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ME525 Applied Acoustics Lecture 17, Winter 2024
Impedances tubes and the Helmholtz resonator
The plane wave reflection coefficien

Peter H. Dahl, University of Washington

Impedance tubes and the Helmholtz resonator

Recall specific acoustic impedance expresses ratio of complex amplitude of harmonic acoustic pres-
sure to acoustic velocity at some position r⃗ in the acoustic field, and characteristic acoustic impedance
equals ρncn for medium (or layer of medium) n; For specific acoustic impedance we need to under-
stand more about the acoustic field, for example, if it is based on simple point source and spherical
wave then specific acoustic impedance is a function of range r is

p(r)

ur(r)
=

ρ0c

1 + i/kr
(1)

where the time dependence e−iωt cancels. If the acoustic field is plane wave then specific acoustic
impedance equals characteristic acoustic impedance.

Recall that for two media with significantly difference characteristic acoustic impedances, say
air and water, or air and cement wall, sound transmission between the two media will be reduced
or completely prevented. Similarly, to encourage sound transmission, the impedances are made
as close as possible and this is called impedance matching. (The word impedance comes from the
Latin emphimpedire to hinder, or resist).

An impedance tube (Fig. 1) is common test device used in acoustic studies. A loudspeaker
generates a harmonic tone of given frequency f . The purpose of the impedance tube is to measure
the acoustic properties of the test sample shown on the left, such as acoustic absorbing material
that might used in noise control applications. A microphone probe can slide back and forth and
measure the pressure field at various distances from the test sample.

Figure 1: Impedance tube for measuring acoustic properties of test sample

The frequency f must satisfy f < c/(1.71d) where d is the diameter of the tube (all units MKS).
This means the frequency must be lower than the cut-off frequency of the tube. Let’s postpone further
discussion on this until our future lecture on modes, for now interpret this as only a plane wave for
which the ”ray” is aligned with the tube, can exist within the tube.
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Figure 2: Coordinate system of impedance tube for measuring acoustic properties of test sample shown on
the right at x = d.

Using the simplified diagram (Fig. 2) where the test material is now shown on the right and has
unknown impedance Zn. Model the acoustic pressure as follows:

p = Aeikx +Be−ikx (2)

where Aeikx represents a plane wave traveling to the right (positive x) in this coordinate system
and Be−ikx is a reflected plane wave traveling to the left, with harmonic time dependence of e−iωt.
Using Euler’s equation the acoustic velocity (limited to x direction) is

u =
A

ρc
eikx − B

ρc
e−ikx (3)

where ρc is the characteristic impedance of the acoustic media inside the tube, such as air. Interpret
the first term as velocity directed towards the right, and the second as towards the left.

Now use fact that x = L− d and after some rearrangement Eq. (1) is recast as:

p = AeikLe−ikd +Be−ikLeikd (4)

Next, recognize the incident pressure amplitude on the test sample at L (or at d = 0) equals AeikL,
and call this P . The reflected pressure is Be−ikL, which we can call RP , where R is the reflection
coefficient. The determination of the unknown R becomes one of the measurement goals. This
gives

p(d) = P (e−ikd +Reikd) (5)

and similarly for acoustic velocity

u(d) =
P

ρc
(e−ikd −Reikd) (6)

The specific acoustic impedance along the length of the tube as a function of distance d from the
material is now given by

Z(d) = ρc
(e−ikd +Reikd)

(e−ikd −Reikd)
(7)

Observe that at d = 0 we get an equation for the impedance of an unknown test quantity Zn, located
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at d = 0

Zn = Z(0) = ρc
(1 +R)

(1−R)
(8)

It’s useful to flip this around to arrive at expression for the reflection coefficient R as follows:

R =
Zn − ρc

Zn + ρc
. (9)

This will be a recurring pattern that often comes up: where R equals the ratio of a combination
impedance at the boundary (or “input impedance”), here Zn, and impedance involving properties
of the incident medium, here ρc.

Another result based on further manipulation of Eq. (6) that you should prove yourself is true
is

Z(d) = ρc
Zn − iρc tan(kd)

ρc− iZn tan(kd)
(10)

The interpretation of Eq.(9) is as follows: the impedance “seen” by the sound source at distance d

from the end of tube is combination of the end (or terminal) impedance, Zn, plus the impedance
contribution of the rest of the tube which has two ingredients, one the ρc of the tube media, and
the other a combination of frequency and distance d along the tube which is embodied by the
ρc tan(kd) and Zn tan(kd) terms. This idea is also directly linked with impedance translation theo-
rem discussed later.

A simple example is a tube open or closed on one end (Fig. 3, left). For the open case, Then
Zn = 0 and Eq. (9) evaluated at d = L goes to Z(L) = −iρc tan(kL), which equals 0 for values of
kL = π, 2π, 3π, etc. Thus upon blowing lightly on one side of the tube, say a bit like blowing on a
flute, the result would be range of frequencies. For frequencies such that the L = nλ/2, n = 1, 2, 3....

this will make the tube be “very accepting of sound”, which happens when the tube length L equals
multiples of λ/2. This is called an organ-pipe mode. You can try this yourself and find that very
approximately the fundamental tone, or first harmonic, that result is such the frequency ≈ c

2L
.

