk, 1994). For example, the radial dependence is not unlike ripples on water
surface produced byh point disturbancance (as in dropping a rock), with the waves becoming more
planar like the greater the range r from the source point on the surface.
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It is with the vertical part where the surface and bottom boundary conditions are addressed,
and the key effort reduces to finding the solution for the depth or z-dependent part, Un(z) to

(
∂2

∂z2
+ γ2

n)Un = 0. (3)

along with satisfying boundary conditions at the z = 0, H . The wavenumber k in Eq.(1) is broken
up in vertical γn and horizontal krn components that vary according to mode number n and always
satisfy γ2

n + k2
rn = k2.

Equation (3) should be familiar problems of vibration and simple oscillations; Un(z) takes the
form sin(γnz). We find γn via the eigenvalue equation

γn =
(n− 1/2)π

H
, (4)

such that boundary conditions are satisfied. For example, Un = sin(γnz) thus Unz=0,
∂Un

∂z z=H = 0 for
n = 1, 2, 3.... Equation (4) represents the most elementary of eigenvalue equations that is solvable
exactly without numerical means. The situation is made more complicated when a real seabed with
sound speed cb and density ρb are added to the picture.

Orthonormality of mode functions Un

An important property of Un is that this function be orthonormal such that integral over depth
is ∫ H

0

UnUmdz = δnm (5)

where δnm is the Kronecker delta symbol which equals 1 for m = n and 0 for m ̸= n. For certain
this integral equals 0 for for m ̸= n, but to equal 1 when m = n a normalization constant An is
needed given Un(z) = An sin(γnz). This requirement puts the normalization rcnstant An equal to√

2
H

. For this simple case with the waveguide boundary conditions are such that Unz=0,
∂Un

∂z z=H = 0

the normalization constant An is the same for all modes, but in general there will be a dependence
on mode number n.

Details on the radial dependence Rn(r)

The next step represents a traditional approach for solving partial differential equations that are
separable (it is worthwhile revisiting these steps on your own) . First insert Eq.(2) as candidate
solution to Eq. (1) yielding

∑
n

∇2Rn(r)Un(z) + k2Rn(r)Un(z) = −2
δ(r)

r
δ(z − z0) (6)
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Now break up the ∇2 = 1
r

∂
∂r
(r ∂

∂r
) + ∂2

∂z2
operator into r and z dependencies. Exploit Eq. (3), along

with important relation k2 = k2
rn + γ2

n to arrive at:

∑
n

Un
1

r

∂

∂r
(r
∂Rn

∂r
) +Rnk

2
rnUn = −2

δ(r)

r
δ(z − zs). (7)

The separation constant and split of the partial differential equation into r and z dependencies was
key. Adapt this language for consistency with Fig. 7 of Lecture 23: k2

rn is the horizontal wavenumber
for the nth mode; γ2

n is the vertical wavenumber for the nth mode.
Now multiply both sides of Eq.(7) by Um and integrate over depth z from 0 to H , and invoke

the orthonormal property along with the sifting property of the delta function, to yield

1

r

∂

∂r
(r
∂Rm

∂r
) +Rmk

2
rm = −2

δ(r)

r
Um(zs) (8)

The above represents a purely radial form of the Helmholtz equation with point source at origin
r = 0 (e.g. somewhat akin to ripples on the surface of a pond, the pond being of infinite extent) but
multiplied by the constant Um(zs) since the source depth zs is a fixed value. (The change from krn

to krm being of no significance, merely a result of our choosing to go with Um.)
The solution is well-known and solved by functions of the cylindrical Bessel family, in this case

the zeroth-order Hankel function of the first kind which we denote as H1
0 . The solution for index n

is
Rn(r) = iπH1

0 (krnr)Un(zs) (9)

where Un(zs) provides the dependency on source depth needed for the Green’s function.
Type ”help besselh” in Matlab to obtain more information about H1

0 . In Matlab evaluate H1
0 (krnr)

as besselh(0, 1, krn ∗ r), where r is vector of ranges and krn is horizontal wavenumber for the nth

mode. A useful approximation for H1
0 (krnr) is

H1
0 (krnr) ≈

√
2

π
e−iπ/4 eikrnr√

krnr
(10)

Though strictly valid for krnr >> 1 is often used in underwater acoustic modeling computations
for computational simplicity.

The final solution is thus

g(r, z, zs) =
2πi

H

∑
n

sin(γnz) sin(γnzs)H
1
0 (krnr) (11)

Notice that the basic dimension for the Green’s function g(r, z, zs) is L−1, owing to the 1/H depen-
dence out front, but the behavior for far ranges is ∼ 1/

√
r which can be more clearly seen in the
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asymptotic expression of Eq. (10).

