CHAPTER 9

RADIATION BY FLUCTUATING-FORCE (DIPOLE) SOURCES

Sources that produce fluid volume fluctuations are dominant when they exist. There are many
cases, however, in which they are absent and in which force fluctuations produce the strongest
sounds. Fluctuating, or unsteady, forces occur as by-products of steady work-producing forces, as
discussed in Chapter 1. When such forces cause a structure to vibrate, radiation occurs from
flexural waves, as covered in Chapter 6. When forces are hydrodynamic in origin, sound is radiated
directly into the fluid independent of any motion of a fluid boundary. This rigid-body, oscillating-
force radiation is of dipole nature, as discussed in Section 3.4. The present chapter deals primarily
with dipole-type radiation of sound by hydrodynamic fluctuating forces acting on rigid bodies. All
lifting surfaces radiate sound in this way, and this mechanism accounts for much ot the sound
generated by hydraulic machines such as turbines, pumps and propellers as well as by fans, blowers
and compressors.

9.1 Dipole Sound Sources

There are a number of ways in which dipole sound fields can be generated. Physicaily, the
sources usually involve fluctuating forces or oscillating motion of a rigid body; mathematically,
they can be expressed in terms of two equal out-of-phase monopole volume sources or by the
spatial derivative of a monopole field.

Acoustic Field of a Concentrated Force

Just as large fluctuating-volume sources can be treated by summing the effects of many
monopoles, so also sound radiation from large bodies experiencing fluctuating forces can be
calculated by integrating the sound fields of elemental concentrated-force radiators. The sound
field of a concentrated force varying arbitrarily with time was derived in Chapter 3. Since super-
position may be assumed, any arbitrary force may be decomposed into harmonic components
using Fourier’s theorem as discussed in Section 1.5. Assuming a sinusoidally varying force,
Eq. 3.31 for the radiated acoustic pressure due to a concentrated force becomes

5 = Fcos 0 ik iwF, cos 6 pilwt ~ kr) (9.1)
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This result is applicable only if the dimensions of the body or surface experiencing the force are
small compared to an acoustic wavelength, and if the distance r to the field point is large compared
to a wavelength. The cosine radiation pattern is characteristic of a dipole.
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The acoustic intensity of an elementary force dipole is given by
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Integrating over a sphere, the average intensity is
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from which it follows that the acoustic power is
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Comparing this expression to Eq. 4.17 for the power radiated by a monopole fluctuating-volume
source, its dipole character is indicated by the cubic dependence on speed of sound, which implies
a cubic dependence of radiation efficiency on Mach number.

Oscillating Rigid Sphere

As discussed in Chapter 3, it is the fluctuating surface-pressure field associated with a fluc-
tuating force that radiates scund. Another way of producing fluctuating surface pressure is by
oscillating motion of a rigid sphere, as depicted in Fig. 9.1. Consider a rigid sphere of radius a,

Fig. 9.1. Translational Oscillation of a Rigid Sphere

executing simple harmonic motion with peak speed . The radial component of speed normal to
the surface at each point on the sphere is given by
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w0) = u, cosf el (9.5)

where 0 is the angle between the radius vector and the direction of motion. Equating this surface
velocity to the radial acoustic particle velocity and then solving for the far-field acoustic pressure,
one finds
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The total power radiated by an oscillating sphere is
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from which it follows that the radiation resistance, Eq. 3.2, is
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and the specific radiation resistance, Eq. 3.3, is

R
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This result is identical to that given by Eq. 3.18 for a first-order multipole, as derived from a
general spherical source.

Not only do dipoles differ from monopoles in having cosine directional patterns, but also they
differ in the nature of their near-field pressures. In the case of a pulsating volume source, a single
expression for pressure decreasing with distance from the center applies at all locations outside the
source. This is not the case for dipoles. A large fraction of the power that is required to oscillate a
rigid sphere goes into a near-field hydrodynamic sloshing motion of the fluid that does not radiate
as sound. For small kg, and small kr, the pressure near an oscillating rigid sphere is

wp S a s
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which, being inductive, decays as the square of the distance from the center of the sphere.
Comparing Eq. 9.10 for the inductive field to Eq. 9.6 for the acoustic field, we find

P = == . (9.11)

Hence, the inductive field lags the acoustic field by 90° at each radial distance. The total fluc-
tuating pressure at any radius is the sum of the two components.
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The reactive force associated with the fluid motion involved in the oscillation of a rigid sphere
equals the integral of the component of the pressure in the direction of motion over the surface,

F, = f pifa,) cos0dS . (9.12)
S

a

Using Eq. 9.10 with r = a,, for the surface pressure, and carrying out the indicated integration,
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The reactive component of the radiation impedance equals the reactive force divided by the
velocity. It follows that
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which is the reactance of a mass equal to one half of that displaced by the sphere.
For small kg, the radiation resistance given by Eq. 9.8 is small compared to the reactance and
the impedance can be taken to be entirely reactive. It follows that the radiation efficiency is
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in complete agreement with Eq. 3.23.

The equivalence of an oscillating rigid sphere and a fluctuating force as sound sources can be
further demonstrated by expressing the acoustic field of an oscillating sphere in terms of the force
required to keep it in motion. This force is composed of two terms: the reactive force of the
medium, as given by Eq. 9.13, and the force required to accelerate its mass. Assuming that the
sphere has the same density as the fluid, the total force is
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Equation 9.6 for the radiated pressure may be written
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which is equivalent to Eq. 9.1. Thus, the two source expressions are equivalent, provided the
wavelength is large compared to the diameter of the sphere.

Spheres Pulsating Out of Phase

Dipole sound patterns are also generated by two equal out-of-phase monopoles separated by a
distance small compared to a wavelength, as was developed in Section 4.5. If each of the pulsating
spheres comprising the dipole has source strength given by

B= 0, a0, (9.19)

and their centers are separated by d, then from Eq. 4.75
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where cos 0 replaces sin 0 because of the present choice of the dipole axis as the reference for 6
rather than a perpendicular.

The product @ d is the magnitude, or strength, of the dipole, represented by D, in the
following equations. Comparing Eq. 9.20 to Egs. 9.1 and 9.6, dipole strength can be related to the
strength of a fluctuating force and to the size and velocity of an oscillating sphere by
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General expressions for the acoustic pressure, intensity and power of dipoles are
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All of these expressions written in terms of dipole strength reduce to the corresponding equations
in terms of force or velocity flux, using the relations of Eq. 9.21.