The classic Helmholtz resonator (Fig. 3, right) can also be understood by appropriate combi-
nation of open and closed tube impedances in series. However, a more intuitive explanation is as
follows (Rossing and Fletcher, 1994). Identify the vibrating air within neck of the ”wine jug” bottle
in Fig. 3 with a mass m, and volume of air in the captivity V as part of the spring system, where
m = ρ0SL and the spring constant K = ρ0S

2c2/V .
Similar to any single degree of freedom mass-spring system, the resonance frequency is approx-

imately equal to

fres =
c

2π

√
S

V L
(11)

Try blowing on a (preferably empty) bottle and impress your friends at a party!
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Figure 3: Left: an open tube of length L with one end either open of close. Right: A Helmholtz resonator.
Scales length L and volume V are as identified, note however that 25 mm identifies the diameter of the
opening and not the opening area S which equals π0.01252 m2.

Plane waves and reflection

Plane waves are first discussed in Lecture 4 and its worth revisiting Eqs. (2-4) from that lecture.
For spherical waves, e.g. radiation from a sphere of radius a with radial velocity ur given on the
boundary of this spherical source or the acoustic field described by the free space Green’s function
g = eikR

4πR
where R = |r⃗ − r⃗0|, with r⃗ representing the field point and r⃗0 representing the source

location. With spherical waves, the specific acoustic impedance, involved the non-dimensional
parameter kr, and the region near the approximately delineated by kr < 1 is the hydrodynamic
near field where pressure and velocity are 90◦ out of phase.

With plane waves the situation is quite different and many way simpler. The primary difference
is that the specific acoustic impedance for plane waves equals the characteristic impedance, ρ0c, and
the kinetic and potential energies are always equal, i.e., there this nothing analogous to the kr < 1

transition. However, plane waves are clearly a simplification, but at large ranges from a spherical
source, kr >> 1, spherical waves behave like plane waves [e.g. again inspect Eq.(2) of Lecture
5]. However, despite this simplicity, the reflection plane waves from planar boundaries separating
two different acoustic media provides the necessary building blocks for study of more complicated
problems. Furthermore, the important problem of transmission of sound through such boundaries
is also assessed by way of plane waves.

The situation is shown in Fig 4. A 2D plane wave is incident on the boundary between two
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acoustic media at angle θ0 with respect to the horizontal. (This is traditionally called a grazing an-
gle. A completely equivalent description is by way of an incident angle with respect to the vertical.
My preference is grazing angle.) The two acoustic media, now identified by subscripts 0 and 1,
are described by their characteristic impedance, e.g, as in upper medium ρ0c0. Later we can in-
clude more properties for each medium such as sound attenuation. (Note: obviously the need for
subscripts 0,1,2, etc., for defining acoustic media, should not be confused with the small-valued ρ1

used earlier to distinguish changes in acoustic density owing to the passage of a sound wave.)
This problem is fully described in the x−y plane, with assumption that the boundary continues

unimpeded in the z direction. Furthermore the boundary is assumed to exist from x = −∞ to
x = +∞. Obviously this is a fiction, but the requirement is readily relaxed e.g., by an incident
field consisting of a sound beam with finite extent incident on the surface, e.g. a finite-width sonar
beam generated by a line array and studied with the Rayleigh integral. For now we stick with the
idealization.

The incident plane wave acoustic field is

pinc(x, y) = Aeik0x cos θ0−ik0y sin θ0 (12)

where A is an amplitude, providing a dimension of pressure, but otherwise is of no importance.
The subscript 0 identifies wavenumber k0 and angle θ0 linked to the incident medium. (As before,
time dependence is assumed to be e−iωt which we leave out the problem as it plays no role. ) Figure
4 shows some phase fronts (separated by λ) representative of the incident plane wave field. After
this we’ll stop drawing the phase fronts as the key property is the ray or direction normal the phase
fronts as described by angle θ0.

Boundary conditions: continuity of acoustic pressure and normal velocity

This problem involves a reflected and transmitted complex acoustic field, where the reflected
field is

pref (x, y) = RAeik0x cos θ0+ik0y sin θ0 (13)

and transmitted field in the lower medium is

ptrans(x, y) = TAeik1x cos θ1−ik1y sin θ1 (14)

and where the subscript 1 identifies wavenumber k1 and angle θ1 linked to the lower medium.
Our goal is to find the reflection coefficient R and transmission coefficient T , through analysis of

two essential continuity conditions along the boundary separating the two acoustic media. These
two conditions, continuity of acoustic pressure and normal velocity, formally specify the boundary
conditions for solving the problem, and are worth memorizing.
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Figure 4: Main figure: A 2-D plane wave encountering a boundary between two acoustic media,sea water
above the sea bed below. The incident plane wave acoustic field in the upper medium has propagation angle
θ0, as depicted by the corresponding ray. A reflected and transmitted field, with propagation angle θ1 are
also symbolized by corresponding rays. Upper left: depiction of a 3D plane wave and corresponding ray
(black arrow).