The number of modes and cut-off frequency

Given the important behavior more apparent in Eq. (10) of eikrnr
√
krnr

, it should be clear that if krn
becomes imaginary to any significant degree, that mode will not go very far. For example, take the
waveguide examined previously (Fig. 2) with frequency 240 Hz, H = 10 and water sound speed
1450 m/s. Run through Eq.(4) starting from n = 1 and compute the corresponding krn, get:

Table 1: Modes for waveguide of H = 10 m, frequency 240 Hz, cw = 1450 m/s, and k = 1.04 m−1

Mode number γn krn Will this mode propagate?
1 0.15713 1.0280 yes
2 0.4712 0.9271 yes
3 0.7854 0.6817 yes
4 1.0996 i 0.357 no

Obviously the vertical wavenumber continues to grow with increasing mode number, and once
it exceeds the wavenumber in the water column k then, krn becomes imaginary. Note: which imag-
inary do we take from the square root, the positive or negative? In ME 525 with e−iωt dependence,
you must take the positive square root to make Eq.(10) work properly. So, clearly the number of
modes in this example is three, or it is said there are three trapped modes in this waveguide.

However, Fig. 2 takes on the appearance closer to two trapped modes, given the regular inter-
ference pattern, rather than three inferred from Table 1. Revisit Fig. 8 from Lecture 23 where Un is
plotted for these three modes. The source depth, 7 m, was very close to the zero crossing of mode
2, hence this mode was weakly excited.

Indeed taking advantage of mode zero crossings in terms of placement of source and receiver
depths is done in experiments. Figure 3 represents such an example where a source (frequency
43 Hz) is towed at depth 45 m in waters of depth 77 m off the coast of New England (about 100
km south of Cape Cod). The measured water sound speed profile and assumed model for the
seabed are each shown in the left of the figure–clearly these vary from the simplifications of having
a constant water velocity and rigid seabed. Yet the modes (solid lines, right figure) assume a quasi-
sinusoidal dependence. With source placed at depth 45 m, mode 2 (red, solid line) is only weakly
excited since this depth is close to zero crossing at about 50 m. Data (and modeling) from this
experimental configuration (Fig. 4) clearly show a more simple 2-mode interference pattern.
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Figure 2: Upper: comparison of 80 image-source result with the method of normal modes. Lower: Layout for
method of images based on sources of the form eikR/R where R depends on image location. Depth H = 10
m

Examine next a case for depth H equal to 100 m (Fig. 5), where Eq. (10) now gives exactly 33
trapped modes before an imaginary krn emerges. Interestingly we can also reasonably approxi-
mate the solution with far fewer image sources, e.g., about 8 image sources (and even the simple
Lloyd mirror solution consisting of just two image sources provides reasonable approximation up
to ranges of about 50 m). Given we were able to liken image sources to the concept of an acoustic
ray, these two examples illustrate an interesting trade off: when the acoustic field in the waveguide
requires many modes to fully describe it, then typically it can be described with much fewer rays,
and vice versa. It will no doubt pay in your research to keep this trade off in mind.

The number of modes in a waveguide of depth H depends on the sound frequency, or more
precisely the sound wavelength λ, with a simple and useful rule of thumb for this number being

nmodes ≈ 2H/λ (12)

For this example of H = 10 m, nmodes is 3.2, for H = 100 m, there 10 times the number of modes.
Keep in mind Eq.(12) is the simplest of rules, which will need to be modified for more realistic

boundary conditions at the seabed that involve finite sound speed and density for sediment, for
example, refer to Fig. 1 of Lecture 18. We can compute the corresponding discrete horizontal angle
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Figure 3: Left: sound speed profile (measured) and seabed model used to compute mode functions (right)
at frequency 43 Hz using the computation program ORCA. Modes functions of discussion are solid lines.
Corresponding dashed lines represent modes for the vertical component of acoustic velocity based on the
vertical derivative of the solid lines. Notice that mode 2 (red, solid line) goes through a zero crossing near 50
m. Figure from Dahl, Dall’Osto and Hodgkiss, 2023.

Figure 4: (a) Acoustic pressure (b) horizontal velocity and (c) vertical velocity at 43 Hz over the towing range
of 500 to 2500 m from the receiver. Measured data (black) and modeled data (magenta) based on the ORCA
program. Figure from Dahl, Dall’Osto and Hodgkiss, 2023.
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Figure 5: Acoustic transmission loss for waveguide with same boundary conditions, source frequency, and
source/receiver depth as in Fig. 2, but with depth H = 100 m.