Dipole Fields from Monopole Fields

The complete pressure field of a dipole, including both inductive and acoustic components,
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can be expressed as a spatial derivative of a monopole pressure field. Using Eq. 4.15 for the
pressure field of a monopole,
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Interpreting 0r/dx as cos 8 and equating dx to the separation of the poles, d, we find
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which is the negative of the complete dipole pressure field obtained by adding the acoustic
component, Eq. 9.20, to the inductive component, Eq. 9.11.

This relation between dipole pressure fields and monopole fields can be generalized. Quadru-
pole fields can be obtained from derivatives of dipole fields, or from second derivatives of mono-
pole fields. Higher order fields are produced by higher order derivatives.

9.2 Propeller Blade Tonals

Blade tonal radiation from non-cavitating propellers and from fans, compressors, turbines and
pumps is an important noise source. The initial analysis of this problem by Gutin (1936) was
concerned with sound radiation by a rotating static force distribution, i.e., sound radiation by a
finite-bladed impeller in a uniform inflow, for which thrust and torque are constant. As discussed
in Section 3.5, Gutin found that the sound radiated depends very strongly on both the number of
blades and tip Mach number. At the low Mach numbers of marine propellers and of most hydraulic
machinery Gutin noise is negligible compared to that generated as a result of force fluctuations;
turther discussion of his analysis will therefore be omitted. Readers interested in this subject are
referred to Blokhintsev (1946) and to Richards and Mead (1968).

General Oscillating Hydrodynamic Force

When oscillating force is generated in connection with fluid flows, it is useful to define an
oscillating force coefficient, Cp, analogous to the lift and drag coefficients defined by Egs. 7.72
and 7.73. Thus, writing
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the intensity and radiated power ot a concentrated fluctuating force may be expressed by
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These equations, which may be used in place of Egs. 9.2 and 9.4, show dependence on the sixth
power of the flow speed and on the square of a dimensionless frequency coefficient. Calculation of
the sound power radiated by various types of oscillating force requires expressions for the oscil-
lating force coefficient and for the dimensionless frequency.

Usually oscillating forces are unwanted by-products of steady work-producing forces. The
mechanical power associated with a steady force can be written

mech (

1
W =~ p UISC, . (9.30)
2

Combining this expression with Eq. 9.29, the acoustic efficiency is
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Noise from Oscillating Thrust

As discussed in Section 8.4, operation of a propeller in a wake having circumferential varia-
tions results in oscillating components of thrust at multiples of the blade frequency. which are
given by

= mBn . (9.32)

Here m is the order of the harmonic, B the number of blades and » the rotational speed in rps.
Defining an rms oscillating thrust coefficient, Cp, in a manner analogous to that of Eq. 8.18 for
the steady thrust, by

Cp = —Ims_ (9.33)
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the intensity of directly radiated sound at the mth harmonic is then given from Eq. 9.2 by

m>B?

]m(t)) =

poné’DE‘CT2 cos* 6 . (9.34)
¥

7 L T

4r es

Thus, the intensity increases as the sixth power of tip rotational speed, as disk area, and as the
square of number of blades. harmonic number and oscillating thrust coefficient. From Eq. 9.4 and
the definition of the steady-state thrust coefficient given by Eq. 8.18, the acoustic conversion
efficiency can be expressed by
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For typical propeller tip speeds of the order of 25 to 50 m/sec and oscillating thrust coefficients of
2 to 10% of that for the steady-state thrust, acoustic conversion efficiencies for direct radiation of
blade-rate tonals are estimated to be between 107'° and 1078, well below that for propeller
cavitation.

While not efficient radiators of blade tonal components at the low Mach numbers of marine
propellers, blade-rate forces transmitted by propeller shafts are a dominant cause of hull vibration.
When these vibratory forces coincide with low-frequency hull resonances of the types discussed in
Sections 4.11 and 5.11, severe vibrations may occur. Not only are these vibrations harmful to men
and machines but also they may radiate blade tonal components at higher levels than those
radiated directly by the propeller.

Factors Affecting Oscillating Thrust

Primarily because of the interest of naval architects in reducing shipboard vibrations and
preventing propeller shaft fatigue failures, considerable effort has been devoted by a number of
investigators to the development of methods of calculating propeller alternating thrust. The calcu-
lation of steady-state propeller forces for uniform inflow conditions is itself a complex problem
for which no single method has proven to be clearly superior. Non-steady effects caused by wake
operation make the problem even more untractable. As summarized by Stern and Ross (1964), the
various published methods may be classified as either quasi-steady or unsteady and either two-
dimensional or three-dimensional. In quasi-steady methods the forces on a propeller blade are
calculated at each angular position as though the wake at that position existed over the entire
360°. In unsteady methods, unsteady airfoil theory developed by von Karman and Sears (1938) is
used in deriving oscillating lift coefficients for blade elements. In two-dimensional analyses, in-
duced velocity components due to helical trailing vortex sheets, cascade effects of other blades, tip
vortices and other three-dimensional effects are ignored. Brown (1964) compared the various
methods, finding, as shown in Fig. 9.2, that quasi-steady analysis is in good agreement with his
three-dimensional unsteady theory when calculating the fundamental and second harmonic com-
ponents while a two-dimensional unsteady method gives good results for the fourth and higher
harmonics.

According to two-dimensional unsteady airfoil theory, the oscillatory lift experienced by an
airfoil in a sinusoidal gust of amplitude w,, is given by

C, = 2m Lo iwigy) (9.36)
UO
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is called the reduced frequency of the gust. The phase angle of the function G(v) depends upon
the reference point on the airfoil. When expressed relative to the center as originally done by Sears
(1949). the phase varies greatly, but Brown (1964) and Lowson (1970) have shown that the phase
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Fig. 9.2. Comparison of Computational Methods for Propeller Fluctuating Thrust, after Brown (1964)

angle varies by less than 45° over the entire frequency range when the leading edge is used as the
reference point. As expressed by Brown,

e Y
Gpplv) = . (9.38)
iy [Ko(i'y) + K,(i'y)]

where K, and K, are modified Bessel functions of the second kind. This function is plotted in
Fig. 9.3. For the high values of the reduced frequency typical of marine propellers, especially for
the higher harmonics, Eq. 9.38 reduces to

] .
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which relation is valid within 3% fory = 1.

The procedure used when making unsteady airfoil calculations is to perform an harmonic
analysis of the circumferential wake at each radial station. Since the component of the wake
having periodicity equal to m times B is the only component causing the mth harmonic of the
blade-rate oscillating thrust, the complex oscillating force is computed for this component at each
radial station and then integrated over the radius.