The first boundary condition is continuity of pressure across the boundary. That is, the pressure
must be continuous across the boundary to preserve the immobility of the boundary, e.g., if there
existed a pressure difference then the boundary would be accelerated in one direction or the other.
This condition requires pinc(x, 0) + pref (x, 0) = ptrans(x, 0), which leads to

(1 +R)eik0x cos θ0 = Teik1x cos θ1 (15)

To make each side equal over all values of x requires a continuity of phase or

k0 cos θ0 = k1 cos θ1 (16)

This leads to one of the most important laws in acoustics and wave propagation, known as Snell’s
Law. For the specification of θ0, θ1 in Fig. 1, Snell’s laws is therefore expressed as

cos θ0
co

=
cos θ1
c1

(17)

It pays to memorize Snell’s law–and I like the form of Eq.(16) involving grazing angle with respect
to the horizontal and cosine, rather than incident angle and sine. Upon application of Snell’s law
we get

1 +R = T. (18)
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Closer inspection of how the angles work (Fig. 4), it should be evident that upon entering a region
of differing sound speeds, a ray will bend, or refract, towards the lower speed with the change in
angle governed by Snell’s law. It pays to memorize: rays always want to bend, or refract, towards
the region of lower sound speed.

The second continuity/boundary condition is continuity of normal acoustic velocity un at the
boundary. Apply Euler’s equation to find un and get

1

iωρ0

∂pinc + pref
∂y

|y=0 =
1

iωρ1

∂ptrans
∂y

|y=0 (19)

where ρ1 is the background density for the lower medium. The frequency ω cancels, and upon
applying Snell’s law we arrive at

sin θ0
ρ0c0

(1−R) =
sin θ1
ρ1c1

T (20)

Now put Z0 =
ρ0c0
sin θ0

and Z1 =
ρ1c1
sin θ1

, and find

R(θ0) =
Z1 − Z0

Z1 + Z0

(21)

where the reflection coefficient is a function of θ0, as in R(θ0) with θ1 determined from Snell’s law.
Notice the analogy with Eq. (9) involving the impedance tube problem.

The Z are impedance quantities and you should recognize the characteristic impedances of
the two media ρ0c0 and ρ1c1, each divided by sin of the incoming θ0 or transmitted θ1 grazing
angle. These impedances are referred to as normal specific acoustic impedance (Frisk, 1994), given
their relation to the acoustc velocity normal to the boundary.

Quick check: In the case of plane wave impinging on the air-water interface from below, expect
Z0 representing the water medium will be |Z0| >> |Z1| representing the air medium. Thus R ≈ −1;
this is close enough such that R = −1 is standard practice for representing the boundary condition
between water and air for modeling underwater sound. Similarly, sound impinging on an air-water
boundary from above, will have |Z0| << |Z1| and thus R ≈ 1. These two cases for which all the
incident acoustic energy is reflected, insofar as |R| = 1 for all angles θ0, and no acoustic energy
enters the lower medium, are known as impenetrable boundaries (Frisk, 1994). There can, in fact,
be some small degree of acoustic penetration across the boundary as you may have experienced
yourself while detecting air-borne sound while swimming underwater.

The critical angle

Inspect now closely the relation between incident (θ0) and transmitted (θ1)angles in the reflec-
tion process (Fig. 4), as governed by Snell’s Law in Eq. (16). The reflected angle, although not
shown, also is θ0 for specular reflection (Frisk, 1994) from a flat interface. Observe from Snell’s law
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that as θ0 is reduced so too is θ1. Eventually when θ0 reaches the critical angle, then θ1 equals 0◦ and
the transmitted field is propagating along the boundary. Define formally the critical angle θc as

cos θc =
c0
c1

(22)

which is a basic, combined property of the two acoustic media involved in the reflection.
For example, with the sound speeds given in Fig. 4 the critical angle θc = 20.4◦ which is a typical

critical angle for seawater to seabed reflection. Softer, mud-like sediments will have a lower speed,
and therefore a lower θc, harder rock-like sediments will have a higher sound speed and thus higher
θc. In the field of diagnostic ultrasound, one may be interested in the critical angle for transmission
from a soft-tissue medium (c0 ≈ 1500 m/s) to bone (c1 ≈ 3000 m/s), which puts θc = 60◦.

Using the again the geometry of Fig. 4, the reflection process plotted in the form of R(θ0) is
shown two different lower media (Fig. 5). The lower media differ only in terms of sound speeds;
one a ”harder” seabed (speed 1800 m/s) and the other a ”softer” seabed (speed 1540 m/s). For
this demonstration the densities for each are the same 1800 kg/m3, but more realistically we would
expect the medium with higher sound speed to have a slightly density. However the key difference
to observe is the large change in critical angle. For grazing angles less than θc, R(θ0) is complex
with |R| equal to 1. This angular region is called total internal reflection, for which no sound energy
can be effectively transmitted into the lower medium. For θ0 > θc, R(θ0) transitions to a real-value
for with |R| < 1.