Figure 6: The discrete set of horizontal mode angles for the 33 trapped modes for the waveguide in Fig. 3,
but with depth H = 100 m.

call it θn for each of the 33 trapped modes for the 100-m case (Fig. 6), where krn = cos θnk. These
angle get quite steep for the high mode numbers, getting to about 80◦. But, in the more realistic
case θn must be ≤ θc.
References
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ME525 Applied Acoustics Lecture 25, Winter 2024
Normal modes in more realistic waveguides
The depth-dependent Green’s function

Peter H. Dahl, University of Washington

As shown in Lecture 24, there are is a corresponding discrete horizontal angle, θn, for each of
n-trapped modes computed, defined as krn = cos θnk. It is useful to view each mode as having a
propagation angle, or a ”specific preferred direction of propagation” for that mode (Frisk, 1994).
The cos of this angle relative to horizontal equals krn/k.

The sequence of discrete angles continues to increase starting from mode-1 (see Fig. 6 of Lec-
ture 24) until no more propagating modes are found–the point at which krn becomes imaginary.
Placement of an imaginary krn into the argument of H1

0 (krnr) produces rapid, exponential decay
as a function range r– easier to see in the asymptotic expression H1

0 . Such modes are known as
evanescent modes.

The simple model for boundary conditions at z = 0, H (Fig. 1, upper) is useful because it
exhibits properties of the discrete angular spectrum associated with trapped modes. However this
rigid boundary condition on the seabed does not permit a critical angle–the assumption being
that the sound speed in the seabed is infinite, and the boundary represents an infinite impedance
boundary. With presence of a critical angle, there is a more interesting transition between trapped
modes and those with higher mode numbers. The problem is made considerably more realistic
(Fig. 1, lower) without too much more effort by including the plane wave reflection coefficient R
representing reflection at the boundary between an upper (water) medium with sound speed c1

and a lower (sediment) medium with sound speed c2. From our earlier study of R we found that a
critical angle θc is defined at cos θc = c1/c2.

The critical angle provides the demarcation (Fig. 2) between discrete angular spectrum (trapped
modes) with propagation angles < θc, and the continuous angular spectrum with propagation an-
gles > θc. The discrete set of preferred propagation angles (blue rays) is within the yellow cone
defined by the critical angle, outside of which is the continuous set of propagation angles (red
rays) that can exist at a continuos range of angles all greater than θc. Rays corresponding to the
continuous set exist only close to the source (within about one or two water depths) because their
contribution is quickly attenuated due to energy loss from propagation into the seabed. An approx-
imate range after which the contribution is primarity from the discrete, trapped modes is ∼ H

tan θc
,

or about twice the value of Ro in Fig. 2.

Modes in a realistic waveguide

Upon using a realistic sound speed and density in the seabed, the boundary becomes a finite
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Figure 1: Upper: Idealized waveguide we have been studying with boundary conditions at z = 0, H , and
solution given by Eq.(2). Lower: more realistic waveguide for which the plane reflection coefficient R de-
scribes the boundary condition at z = H .

impedance boundary, as described by R. The new equation for solving for γn is

1 +Re2iγnH = 0 (1)

where R is also a function γn. Quick check: put R = 1 corresponding to the infinite impedance
boundary and recover the original specification for γn = (n−1/2)π

H
. However, Eq.(3) as defined is a

transcendental equation that does not have closed-form solution. Instead numerical approaches,
such as Newton Raphson, can be used to find the zeros of Eq.(3) as function of γn.

Without much numerical effort we get a quick visualization on where the modes are located by
plotting |1 + Re2iγnH | over a fine angular resolution (Fig. 3). Although this is not a recommended
approach to finding the zeros of an equation it is immediately apparent where modes are located.
In this example, water sound speed c1 = 1525 m/s, sediment sound speed c2 = 1700 m/s, water
density ρ1 = 1024 kg/m3 and seabed density ρ1 = 1800 kg/m3, with quantities sufficient to specify
the plane wave reflection coefficient R. To identify specific modes both a water depth are required,
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Figure 2: Idealization depicting the discrete set of preferred propagation angles (blue rays) within the yellow
cone as defined by the critical angle, and the continuous set of propagation angles (red rays) that can exist
angle angles greater than θc.

for this example H = 50 m and frequency= 200 Hz. The reflection coefficient (remaining fully
complex) is computed over a fine grid of grazing angles θ (Fig. 3 upper). For every θ, a γ = k1 sin θ

is identified, i.e., a continuous range of γ as distinct from a discrete set, such as γn. A plot of
|1+Re2iγnH | (Fig. 3 lower) shows a set of minima, representing the discrete set of propagation angles
for this waveguide. These angles (shown by the circles) are: 3.9920◦, 8.0270◦, 12.1400◦, 16.3500◦,
20.668◦, and 25.0530◦, values that are likely as close as one can get with a numerical approach. Note
that the critical angle, 26.22◦ is greater than largest angle in the discrete set and effectively bounds
these angles.