It is apparent from this discussion that number of blades is a most important factor affecting
oscillating thrust. Some wakes, such as that shown in Fig. 8.12, have strong components at certain



9.2 BLADE TONALS 297

Im A
0.6+

N\

MIDCHORD
FUNCTION

G(Y)

0 Re

LEADING EDGE
FUNCTION

/ G g

~
Q-

Fig. 9.3. Sears Function Relative to Midchord and to Leading Edge, atter Brown (1964)

even harmonics. Selection of an odd number of blades may result in a much lower fluctuating
force than would selection of an even number. In other cases, such as for the wake depicted in
Figs. 8.10 and 8.11, there is little difference between four-, five- or six-bladed propellers.

Another factor affecting the fluctuating thrust is the shape of the leading edge. Cox and
Morgan (1972) have demonstrated that skewing the Ieading edge tends to reduce the net force by
causing the various radial sections to experience their forces out of phase with each other. Skewing
also has the effect of increasing the section chord length, thereby increasing v and slightly reducing
the oscillating force, as implied by Eq. 9.39.

Calculations of oscillating thrust for a given propeller show relatively small variations of 57-
with advance ratio J. It follows from Eq. 9.35 and Fig. 8.8 that somewhat lower acoustic ef-
ficiencies, i.e., lower blade tonals, will be achieved if propellers are operated at advance ratios
slightly lower than optimum from the point of view of efficiency.

Propeller-Induced Hull Forces

In addition to direct excitation of hull vibrations by oscillating thrust transmitted through the
propeller shaft and thrust bearing to the hull, the rotating pressure field associated with a propeller
can induce oscillating forces on nearby hull plating, fins and/or struts. As previously discussed,
direct radiation from rotating pressure fields is very small at the low Mach numbers of marine
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propellers. However, inductive near-field pressures can be significant and the forces experienced by
nearby stationary surfaces can be large. In a summary of this subject, Breslin (1962) noted that
important contributions to the inductive pressure field are made by both blade thickness and lift
distributions and that propellers in non-uniform wakes produce larger forces. As confirmed by
Tsakonas et al (1964), induced pressures and radiated sound both decrease markedly as tip
clearances and/or number of blades are increased. The decrease of induced pressure fields exper-
ienced with increasing numbers of blades is a contributing factor in the present trend toward the
use of five- and six-bladed propellers on modern high-power merchant ships.

Submarine and torpedo hulls also experience oscillating forces transmitted by propeller induc-
tion pressure fields. However, Chertock (1965) found these induced forces to be only of the order
of 6 to 10% as large as those transmitted directly by the shaft. Tsakonas and Breslin (1965) also
calculated the longitudinal force induced by a propeller on a prolate spheroid and found this force
to vary inversely with the length-to-diameter ratio of the body. They noted that transverse forces
induced in fins augment hull vibrations.

The importance of struts in transmitting oscillating forces to ship hulls was recognized by
Lewis in the 1930’s. More recently, Pinkus et al (1963) have calculated the force induced in a
finite plate, representing an appendage, by a vortex distribution representing a blade moving past
one end: and Lewis (1963, 1967) has reported on measurements of strut oscillating forces made in
a water tunnel. Both studies show a very rapid decrease of induced force with increasing clearance,
leading to the conclusion that this problem can be eliminated by giving attention to the spacing
between propeller and stationary surfaces such as struts, fins and rudders.

Blade-Vortex Interaction Noise

Occasionally marine propellers emit a sound that resembles what one would expect from
repeated slaps occurring at blade frequency. It is believed that the source of such blade-slap noise
is the passage of blades through a vortex. Vortices originating from the tips of lifting surfaces
upstream of the propeller, or from the first propeller of a counterrotating pair, may pass through
the propeller disk. Each time a blade comes close to a vortex it experiences a force much as from
an abrupt gust. Each force pulse generates a sound pulse, resulting in pulses repeated at blade
frequency. The phenomenon has been studied by Simons (1966) and Widnall (1971) in connection
with helicopter blade-slap noise. They found that the sound radiated is not only a function of the
strength of the vortex but also of its core size levels, being lower for larger cores.

Shaft-Rate Components

Tonal components at shaft rate also occur in propeller spectra, though at much lower levels
than blade tonals. Their presence implies modulation of the blade tonals at shaft rotational
frequency. Such modulation would be expected to occur either if the blades were not mechan-
ically identical and/or if their spacings were not exactly equal. Furthermore, even if blades and
spacings were the same, forces experienced by the individual blades could differ somewhat since
blade flexural vibrations do not occur identically. Expressing a modulated blade harmonic by

p=2P (1 + o0 o cos jwr) cos mB wt (9.40)
j

leads to
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Z Q [cos (mB + jlwt + cos(mB - j)wt] , (9.41)
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which series represents a family of tonals at multiples of the shaft rotational frequency.

Rotor-Stator Interactions

When center-line propellers are used on bodies of revolution such as torpedoes or submarines,
the major cause of wake variation is the fins. In this case, oscillating forces may be considered to
result from rotor-stator interaction. Similar rotor-stator interactions are also dominant sources of
tonal noise from fans, compressors, pumps and turbines, and the subject has received considerable
attention in connection with noise from such machinery.

Kemp and Sears (1953, 1955) applied unsteady airfoil theory developed by von Karman and
Sears (1938) and Sears (1941) to the rotor-stator interaction problem, finding that potential
interaction effects and viscous wake effects are often of the same order of magnitude. For close
spacing of rotor and stator, potential interaction effects dominate. These forces, which are similar
to appendage forces previously discussed, decrease quite rapidly with increased spacing. On the
other hand, viscous effects caused by wakes from the first row interacting with the second row
decay gradually with distance. Kemp and Sears found viscous effects to be proportional to the
drag coefficient of the upstream airfoils. Later studies by Sharland (1964), Fincher (1966),
Lowson (1968) and Morfey (1970) confirmed these conclusions. Mather et al (1971) reported that
the levels of shaft-rate tonals are also influenced by rotor-stator interaction effects. Hanson (1973,
1974) found little difference in the spectra whether the stator precedes or follows the rotor.

Blade tonals give a distinctive character to rotor noise which is often quite annoying to
humans. Mellin and Sovran (1970), Duncan and Dawson (1975) and others have proposed that
unequal rotor and/or stator spacings be used in order to reduce blade-frequency tonals. Shaft-rate
tonals are thereby increased and the total sound output remains the same, but the broadband
characteristic of the resultant sound is more acceptable.