At very high grazing angles approaching 90◦, or normal incidence, the value of R(θ0) depends
on the combination and ratio of the characteristic impedances of the two media as follows

R ≈ ρ1c1 − ρ0c0
ρ1c1 + ρ0c0

. (23)
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Figure 5: |R| and phase of R as function of grazing angle θ0 for water-sediment reflection. Two sediments
shown with differing sound speeds. The densities for each sediment case is 1800 m/kg3, and water density
is 1025 m/kg3.
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ME525 Applied Acoustics Lecture 18, Winter 2024
The plane wave reflection coefficient and Snell’s Law

Peter H. Dahl, University of Washington

Plane waves and reflection

Figure 1: Main figure: A 2-D plane wave encountering a boundary between two acoustic media,sea water
above the sea bed below. The incident plane wave acoustic field in the upper medium has propagation angle
θ0, as depicted by the corresponding ray. A reflected and transmitted field, with propagation angle θ1 are
also symbolized by corresponding rays. Upper left: depiction of a 3D plane wave and corresponding ray
(black arrow).

The critical angle

The relation between incident (θ0) and transmitted (θ1)angles in the reflection process (Fig. 1),
is governed by Snell’s Law

cos θ0
co

=
cos θ1
c1

. (1)

The reflected angle, although not shown, equals θ0 for specular reflection (Frisk, 1994) from a flat
interface. Importantly, observe from Snell’s law that as θ0 is reduced so too is θ1. Eventually when
θ0 reaches the critical angle, then θ1 equals 0◦ and the transmitted field is propagating along the
boundary. Define formally the critical angle θc as

cos θc =
c0
c1

(2)
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which is a basic, combined property of the two acoustic media involved in the reflection.
For example, with the sound speeds given in Fig. 1 the critical angle θc = 20.4◦ which is a typical

critical angle for seawater to seabed reflection. Softer, mud-like sediments will have a lower speed,
and therefore a lower θc, harder rock-like sediments will have a higher sound speed and thus higher
θc. In the field of diagnostic ultrasound, one may be interested in the critical angle for transmission
from a soft-tissue medium (c0 ≈ 1500 m/s) to bone (c1 ≈ 3000 m/s), which puts θc = 60◦.

Using the again the geometry of Fig. 1, the reflection process plotted in the form of R(θ0) is
shown for two different lower media (Fig. 2). The lower media differ only in terms of sound
speeds; one a ”harder” seabed (speed 1800 m/s) and the other a ”softer” seabed (speed 1540 m/s).
For this demonstration the densities for each are the same 1800 kg/m3, but more realistically we
would expect the medium with higher sound speed to have a slightly density. However the key
difference to observe is the large change in critical angle. For grazing angles less than θc, R(θ0)

is complex with |R| equal to 1. This angular region is called total internal reflection, for which no
sound energy can be effectively transmitted into the lower medium. For θ0 > θc, R(θ0) transitions
to a real-value for with |R| < 1.

The acoustic field in the lower medium (seabed in this example) is also very interesting. We
do not have time to pursue further in this course but details are provided in the Appendix to this
lecture.

At very high grazing angles approaching 90◦, or normal incidence, the value of R(θ0) depends
on the combination and ratio of the characteristic impedances of the two media as follows

R ≈ ρ1c1 − ρ0c0
ρ1c1 + ρ0c0

. (3)

Another view of Snell’s law using the trace wavelength

Figure 3 shows a ray of angle θ0 within a medium characterized by sound speed c0, incident on
boundary below which the sound speed has changed to c1, with c1 > c0. Phase fronts separated
by λ0 in the upper medium must match those separated by λ1 in the lower medium: this gives rise
to Snell’s Law, and shows how a ray in faster medium must bend or refract towards the slower
medium, and the opposite will occur if c1 < c0. The sound frequency determines λ0 and λ1, and
projections of these wavelengths onto the boundary establishes a trace wavelength λt.

Bottom loss

Bottom loss is defined as 20 log10 |R(θ)| where θ is the bottom grazing angle, to be associated
with ray that reflects from the bottom. We have have more details to discuss about ray theory, but
suffice to say that everything is essentially governed by Snell’s law. A program for computing rays
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Figure 2: |R| and phase of R as function of grazing angle θ0 for water-sediment reflection. Two sediments
shown with differing sound speeds. The densities for each sediment case is 1800 m/kg3, and water density
is 1025 m/kg3.

Figure 3: Illustrating the projection of a plane wave in region of sound speed c0 onto a boundary separating
region with sound speed c1, where c1 > c0. The sound frequency determines λ0 and λ1, projections of
these onto the boundary establishes a trace wavelength λt leading to Snell’s law cos θ0

c0
= cos θ1

c1
. Ultimately

frequency is not a driver in Snell’s law as wavelengths will scale accordingly.

will ”launch” a ray at the sound source at angle θ, (with respect to horizontal in my preferred con-
vention) and such a ray continues moving forward at angle θ until either a boundary is encountered
in which case it reflects and θ → −θ, or the ray enters a new sound speed regime with θ changing,
or the ray refracts, according to Snell’s law.

Figure 4 shows a series of ray diagrams that trace rays launched from a receiver within a spec-
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ified angular width, with rays governed as just described towards a receiver at some fixed range.
The rays are computed following the ocean sound speed profilen (left panel) which has sound
speed generally decreasing with increasing depth. This larger set of rays is known as a ray fan. A
subset of thes rays reach the target location (within some tolerance) and these are called eigenrays.