To summarize, the discrete angles –”preferred propagation angles” – of the trapped modes all
must be less than critical angle. The modes are trapped, and will efficiently propagate within the
waveguide with little if any attenuation, as can be anticipated by observing that |R| ≈ 1 for angles
less than critical. Efficient propagation is also inferred from corresponding horizontal wavenumber
for trapped modes krn which primarily real-valued. There can be a small imaginary component in
krn to account for attenuation effects within the seabed. Ultimately, solutions to Eq.(1) are found
for angles greater than the critical angle θc These modes belong to the realm of the continuous
spectrum of angles, where the steep propagation angles lead to penetration into the seabed and
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Figure 3: Upper: magnitude of the reflection coefficient |R|. Lower: L |1 + Re2iγnH | over a fine angular
resolution. The six minima to the left of the critical angle at 26.22◦ are trapped modes (not counting the first
minimum), and are identified by circles.

significant energy loss with increasing range.
Here is very handy formula for the approximate number of trapped modes in realistic under-

water waveguide

Number trapped modes = floor(
k1H

π
sin θc +

1

2
) (2)

which, upon applying the waveguide parameters discussed in Fig. 3, predicts the 6 modes.

The field in a realistic waveguide

As reminder the solution studied thus far for the Green’s function applied to a waveguide depth
of H , with boundary conditions g|z=0 = 0 and ∂g

∂z
|z=H = 0, infinite impedance case for the seabed,

which is
g(r, z, zs) =

2πi

H

∑
n

sin(γnz) sin(γnzs)H
1
0 (krnr) (3)

Upon inclusion of a finite impedance seabed the new set of discrete vertical γn or the equivalent
horizontal krn mode wavenumbers, e.g., via Eq. (1), and the mode normalization constant is (Frisk,
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Eq. (5.144))

An =
√
2[

1

ρ1
(H − sin 2γnH

2γn
) +

1

ρ2

sin2 γnH

γ2n
]−1/2. (4)

Compare with constant An =
√

2
H

for the infinite impedance case.
The revised Green’s function finite impedance seabed becomes

g(r, z, zs) =
πi

ρ1

∑
n

A2
n sin(γnz) sin(γnzs)H

1
0 (krnr). (5)

Continuing with the example discussed in Fig. 3, to properly implement Eq.(4) we also need a
vertical wavenumber in the lower (seabed) medium, call it γ2n. This is found via

sin θ2n = i

√
(
c2
c1

cos θn)2 − 1 (6)

Then γ2n equals k2 sin θ2n where it is understood that k2 = ω
c2

. But since all θn are by definition less
than the critical angle, then sin θ2n is imaginary resulting in exponential decay in the field in the
lower medium for z > H .

Figure 4: Mode functions for the first three modes finite impedance boundary under discussion in Fig. 3 of
this lecture (black lines) compared infinite impedance case (red lines). Mode 1 for each case is plotted with
thicker line. Note that for infinite impedance case the mode functions cannot extend below the boundary at
depth 50 m.

Examine carefully the mode functions for the first three modes associated with finite impedance
boundary case under study (Fig. 4), and compared with equivalent mode functions for the infinite
impedance case. With finite impedance case, there is exponential decay into the seabed for depths
greater than 50 m (refer to Frisk, Eq. (5.145) for how to compute the mode functions there). For this
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example it appears that modes 2 and 3 are not too different from the simplified infinite impedance
boundary example, but mode 1 shows a substantial difference. The Green’s function as defined by
Eq. (5), with An given by Eq.(4) is actively used in underwater acoustics research today; it describes
what is known as the Pekeris waveguide, named after the physicist C. L. Pekeris (1908-1993).

The depth-dependent Green’s function for a Pekeris waveguide

The following is a brief of introduction meant to give additional perspective on the Green’s func-
tion for an underwater waveguide with cylindrical symmetry, as summarized by the modal sum-
mations formulas in Lecture 25; these in the form of Eq. (3), representing rigid (infinite impedance)
boundary condition on the seabed and Eq.(5) representing finite impedance condition separating
water and seabed halfspace, or the Pekeris waveguide. The perspective originates from examining
these functions with a completely equivalent representation based on the Hankel transform of a
depth-dependent Green’s function (Frisk, 1994).