Blade-Turbulence Interactions

Not only do rotors interact with the wakes of upstream stators, producing blade and shaft rate
tonals, but also they may interact with turbulent inflow velocity fluctuations and thereby produce
a broadband noise spectrum. The importance of inlet turbulence was demonstrated by Sharland
(1964), who found an 8 dB increase in noise from a fan operating in a turbulent inflow compared
to its operation in a smooth flow. Further study of this noise source by Mani (1971) and Mugridge
(1973) showed its importance for values of the Sears parameter, v, defined by Eq. 9.37, up to
about 10. Higher-frequency broadband noise is associated with boundary-layer turbulence and
with turbulent eddies in blade wakes, as discussed in the next section.

9.3 Vortex Shedding Sounds

The turbulent wakes of most bodies contain relatively strong vortices which occur in certain
geometric configurations and which account for a significant fraction of wake energy. Oscillating
forces are produced in connection with the formation of vortex wakes. These fprces are respon-
sible for such diverse phenomena as noise in electrical power lines, vibration of radar antennas,
fatigue failure of hydraulic turbine blades and collapse of tall smokestacks. They have been studied
extensively by mechanical, civil and hydraulic engineers as well as by acousticians and aero-
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dynamicists. In acoustics, oscillating forces on wires produce sounds known as Aeolian tones. and
similar forces on blades produce components of fan, compressor, pump and propeller noise that
are sometimes very strong and are known as singing.

Investigations of the subject of vortex shedding phenomena within each of the disciplines
mentioned proceeded for many decades almost without interaction between them. Although
articles on this subject have appeared for almost 100 years, it was not until the 1960’s that Ross
(1964) combined results from all the fields to develop a unified hydro-acoustic theory of vortex
shedding sounds. The present section is based on that study as revised by more recent expern-
mental and theoretical developments.

Aeolian Tones

As recounted by Richardson (1924), descriptions of Aeolian harps in which wind or the draft
from a fire produces musical tones are given in a book published in the 17th century. Although the
phenomenon had been known since the time of the Greeks, the first scientific investigation was
that of Strouhal (1878) who found that frequency of the sound increases with wind speed and
decreases with wire diameter. Thus, the dimensionless frequency fD/U, tends to remain constant.
This factor is known as the Strowhal number, Sy, and is written

_ /b
B B e (9.42)
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where b is a characteristic transverse dimension of the body. For cylinders, Strouhal found
Sy =0.185. Rayleigh (1915) noted that vibrations of the wire occur in a plane perpendicular to
the direction of the wind. He associated the motion with the vortex wake that had been observed
in water, and also concluded that the Strouhal number must be a function of Reynolds number,
finding that Strouhal’s experimental results are given by

20
Sy =0195 (1 - _ (9.43)
RN

Many of the studies of vortex shedding have been concerned with determining the exact
relationship between SN and R, for rigid cylinders. Figure 9.4 summarizes these results. For very
low values of R, below about 40, a symmetric vortex pattern is frozen in space. Above this value
vortices are shed alternately from one side and the other and the dimensionless frequency is about
0.12, increasing to 0.19 at R, =200. In the Reynolds number range from 200 to 200,000 the
wake is turbulent, but a discrete vortex pattern persists and the Strouhal number is practically
constant at Sy, = 0.20 £ 0.01. Above about R, =2 X 103, the situation is unclear. From this value
to RN =3 X 10%, the wake is highly turbulent and whatever vortices occur do not seem to have a
definite frequency. Relf and Simmons (1925) made wake hot-wire measurements and found a
peak in the spectrum with Sy > 0.4 in this region. Similar results were reported by Delany and
Sorensen (1953), Itaya and Yasuda (1961) and Bearman (1969). However, Fung (1958) and
Blyumina and Fedyaevskii (1968) reported finding Sy =0.20 throughout. Above this region of
weak discrete vorticity, stronger vortices again occur, and Roshko (1961) found Sy=027forR
from 3 X 10% to 107.

All of the results summarized above are presumably for rigid cylinders in a free environment.
Any departures from ideal conditions may cause significant changes of observed Strouhal
frequencies.
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Fig. 9.4. Strouhal-Reynolds Number Relation for Circular Cylinders

Vortex Wakes of Bluff Bodies

Figure 9.5 shows a vortex street consisting of two rows of alternating vortices of strength " in
the wake of an elliptic cylinder of thickness . The vortex rows are separated by 2 and the distance
between vortices in the same row is a. The vortices produce their own velocity field superimposed
on the free stream velocity, U,. The velocity induced at any vortex by all the other vortices is .
Von Karman and Rubach (1912) carried out a stability analysis of an infinite vortex street, finding

— = 028 . (9.44)

Measurements of the spacing ratio of actual vortex streets are generally in fair agreement with this
value, though ratios as high as 0.35 are not uncommon. Birkhoff (1953) has reasoned that, while @

Fig. 9.5. Vortex Street Geometry
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remains constant as the wake decays, /& increases due to the action of viscosity. Near the body,

spacing ratios are usually close to that given by Eq. 9.44.
Von Karman and Rubach computed the induced velocity for an infinite vortex street, finding

r / I h y h
., = — tanh ™ = 1 + T (__— 0._?8]) = J__ p
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(9.45)
Assuming the spacing to be close to equilibrium,
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The Strouhal number for the movement of vortices past a fixed point in the wake is

B = Vo - ”S_;b__ = g - 18 P_i 0.28 o M i)- (9.47)
a Uo Uo a Uo h

showing that both relative wake width and induced velocity affect the observed frequency.