Figure 4: Ray theory travel and bottom grazing angle study for three ranges, based on source depth at 10
m, receiver depth at 17 m, and sound speed profile shown on the left. The cases at range 200 and 100 m
show rays of different angles ”launched” from the source. A few of these rays reach the target depth at the
specified range (within some tolerance). These are called eigenrays. The grazing angle for the eigenray that
reflects from the seabed once is shown for each case.

Figure 5 shows an ocean sound speed profile (a) and an eigenray diagram (b), i.e., only the
subset of rays that connext source and receiver points based on this sound speed profile. Notice
the large change in sound speed from about 30 m to the sea surface over which the speed increases
by about 40 m/s, due to the presence of a thermocline.

The eigenrays can be named according to how they interact with the sea surface and seabed
boundaries, as in S: surface path, D: direct path, B: bottom path, BS: bottom-surface path, SB:
surface-bottom path, and SBS: surface-bottom-surface path. Panels (c) and (d) show time series
of the received pulse (x axis is time in relative units), plotted in dB. The different arrivals, as in D
(direct), S (surface path), etc. are easily identified in the data. For example, the B-path has a grazing
angle on the bottom of about 26◦, and the data are consistent with a bottom loss of about 2.5 dB.

Figures 6 and 7 show examples of bottom loss data from field experiments. Such data is often
subject to high degree of variation due to many factors: changing water conditions, small changes
in measurement geometry as ship moves around, etc. However we are generally able to capture
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Figure 5: From the study by Choi, Dahl and Goff (2008) showing eigenrays between source at depth 40 m and
receiver at depth 30 m, separated by 200 m. Sound speed profile (a) is used to compute eigenrays (b) that are
coded according to S: surface path D: direct path B: bottom path BS: bottom-surface path SB: surface-bottom
path SBS: surface-bottom-surface path.
(c) and (d) time series of the received pulse (x axis is time in relative units), plotted in dB. The different
arrivals, as in D (direct), S (surface path), etc. are identified. Note that plot (d) corresponds to the eigenrays
shown; plot (c) is a result of a different source and receiver geometry.

a sense of the data with simple modeling of R(θ) or 20 log10 |R(θ)| using a model where Z0 = ρ0c0
sin θ0

and Z1 =
ρ1c1
sin θ1

, and find

R(θ0) =
Z1 − Z0

Z1 + Z0

. (4)

However Eq.(4) represents the simplest of all models where the lower medium is described by ρ1c1

and continues forever. In other words, the lower medium is a mathematical half-space.
Things change if, for example, after some layer depth H the sound speed takes on a change from

c1 to c2, with layering producing oscillations in R(θ) not seen in the form of Eq.(4). There are some
relatively simple ways to accommodate this layering using the Impedance Translation Theorem, to
be discussed next.
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Figure 6: Measurements of bottom loss defined as 20 log10 |R(θ)| from a study by Dall’Osto, Choi and Dahl,
2017.

Figure 7: Measurements of bottom loss defined as 20 log10 |R(θ)| from a study by Dall’Osto, Dahl and Choi,
2012

Appendix:
The evanescent field for θ0 < θc, inhomogeneous plane waves

For angles greater than θc, or 20.3◦ for the case of Fig. 1, there is a transmitted angle θ1 in the
lower medium that we easily find through Snell’s law. What happens for θ0 < θc? Notice that for
θ0 < θc, then cos θ1 = c1

c0
cos θ0 cannot be satisfied a real-valued angle θ1, since c1

c0
cos θ0 > 1, and the
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angle θ1 must instead be complex. We find it this way:

sin θ1 =
√
1− cos2 θ1 = i

√
(
c1
c0

cos θ0)2 − 1 (5)

To understand this new kind of angle, consider the transmitted field in medium 1

ptrans(x, y) = TAeik1x cos θ1−ik1y sin θ1 (6)

which applies only for y < 0 and where constant A used to put the dimension to pressure, but it is
otherwise not essential. Substitute now the imaginary sin θ1 from Eq.(2) and invoke Snell’s law to
replace k1x cos θ1 (as that relation must continue to hold) and the expression for ptrans becomes

ptrans(x, y) = TAe
ik0x cos θ0+k1y

√
(
c1
c0

cos θ0)2−1 (7)

with exponential decay in the y direction (noting y < 0).
Equation (7) represents a plane known as an inhomogeneous plane wave (Frisk, 1994) because

there is propagation in one (x) direction and exponential decay in the other (y) direction. Another
term often used is that the acoustic field is evanescent in the y direction. For example, airborne
sound heard while one is swimming underwater but still close to the surface has likely reached
you via this evanescent wave.

Figure 8: Showing changes in exponential decay for three grazing angles cases less than or approximately
equal to the critical angle. For clarity, magnitude of the transmitted fields are plotted as normalized by
maximum value at the water-sediment boundary.