The depth-dependent Green’s function for the Pekeris case (Frisk, 1994, Eq. 6.64) is

g(kr) =
i(eiγ|z−zs| − eiγ(z+zs) +Re2iγH(e−iγ(z+zs) − e−iγ|z−zs|))

γ(1 +Re2iγH)
. (7)

Things to notice: (i) the variable range r is missing, (ii) there remains the depth variable z, and
constant for source depth zs, (iii) the mode horizontal wave number krn and vertical γn are missing
the indices n and appear to assume continuous distribution of values, and, importantly, (iv) the
denominator should look familiar where R is the reflection coefficient of the seabed.

The field is recovered via a Hankel transform of g(kr) over the continuous distribution of hori-
zontal wavenumbers kr, yielding

g(r, z, zs) =

∫ ∞

0

g(kr)J0(krr)dkr (8)

where J0 is the 0th order Bessel function. The Hankel transform is transforming from wavenum-
ber domain, kr, to a spatial domain in terms of range r, akin to Fourier transform with time and
frequency.

As an example take the Pekeris waveguide (Fig. 1, lower) with water speed cw = 1450m/s,
sediment speed cb = 1800 m/s and water depth H = 20 m. For frequency 220 Hz this waveguide
looks to support about 3 trapped modes according to Eq.(2) of Lecture 25.

The Hankel transform must undertake a contour integral in the complex kr-plane (Fig. 5) where
a discrete set of poles, or singularities, each yield a residue contribution giving back the same
solution we discussed previously involving a mode sum. The poles are located at discrete locations
krn, with the figure depicting three such poles.
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Figure 5: Sketch of the location of three trapped modes krnn = 1, 2, 3 located on the real-kr axis between
wavenumbers k1 (water layer) and k2 seabed. A branch point is located at k2, and to further to the left are a
few leaky modes described by increasing imaginary part of the modal wavenumber. An integration contour
is shown within which poles are located.

At the point on the complex kr-plane located at k2 there exists a branch point singularity. Here a
choice must be made given the square-root ambiguity for kr = ±k2. We choose +k2 in accordance
with our convention of e−iωt and this prevents the integral from being unbounded and becoming
infinite. But this choice necessitates a branch line integral along the contour shown in the figure.
Notice: the branch point corresponds to the critical angle.

There are approximate, asymptotic solutions to the branch line integral (Frisk, 1994), otherwise
numerical approaches are needed. Often the contribution of branch line integral is just ignored–just
as it has in the solutions we’ve been discussing thus far consisting of a discrete modal summation.
This is because it represents the continuum of angles θ > θc, where such ”equivalent” rays undergo
significant reduction in amplitude upon each interaction with the seabed causing rapid attenuation
with increasing range from the source.

One clever way to deal with this branch line contribution to the integral is to recast the branch
line singularity into a set of modes with increasing imaginary component, known as ”leaky modes”
as they leak energy into the seabed and rapidly attenuate. One of my favorite approaches is that of
Zang and Tindle (1993) who capture this effect in their mode-finding algorithm, and these modes
can thus included in a modal summation. They are referred to as ”imperfect resonances” or ”im-
proper modes” (Frisk, 1994); in contrast, one should think of a trapped mode as a complete or
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Figure 6: Plot of kr in complex plane for frequency is 220 Hz corresponding to the Pekeris waveguide of Fig.
1, but with cb = 1600 m/s. The waveguide supports about three trapped modes that are located between k1
and k2. Some leaky modes exist, with increasing imaginary component.

perfect resonance of the waveguide. A map of complex kr plane (Fig. 6) shows the three trapped
and four leaky modes along with their relation to the wavenumbers k1 and k2. There are many
more leaky modes than the four shown–but the fourth one is a goner anyway, given its huge imag-
inary component, and probably only the first two leaky modes to the left of the branch point at k2
make any meaningful contribution.

Figure 7 shows results of a computation involving both trapped plus leaky modes for the
waveguide similar to Fig. 1 (lower), with frequency 220 Hz, but cb = 1600 m/s giving a critical
angle of 25◦ for cw = 1450 m/s. Roughly, b range 40 to 50 m, the situation is fully described by
the three trapped modes. Find ∼ H

tan θc
∼ 43 m, which reasonably describes a range delineating the

transition from continuous + discrete modes to discrete, or trapped, modes.
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Figure 7: Pekeris waveguide. At a frequency of 220 Hz, this waveguide supports about three trapped modes.
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