In some Reynolds number ranges, a significant fraction of the drag is associated with wake
vortices. Von Karman and Rubach (1912) equated momentum carried downstream by vortices to
form drag, F'p = finding

. - p,Th p. I'?
PDF = 2 U, - 2u) + ——————;’
a 2na

(9.45)

Defining a form drag coefficient similar to Eq. 7.73 and assuming equilibrium spacing, Eq. 9.48
leads to

F
D ;
Cp = ——F — 2471 e [1- 042 (9.49)
F
- b U, U
— P, Usb
2

2]
[4

Form drag is proportional to the relative wake width and Strouhal number varies inversely
with this quantity. Krzywoblocki (1945) multiplied Egs. 9.47 and 9.49, getting

Sy Cp =16—5|1- 1425 + 04 [ . (9.50)
’ U U Uy

independent of relative wake width. This relation is plotted in Fig. 9.6. Roshko (1961) noted the
inverse behavior of Sy and CDF. Since the drag coefficient drops precipitously in the critical
Reynolds number region around 3 - 10%, he found an increase of Strouhal numbers in this region

to be quite believable. However, if very little energy were to go into vortex streets in this region,
then vortex strengths would be low and one would expect relative induced velocities to be low as
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Fig. 9.6. Product of Strouhal Number and Form Drag Coefficient from Eq. 9.50

well. By Eq. 9.49, CD/' would decrease relatively more than Sy would increase and the product
would decrease in accordance with Fig. 9.6. Figure 9.7 is a plot of the product of S, and € as a
function ol Reynolds number for vortex shedding from cylinders. Except in the critical regime,
the product is close to constant at 0.22, implying that v, =0.18 U, and that vortex strength is
practically constant outside that region.
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Fig. 9.7. Product of Strouhal Number and Drag Coefficient for Cylinders
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These results for cylinders can be generalized to other bluft bodies, since nothing in the
analysis was specific to circular or elliptic cylinders. Thus Fage and Johansen (1927, 1928) found
that the Strouhal number for flat plates at large angles to a flow is constant at 0.15 over a wide
range of angles provided b is the projection of the plate normal to the flow. They also found
u, =0.16 U,. Roshko (1955) studied a wide variety of bluff bodies, finding

o
U

5

S = 0.165 (9.51)

for a wide range of Reynolds numbers. The reference velocity U in this relation is the velocity at
the point of separation of the flow from the body and h' is the theoretical distance between the
separated free streamlines as determined downstream where they have become parallel. Abernathy
(1962) studied separated flows from flat plates at various angles to a flow, finding

fh”
U

s

Sy F = 0155 , (9.52)

where 4" is the measured separation between the centers of the shear layers. Bearman (1967) used
separations of the vortex streets and free-streamline velocity, U, in defining a Strouhal number,

fh
" ,

s

Sp = (9.53)

which he found to be 0.18 for a wide variety of wakes. The three modified Strouhal numbers all
use the free-streamline velocity, U., since this quantity is more fundamental than the flow speed.

Oscillating Forces Associated with Vortex Wakes

Formation of vortices and motion of a vortex street away from the body shedding the vortices
induce a time-varying velocity component in the flow field about that body and consequently a
time-varying pressure field. The result is an oscillating force component practically perpendicular
to the direction of flow, which force is a source of dipole sound as well as of vibrations of the
body.

The instantaneous induced velocity field and force resulting from vortex street motion are
dominated by the vortex closest to the body. It is therefore useful to calculate these quantities for
the motion of a single vortex. Consider a vortex of strength I' moving with speed U, - u; away
from a cylinder of diameter D, as shown in Fig. 9.8. As explained by Milne-Thomson (1950), the
effects of this vortex can be treated in terms of an image vortex located within the cylinder at
radius s; given by

5 = (D/2)* _ (D/2)?

l s N h\?
x + [ —
2
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Fig. 9.8. Image Vortex for Vortex Outside a Cylinder
The lift component of the induced force at any instant is given by

FL;' = - p,T$;cos 6 . (9.55)

Taking the time derivative of Eq. 9.54, it follows that

XAD2)*
Fy = 0,0, - u) - RS
]
2

The maximum instantaneous lift that could be experienced would be that for a vortex at x = D/2,
tor which

A U - u)
F, = Lo "o % : (9.57)

i3 S 2
] h pA
I + [ —
D
As the first vortex proceeds downstream, a second one of opposite sign is formed at - /2
leading to a negative force equal to that given by Eq. 9.57. The rms oscillating lift for the

fundamental component at shedding frequency is estimated to be approximately half of Fyp o
From this fact and from Eq. 9.46 it follows that :

G, 2247 (, Y

s

a/D
ny 2]’
()]
Comparison with Eq. 9.49 shows that the oscillating lift coefficient due to a single vortex is closely
related to the form drag coefficient, their ratio being

(9.58)
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I (a)
. & - N 1-06 5\ (9.59)
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For circular cylinders at Reynolds numbers below 105, the lateral separation distance /1 can be
taken as approximately equal to the diameter and uS/UO =(0.]16. It follows that the value of the
rms oscillating lift coefficient calculated from Eq. 9.58 is about 40% of the form drag, which result
is in agreement with an analysis originally published by Ruedy (1935).

Three factors not considered in deriving Egs. 9.57-9.59 act to reduce the magnitude of the
oscillating force. The first is that vortices do not form right at the cylinder, at x = D/2, as was
assumed. Actually, vorticity is shed at this point into a parallel shear layer. As discussed by
Abernathy and Kronauer (1962), such shear layers are unstable and break up into discrete vortices
at downstream distances that depend on a number of external factors. Figure 9.9, based on
Eq. 9.56, shows the decrease of induced force as a function of the downstream position of vortex
formation. Thus, if the vortices were to form at a distance one diameter downstream, for which
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Fig. 9.9. Relative Induced Force as Function of Vortex Position in Fig. 9.8

2x/D = 3, the force would be reduced to about one third of that previously calculated. Several
investigators have reported that, when tests are run in low-turbulence flows at Reynolds numbers
between 200 and 5000 and when care is exerted to prevent cylinder oscillation, formation dis-
tances to the first vortex are from 2 to 4 cylinder diameters. The corresponding oscillating force is
only 5 to 15% of that for close vortex formation.

A second factor is reduction of the peak force due to induced velocities of all previously
shed vortices. This amounts to about 15% and reduces the maximum possible oscillating lift from
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40% of the form drag to about one third. Finally, the assumption of two-dimensionality is
violated, as will be discussed below.

In view of the sensitivity of oscillating forces to the point of formation of the first vortex and
to three-dimensional effects it is not at all surprising that experimental measurements of oscillating
lift coefficients show a great deal of scatter. Confirmation of the above analysis is found in the fact
that the highest measured values are about half the form drag. Thus, rms lift coefficients as high as
0.5 to 0.6 have been reported by Keefe (1962) and several other investigators. On the other hand,
values under 0.1 were measured by Gerrard (1961) and Leehey and Hanson (1970) for Reynolds
numbers between 103 and 10*. Ballou (1967) confirmed that distance to vortex formation de-
creases markedly in the Reynolds number range between 4000 and 6000, corresponding to the
observed increase of E:L'

Three-Dimensional Character of Vortex Wakes

The two-dimensional vortex street envisioned by von Karman and Rubach (1912) and other
investigators consists of long straight vortices lined up parallel to the axis of the shedding bluff
body: this is an idealization not usually found in practice. Flow visualization experiments of

Hama (1957), Gerrard (1966), Koopmann (1967) and Berger and Wille (1972) have shown that
under some conditions the vortices are shed in a regular manner but at angles of 10 to 30 degrees
relative to the cylinder axis, while under other conditions the vortex lines are irregular as well as
slanted.