The decay of transmitted field ptrans for three cases, defined by grazing angles less than or ap-
proximately equal to the critical angle is shown in Fig 8. For this example, the critical angle equals
33.55◦, representing the reflection from a plane wave incident from sea water medium (1500 m/s)
onto seabed medium (speed 1800 m/s). Observe that the decay is greatest for smallest grazing
angle (5◦) below the critical angle, where as for a grazing angle very near critical the decay rate is
less.
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ME525 Applied Acoustics Lecture 19, Winter 2024
Impedance Translation Theorem

Peter H. Dahl, University of Washington

Plane wave reflection from a layered seabed

The problem of finding the plane wave reflection coefficient R from a layered boundary (Fig. 1)
is easily solved with the impedance-translation theorem (Brekhovskikh, 1980; Pierce 1989).

Figure 1: Geometry from reflection from a layered media at arbitrary grazing angle, θ1
. A layer of thickness L extends from y = 0 to y = −L.

To get a sense of how this simplifies the problem, consider first solving the problem by invoking
standard boundary conditions of continuity of pressure, and normal (vertical) velocity at each of
the interfaces. For this take the incident field in medium 1 as

pinc(x, y) = eik1x cos θ1−ik1y sin θ1 (1)

(for simplicity set coefficient A equal to 1.) In medium 2 (the layer) we must have both up and
down going fields, and let those coefficients be, A and B, respectively. In medium 3 there is only
one field with coefficient out front equal to T .

Next apply the two boundary conditions, where θ1 is grazing angle for the incidence field. The
boundary conditions at y = 0 and y = L are that continuity of pressure requires

1 +R = A+B, y = 0

Aeik2L sin θ2 +Be−ik2L sin θ2 = Teik3L sin θ3 , y = −L
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where R and T are the reflection and transmission coefficients, and continuity of normal velocity
requires

sin θ1(1−R)/(ρc)1 = sin θ2(A−B)/(ρc)2, y = 0

sin θ2(Ae
ik2L sin θ2 −Be−ik2L sin θ2)/(ρc)2 = sin θ3Te

ik3L sin θ3/(ρc)3, y = −L

There appears four equations with four unknowns, R, T and A,B, which is solvable say by setting
up a 4 by 4 matrix to recover unknowns R and T . But let’s instead exploit the impedance-translation
theorem.

For a layer of length L characterized by medium 2, identify:

Zlayer = (ρc)2/ sin θ2

klayer = k2 sin θ2

and for medium 3 below identify:

Zload = (ρc)3/ sin θ3

We can roughly interpret Zlayer as the impedance of the “transmission line” connecting the medium
1 and medium 3. We can interpret Zload as load or terminal impedance for this system. That is,
sound can reflect upward at the interface between medium 2 and 3, but any sound actually entering
into medium 3 is not coming back, hence terminal impedance.

Next compute a new Zin as follows:

Zin = Zlayer
Zload − iZlayer tan(klayerL)

Zlayer − iZload tan(klayerL)
(2)

where the Zin stands for input impedance. Of course, care is needed in computing the angles θ1

going to θ2 and finally to θ2. Snell’s law does this which in this case means:
k1 cos θ1 = k2 cos θ2 = k3 cos θ3

and angles can in general be complex.
We find Zin for this problem–almost by inspection–as follows:

Zin = [(ρc)2/ sin θ2]
[(ρc)3/ sin θ3 − i[(ρc)2/ sin θ2] tan(k2 sin θ2L)]

[(ρc)2/ sin θ2 − i[(ρc)3/ sin θ3] tan(k2 sin θ2L)]
(3)

Having found Zin, the plane wave reflection coefficient R from layered medium at arbitrary
grazing angle is then

R =
Zin − (ρc)1/ sin θ1
Zin + (ρc)1/ sin θ1

(4)
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Note: compare this equation with Eq.(4) of Lecture 18 representing plane wave reflection from two
halfspaces, characterized by upper medium 0 (Z0), and lower medium 1 (Z1). Be mindful that I
have now changed to three indices to represent upper, layer and lower media as follows: 1 for the
medium through which the wave initially travels, 2 for the layer, and 3 for the medium into which
the wave is transmitted.

As an example, put:
medium 1 ρ = 1025 kg/m3, c = 1500 m/s
medium 2 ρ = 1400 kg/m3, c = 1600 m/s
medium 3 ρ = 2000 kg/m3, c = 1900 m/s

and set layer L equal to 50 and 5 m. The result (Fig. 2) for |R| as a function of grazing angle
shows a strong dependence on layer thickness L, which translates to a frequency dependence. The
black,dashed line forms kind of envelope of |R| and is based on the reflection from a halfspace of
medium 3, i.e, setting L = 0.

Figure 2: Magnitude of the plane reflection coefficient |R| from a layered seabed as function of grazing angle.

With the L = 50 m case there is strong interference pattern set up by waves trapped within the
layer. Using the wavenumber for the layer k2 = 2π200

1600
, then k2L ∼ 39. With the L = 5 m case,

k2L ∼ 3.9; we anticipate that the influence of the layer diminishes as k2L is reduced to a value of
∼ 1 or less. I experimented just a bit and when k2L ∼ 0.5, the effect of the layer is nearly gone and
reflection is as if it is from the halfspace.

The idea of identifying an input impedance Zin, such as for the layer and halfspace in the region
x > 0, is a very powerful one, and the procedure is easily extended for multiple layers. For example,
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for the case of two layers L1 and L2 a new load impedance Zload is constructed for based on the
combination of the lowest layer impedance and the terminal impedance. This becomes the load
impedance for the layer directly above, and so on. More discussion on the extension to n layers can
be found in Brekhovskikh (1980).

The single expansion chamber muffler

The impedance translation theorem is not limited to problems on reflections from layered me-
dia, but finds all manner of applications in linear system theory. The following is example involving
sound propagation within a confined tube of varying cross section (Fig. 3), representing a a single
expansion chamber muffler with many applications in terms of noise control, such as a car muffler.

Figure 3: Single expansion chamber muffler with input area S1, expanding to area S2 for length L, then
returning to area S1.

The geometry and acoustic fields for the problem are shown in Fig. 4, where we assume a plane
wave is incident at x = 0. The plane wave direction, or ray, is confined to be parallel with the tube.
As such, the plane wave must have a frequency satisfying f < c

1.7d
, where d is the largest diameter

of the muffler. If f < c
1.7d

is satisfied, it said that the muffler supports a a single axial mode as
described by plane with ”ray” pointing straight down the tube (e.g. as in Fig. 1 of Lecture 4).

The pressure and velocity boundary conditions are analogous to those that we’ve encountered
in the context of reflection from layered media. However with the change in area at x = 0 and x = L

we now require continuity of volume velocity, or area times velocity (Pierce, 1989). Continuity of
pressure requires

1 +R = A+B, x = 0

AeikL +Be−ikL = TeikL, x = L
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Figure 4: The geometry and acoustic fields for the problem for single expansion chamber muffler with input
area S1, expanding to area S2 for length L, then returning to area S1.

where R and T are the reflection and transmission coefficients, while continuity of volume velocity
requires

S1(1−R)/(ρc) = S2(A−B)/(ρc), x = 0

S2(AeikL −Be−ikL)/(ρc) = S1TeikL/(ρc), x = L

These are summarize in the matrix equation involving matrix

M =


1 0 −1 −1

−S1 0 −S2 S2

0 −eikL eikL e−ikL

0 −S1eikL S2eikL −S2e−ikL

 (5)

C =


−1

−S1

0

0

 (6)

P =


R

T

A

B

 (7)

Find the unknown vector P = M−1C, with reflection coefficient R = P (1) and transmission coeffi-
cient T = P (2). Go ahead, try it.
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Or, why not try a the more simpler approach using the impedance translation theorem? To do
so, find the input impedance Zin of the single expansion chamber muffler system. Identify:

Zlayer = ρc/S2

klayer = k

Zload = ρc/S1

Following the prescription of Eq.(2) then find Zin as follows:

Zin =
ρc

S2
[
ρc
S1

− i ρc
S2

tan(kL)
ρc
S2

− i ρc
S1

tan(kL)
] (8)

and immediately arrive at expression for the reflection coefficient

R =
Zin − Z0

Zin + Z0

(9)

where Z0 = ρc/S1.
To study the noise reduction performance of this muffler, there are two key approaches, one is

called insertion loss requiring finding the sound pressure level (in dB) before insertion of the device,
then find the drop in this level after insertion of the muffler (Pierce, 2008). Insertion loss is easy to
measure. The other is called transmission loss, or TL representing the ratio of incident to transmitted
acoustic power and is usually expressed in decibels; this is easy to calculate but hard to measure
properly (Ingard, 2010).

We can formally compute TL in this context as follows: Take the incident time-averaged power
as equal to 1

2ρc
S1, where the numerator represents the squared-pressure of the incident plane wave

of unit amplitude. To find transmitted power, the transmitted pressure amplitude is T , and trans-
mitted acoustic velocity is u equals T

ρc
.

Next recall the intensity, 1
2
pu⋆ or pressure times the conjugate of velocity, which in this case

equals |T |2
2ρc

; upon multiplying by S1 gives the transmitted power. Express the ratio incident to
transmitted power in decibels as follows

TL = 10 log10
1

|T |2
(10)

where to make TL positive to represent more sound reduction, we the inverse ratio is in effect
taken.

Now, T can be found directly through above matrix manipulation, or much easier, find R

Copyright © 2024 P. H. Dahl. All Rights Reserved.



7

through the impedance translation theorem and then T via the relation

|T |2 = 1− |R|2 (11)

which applies to this problem. Note that Eq. (11) is clearly different from the relation 1 + R = T

which applied to the case of the plane wave reflection coefficient. The key to understanding this
difference is that there is no energy loss in this muffler system of Fig. 4. For example the inside
of the muffler isn’t stuffed with woolly material that absorbs sound energy. This means that the
transmitted sound power must equal the incident minus the reflected power.

Equation (10) becomes the formal working definition for computing the performance of the
muffler system (take the negative of it to make noise reduction a positive quantity). Fortunately,
the muffler performance can be measured in a much simpler way as follows:

TLmeasured = −20 log10
pout
pin

(12)

where pout and pin are measure pressure quantities, expressed as RMS. Ideally one might get pout
with and without the expansion piece, to account for small losses within a tube of constant diame-
ter.