Indications of the three-dimensional character of vortex patterns have also been found in
measurements of oscillating pressures and velocities at different positions along a cylinder by
Prendergast (1958) and el Baroudi (1960) and in flow pattern measurements by Humphreys
(1960). These investigators found phase reversals occurring on the cylinder at lateral distances
corresponding to 2 to § diameters. Vickery (1966) and Petrie (1974) reported that high levels of
free-stream turbulence cause irregularity of vortex patterns for RN < 10%, for which shedding is
normally regular.

Three-dimensionality of the vortex pattern reduces oscillating lift in two ways. Distortion
results in lower local lift forces at each element of the cylinder, and phase shifts result in strong
cancellation effects when the lift is integrated over the entire length. When slanted vortices are
regular, as may occur for Reynolds numbers of 200 to 5000, this cancellation effect can be very
strong. When they are irregular due to wake or stream turbulence, force cells each a few diameters
long are produced and these add more or less randomly. Thus, Petrie found that in some cases
turbulence increases the total oscillating lift. It is apparent that the wide range of measured
oscillating lift coefficients that have been reported can be attributed to differences of experimental
conditions and resultant differences of the three-dimensional vortex patterns.

Effects of Vibration

Three-dimensional vortex patterns, either regular or irregular, are observed only in the wakes
of rigid cylinders. As illustrated by Fig. 9.10, Koopmann (1967) and Griffin et al (1973) reported
that the most dramatic effect of slight cylinder vibration is to straighten out the vortices so that
near the cylinder they are essentially parallel to the cylinder axis. A second effect of cylinder
motion is to assure that vortices form close to the body. Thus, in cases where the oscillating lift is
relatively low due to three-dimensional vortex patterns and/or delayed vortex formation, a slight
amount of cylinder vibration in synchronism with the vortex shedding may increase the oscillating
lift coefficient by a large factor. It seems likely that some freedom to vibrate may have been
involved in those experiments that produced exceptionally high values of CL
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Fig. 9.10. Effect of Cylinder Vibration on Vortex Pattern, after Koopmann (1967)

Oscillations of the body shedding the vortices can also effect the shedding frequency. If a body
is driven at a frequency within about + 10% of the natural shedding frequency, vortices are shed at
the cylinder vibration [requency.

The vibratory interaction of the body shedding the vortices with its vortex street explains
many of the catastrophic effects of vortex shedding. For example, consider a tall thin structure in
a wind. Normally the Stouhal frequency does not coincide with resonance frequencies of the
structure; the structure remains rigid, the vortex pattern is irregular and the overall force is low.
However, should the shedding frequency approach a resonance. the structure may start to vibrate.
This vibration may cause the vortices to straighten, which increases the force and also the vibration
up to the point at which the entire vortex pattern is straight and exerts maximum force. In this
situation, the vibration amplitude may become so large as to cause structural failure. A similar
phenomenon is involved in singing, which will be discussed later in this seetion.”

Effects of Sound Fields

Many practical examples of vortex shedding occur in enclosed or partially enclosed spaces. In
such cases, interactions ol acoustic properties of the spaces with vortex shedding phenomena have
been noted by a number of investigators. Parker et al (1966, 1967, 1968 and 1972) found that
wind tunnel resonances affect both force amplitudes and frequencies associated with vortex wakes
ol airfoils. Graham and Maull (1971) and Cumpsty and Whitehead (1971) reported that acoustic
fesonances cause vortices to shed in a regular manner parallel to the cylinder axis in much the same
manner as vibration of the cylinder.

Some investigators have suggested that acoustic feedback mechanisms play a centrat role in
controlling vortex shedding processes in a manner similar to that found in the reluted phenomenon
of edge tones. Ldge tones are created when a fluid stream impinges on the edge of a flat plate. As
analyzed by Richardson (1931), Curle (1953) and Powell (1953, 1961), acoustic feedback from
the plate serves to stabilize one ol muany possible vortex patterns originating in the jet. It is
generally agreed that this is not a dominant mechanism for vortex shedding from rigid bodies, but
rather that sound tields may play a secondary role much like cylinder vibrations.
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Vortex Sounds from Cylinders

Measurements of vortex shedding sounds by Yudin (1942), Gerrard (1955), Richardson (1957)
and Etkin et al (1957) reveal a sixth-power dependence of acoustic power on flow speed and a
cosine directionality pattern. As discussed in Section 9.1, both of these characteristics are typical
of dipole radiation. Yudin (1944) assumed the oscillating force to be proportional to the drag
coefficient and derived an expression for the acoustic power which was improved slightly by
Blokhintsev (1946).

Most modern analyses are based on an expression derived by Phillips (1956) that includes
three-dimensionality effects. Phillips started with Lighthill’s equation and derived a general expres-
sion similar to Eq. 9.28 for the acoustic intensity at a point distant » from a body experiencing a
concentrated oscillating force. Expressing the normal cross-sectional area, S, by the product of the
transverse dimension, b, and a spanwise length, €, as shown in Fig. 9.11, his result may be written

Fig. 9.11. Geometric Arrangement for Acoustic Calculation

U3 Q2 5N [ UN ~
o) = Po%0 (f ) (-ﬁ’?—) C}{v cos* 0 . (9.60)
16r2 U, ¢,

Phillips noted that this expression is only valid over a spanwise distance for which vortex shedding
is coherent. For a cylinder of length L he estimated that there would be L/® coherent vortex
shedding cells. Assuming that their phase angles are related randomly, Phillips summed the inten-
sities, obtaining

o, USQL

Ig) = = S:;.,E?M?’ cos? 8 (9.61)
1612

for the total sound intensity from a body of length L and

_ 0, Uj.QL
12

W

ac

S3CAM? (9.62)
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for the radiated power. An important result shown by Phillips’ equation is the dependence of
sound power on the coherence length. Thus, factors such as vibration and acoustic resonances that
tend to straighten out the vortex pattern may increase the sound radiated more by increasing the
correlation length, ¢, than by increasing the oscillating lift coefficient, 6}