Figure 5: Experimental measurements (black line) by Kim and Kong (1993) for single chamber of L =500
mm, chamber diameter D =200 mm, and input and output diameters d1 = d2 =32 mm, compared with TL
based on R as computed with Eq. (11) (blue, dotted line)
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A calculation (Fig. 5) of transmission loss for case of S1 = π0.0162 m2, expansion diameter
S2 = π0.12 m2 and L = 0.5 m is compared with observations made by Kim and Kong (1993), and
suggest very large sound reduction (high TL) near 170 Hz and no reduction near 340 Hz, with the
pattern continuing. Notice that for frequencies greater than about 2000 Hz (2 kHz) the theory based
on Eq. (10) fails because the assumption f < c

1.7d
no longer holds.

The human vocal tract

Figure 6: left: the human vocal tract (Fig. 1 of Anderson and Sommerfeldt, 2021). Right: model cross sections
for human vocal tract for different vowel phonemes (Fig. 4 of of Anderson and Sommerfeldt, 2021)

The Acoustics Research Group at BYU is also known for innovative approaches in gradu-
ate acoustics education. For example they demonstrated a really neat problem solved with the
impedance translation theorem: the human vocal tract (Fig. 6).

A few models for the vocal tract segmented into short, constant-diameter segments, are shown
on the left of Fig. 6, representing different vowel phonemes, or distinct units of sound in English.
One can imagine that the simple muffler geometry of Fig. 4 might represent one portion of this
model vocal tract, and the impedance translation theorm can be used to connect the effects of the
different vocal track segments.
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ME525 Applied Acoustics Lecture 20, Winter 2024
Solved problems in plane wave reflection, seabed attenuation

Peter H. Dahl, University of Washington

Reflection from a halfspace

We’ll work through this problem (Fig. 1) for the case without sediment attenuation. View it as
a benchmark problem to test your homework solution.

Figure 1: |R| and phase of R as function of grazing angle θ0 for water-sediment reflection (red lines). The
inclusion of sediment attenuation produces the black, dashed lines.

Sediment attenuation is often the key to “everything” in underwater sound, particularly for
shallow water geometries for which reflection from seabed is bound to occur. Sediment attenuation
will damp out sound as interacts with the seabed, ultimately determining how far sound can travel
underwater while reflecting multiple times from the seafloor. There are a multiplicity of ways to
express such attenuation, a common approach is to express attenuation as a dB/λ. However to
implement the attenuation in reflection problems, one needs to compute the loss tangent δp from a
given dB/λ value (see Jackson and Richardson, 2007)

δp =
[dB/λ] ln(10)

40π
. (1)

Having the loss tangent δp in hand, then the sound speed of the medium subject to this attenuation,
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e.g., cb, is made complex as follows:
cb →

cb
1 + iδb

(2)

Calculation of the reflection coefficient with a complex sound speed in the seabed cb based on 0.25
dB/λ (typical value) is shown by black, dashed line in Fig. 1. At first look the effect appears small,
however observe that for angles less than the critical angle for which we would anticipate total
reflection or |R| = 1 now assume a small reduction in amplitude. This has a huge, cumulative
effect after several reflections from the seafloor.

Another way of expressing attenuation is by way the parameter Q which is often seen in seis-
mology. A “high Q” media means low attenuation. A handy relation is

dB/λ ≈ 27Q−1 (3)

Reflection from a layered media using the Impedance Translation Theorem

We’ll work through a couple of problems involving the Impedance Translation Theorem and
layered (Figs. 2 and 3). Again view for these cases without sediment attenuation to serve as bench-
mark problems to test your homework solution. Importantly, note that the acoustic frequency en-
ters the problem. There is length scale and the layer thickness L of 100 m, depending on frequency
may appear acoustically as a “thick layer” relative to the acoustic wavelength λ, as “thin layer”, or
if λ ≫ L, may not be observable at all in the calculations. As in Fig. 1 the calculations are repeated
with some sediment attenuation.
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Figure 2: Magnitude of the plane reflection coefficient |R| from a layered seabed as function of grazing angle
(red line); inclusion of sediment attenuation produces the black, dashed line.

Figure 3: Magnitude of the plane reflection coefficient |R| from a layered seabed as function of grazing angle;
inclusion of sediment attenuation produces the black, dashed line.

Example closer to current research: sound propagation over mud-like sediments

The following example remains somewhat idealized nonetheless serves as a notional working
model for plane wave reflection from a mud-like sediment of thickness 9 m. Such conditions are
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approximately in effect in waters about 100 km south of Cape Cod (depth ∼ 75 m) known as the
New England Mud Patch (NEMP). A key characteristic of the NEMP is the mud layer of thickness
of order 10 m, where the sound speed (and density) are less than water. Notice the profound
(theoretical) difference on how sound interacts with this seabed at a frequency of 2000 Hz versus
20 Hz.

Figure 4: Magnitude of the plane reflection coefficient |R| from a mud-like sediment off the coast of New
England. Attenuation for each case is 0.25 dB/λ and two frequencies are shown.
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