Ross (1964) rewrote Eqgs. 9.61 and 9.62 by introducing the steady-state form drag coefficient,
Cp o obtaining

U3s Co N2 42
o) = Poo” (SvCp ) * [=E (—) M3 cos® 0 (9.63)
16r? d Cp b
and
Uls Cr \2/2%
W, = Mo a?, (SxCp ) E (_) M3 (9.64)
2 F
12 Cp, b

Based on the data shown in Fig. 9.7 and the relationship between oscillating lift and form drag
previously discussed, Ross set S, C, . =0.22and Cp =1/3 Cpy " obtaining

U3s
10) = 34 X 10°% PoZo® T 3 o5t g (9.65)
r? b
and
_ Q
Wz (14 X 107)p,U3S — M® . (9.66)
B

As previously discussed, E; is sometimes much smaller than /3 Cp. in which case Egs. 9.65 and
0.66 overestimate the radiated sound. The ratio of € to b may be as low as 2 for a rigid cylinder at
moderate Reynolds numbers, or ¢ may almost equal L for a cylinder free to vibrate.

Equation 9.64 can be used to estimate the acoustic conversion efficiency for vortex shedding.
The mechanical power given by Eq. 9.30 can be written

/
- :7p0U03SCD . (9.67)
from which
e g P 2 .
T N~D G ¢
Mge = — £ FE1 —m (9.68)
6 & C b
D DF
If form drag dominates, then C Dy = C'D and
5 b
SI{’CDF = 0.053 — (9.69)

h
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over a wide range of values of the relative induced velocity. With this result, and setting
Cp=1{3 CDF, Eq. 9.68 becomes

4
Me = 3 X 100 —M3 (9.70)
| h

showing that in many situations the acoustic efficiency depends only on relative coherence length
and Mach number.

Phillips (1956) found that the intensity measurements of Holle (1938) and Gerrard (1955) for
Reynolds numbers of 200 to 3 X 10* confirm the sixth-power dependence of intensity on flow
speed predicted by Eq. 9.61 and agree as to magnitude with this expression, provided the co-
herence length, £, is taken to be about 5 to 8 diameters. More recently, Leehey and Hanson
(1970), measuring vortex-shedding sound from a wire in a low-noise, low-turbulence wind tunnel,
found that intensity increases by about the ninth power of flow speed in the Reynolds number
range between 3000 and 9000, for which they also found a dramatic increase of the fluctuating lift
coefficient associated with changes of the vortex formation distance. A similar result has been
reported by Rimsky-Korsakov (1975) based on results of noise measurements from rotating rods.

Sounds from Rotating Rods

The vortex shedding frequency of each section of a rod rotating about its center is a function
of radius of that section. and each section of about one diameter in length radiates independently.
[t follows that

4.8 X 1073
10) = ——— p U}bDM} cos* 6 (9.71)
r2
and
Wac = (2.0 X 10'4)p{)Ur3’lJbe . (9.72)
and that
Mge = (1.2 X 107) M}, (9.73)

where subscript ¢ refers to values computed at the tip. These equations apply to rods formed of
bluff sections, such as cylinders. They must be modified when dealing with airfoil sections, as will
be discussed next. Also, as noted by Ross (1964), they appear to overestimate the sound measured
by Stowell and Deming (1936) and by Yudin (1944) by from 3 to 18 dB. Rimsky-Korsakov
(1975) reported agreement with these results for rods having tip Reynolds numbers between
2 X 10% and 4 X 10%, levels at smaller Reynolds numbers being as much as 15 dB lower.

Vortex Wakes of Airfoils

Turbulent wakes of airfoils at low angles of attack contain discrete vortices that resemble von
Karman vortex streets of bluff bodies. Unlike bluff bodies. however, no simple relation exists
between body dimensions and shedding frequency. The reason for this is that wake widths depend
on both development of the boundary layer over the section and detailed trailing edge geometry.
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Thus, Tyler (1928) and Lehnert (1937), delining Strouhal number in terms of airfoil thickness,
found measured values to be strong functions of Reynolds number. Taneda (1958) found the
variation to be us Rf\,/g for flat plates having negligible trailing edge thicknesses. Gongwer (1952)
recognized that the appropriate dimension should be the separation distance of the vortex sheets.
He added the boundary-layer momentum thickness, 0, to the trailing edge thickness, ¢ finding

fe + 0
fle +8) . aiss (9.74)

U

[

The effect of trailing edge shape on the strength of the oscillating lift associated with vortex
wakes has been studied by a number of groups in connection with design of hydraulic turbine and
propeller blades for minimum noise. Three factors that apparentlyinfluence the force: width of the
street determines strength of the individual vortices and shedding frequency, in accordance with
Lgs. 9.45 and 9.75; distance of point of formation of vortices from the trailing edge strongly
altects force amplitude; und sharpness of the trailing edge controls its susceptibility to vibration,
which vibration would be expected to increase the oscillating force by the mechanism previously
discussed. Figure 9.12 summarizes results published by Donaldson (1956), Ippen et al (1960),

: Strong : Moderate
1 Moderate D Weak
: Stronger 3 Weak
:__:> Stronger > Very Weak
D Strongest 1 Very Weak
—_—_-> Moderate > Very Weak

Fig. 9.12. Evaluation of Trailing Edges from Flat Plate Oscillating Force Measurements

) T@):ul and Olberts (1960) and Toebes and Eugleson (1961) which confirm our expectation
“hat an edge with strong vortices formed close to the tip experiences maximum force, and an edge
which produces a narrow vortex wike is most desirable.

The peak oscillating pressure produced at the trailing edge of an airfoil has been shown by
Blake (1975) to occur at the point where the streamline representing the center of the vortex
street leaves the airfoil, as assumed by von Karman and Sears ( 1938). In many cases this is right at
the tuil. but it can be somewhat upstream. It follows that peak sound is radiated from near the
trailing edge and not [rom the wake.

Vortex Sounds from Rotating Blades
There have been no conclusive experiments in which airfoil vortex sounds were measured
simultaneously with appropriate hydrodynamical characteristics of the wake. Ross (1964) sug-
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gested that Egs. 9.65, 9.66 and 9.70-9.73, which were derived for bluff bodies, might apply
unchanged to more streamlined sections. However, there is reason to believe that only a small
fraction of the wake energy of airfoils occurs as discrete vortices and that the induced velocity, u,
is therefore a smaller fraction of the flow speed. If this is the case, then the product of §,, and
Cp 5 should be somewhat smaller than for cylinders. Also, vortices may form relatively far down-

stream, thereby reducing the ratio of C‘L to CDF. For these reasons, the author believes that

equations developed for bluff sections overestimate noise levels for airfoils and for rotating blades
having airfoil sections by about 10 dB.

9.4 Noise from Fans and Blowers

Noise Mechanisms

Noise spectra of fans and blowers are almost entirely produced by the oscillating-force
mechanisms discussed in the previous two sections. Spectra of fans include both tonal and broad-
band components. Tonal components occur at multiples of blade passage frequency and are caused
by flow assymmetries and rotor-stator interactions. Sources of broadband noise include wake
vortex shedding, boundary-layer turbulence and blade operation in turbulent inflows. While there
is good agreement throughout the literature on causes of tonal radiation, considerable controversy
exists as to whether vortex shedding or boundary-layer turbulence is the dominant source of
broadband noise when rotors operate under non-turbulent inflow conditions. Thus, Wells and
Madison (1957) and Rimsky-Korsakov (1975) mentioned only vortex shedding, and Mugridge and
Morfey (1972, 1973) discussed only boundary-layer turbulence. Sharland (1964) calculated levels
from both sources and concluded that noise from vortex shedding is from 3 to 10 dB stronger than
noise from boundary-layer turbulences. He also demonstrated that under turbulent inflow condi-
tions blade interaction with incoming turbulence is the dominant broadband mechanism. Barry
and Moore (1971) have noted that high shaft-rate harmonics caused by blade-to-blade variations
also contribute to high-frequency broadband fan spectra.

Spectra

The relative importance of tonal and broadband spectra versus overall spectrum shape depends
strongly on the type of fan or blower. Fans are divided into two categories: axial and centrifugal.
Axial-flow fans, often referred to as propeller fans, may operate against little or no static pressure,
may be in housings or may be free standing. Centrifugal fans and blowers impart a radial motion to
the fluid and operate against a significant static pressure drop. They operate at lower tip speeds
and usually have more blades than axial-flow units. (Rotary positive displacement blowers, used to
deliver small volumes of gas against high pressures, are not classed as fans.)

Blade passage frequencies of axial flow and centrifugal machines are generally in the same
range, since axial machines have fewer blades but operate at higher rpm’s. Typically, the funda-
mental blade frequency lies between 100 and 350 Hz. Some centrifugal blowers operate at speeds
as high as 12,000 rpm and have blade tonals above 2 kHz. Blade tonals are usually the strongest
components of the spectrum, being only about 4 to 8 dB lower than the overall level. Above the
blade frequency, the spectra from centrifugal machines decrease quite markedly while those of
axial-flow units are relatively flat. Figure 9.13 compares average octave-band spectra of the two
types of fans. Exceptions to these spectra occur when excitation frequencies coincide with duct
resonances, in which case strong peaks occur well above the blade fundamental.
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Fig. 9.13. Average Relative Spectra of Axial and Centrifugal Fans

Noise Levels

Intensities from all of the fluctuating-force noise mechanisms discussed in the previous two
sections were shown tu vary as the sixth power of speed. Yet measurements of fan noise by
Peistrup and Wesler (1953), Goldman and Maling (1959) and Sharland (1964) all show weaker
dependence on speed, fifth power being typical. There are two major reasons for the discrepancy.
First, blade tonals depend on inflow assymmetries caused by upstream stators and other struc-
tures. Such wakes tend to become less severe with increasing Reynolds number, thus causing FL to
decrease slightly with increasing speed. Secondly, the third-power dependence on Mach number
found in Eq. 9.28 is valid only when acoustic wavelengths are large compared to the body ex-
periencing the oscillating force, i.e., kD </. Lowson (1970) has shown that for AD > 2 the
expressions previously derived for noise from tluctuating-force sources should be divided by 2 iD,
where

2amBnD ~
kD = ————— = 2mBM, . (9.75)

o

It follows that at high frequencies and/or high tip speeds fan noise attributable to fluctuating
forces should vary at a rate no greater than the fifth power of rotational speed.

Empirical scaling formulas given by Goldman and Maling (1955), Wells and Madison (1957)
and Allen (1957) all agree on the fifth-power dependence of noise of a given fan on rpm. Taking
into account the approximate cubic dependence of mechanical power on speed, it follows that the
acoustic efficiency of a given fan varies as the square of its rpm. However, as noted by Beranek et
al (1955), when fans operate near full speed, the acoustic efficiency is nearly constant. Within
about + 5 dB, they found

My = 1.5 X 107 (9.76)
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for a number of centrifugal fans rated between 1 and 50 hp. Peistrup and Wesler found the
acoustic efficiencies of axial-flow fans to be somewhat higher, being given by

Nge = 107 . (9.77)

The difference is primarily attributable to higher operating tip Mach numbers of axial flow units.

Equations 9.76 and 9.77 give average values of acoustic conversion efficiencies for the two
major classes of fans. As noted, fans with higher than normal tip speeds will be noisier and those
with lower tip speeds will generally be quieter than the average. The importance of tip speed in
controlling fan noise was recognized by Zinchenko (1957) who presented a formula for noise
levels of centrifugal blowers as a function only of tip speed. This can be written

U
PWL = 115 + 55log —X— (9.78)
100 m/s

where PWL is acoustic power level in dB relative to 107'? W,
A relation for centrifugal fan noise as a function only of horsepower was given by Beranek et
al (1955) as

PWL = 90 + 101log hp . (9.79)

Allen (1957) found that fans make more noise when they operate against a higher static pressure,
and Heidmann and Feiler (1974) found a strong correlation with temperature rise of the gas being
moved. Thus. Allen suggested

PWL = 86 + 101loghp + 10log Ap (9.80)

for centrifugal fans, where Ap is measured in cm of water, and Heidmann and Feiler’s results can
be expressed by

PWL = 91 + 10loghp + 10log AQ , (9.81)

where Af is temperature rise in degrees Centigrade. Other factors that affect fan noise include
rotor-stator spacing and blade skew of axial fans and impeller clearance and blade slope of centri-
fugal fans, as discussed by Neise (1976).

Positive Displacement Blowers

Rotary positive displacement blowers of the Roots type are used extensively as scavenging
blowers to supply air to two-stroke-cycle diesel engines. They consist of two, three or four
intermeshing rotors that force air through a semicircular casing. In many instances they are the
predominant source of engine room noise, as reported by Zinchenko (1957). Spectra from these
units are dominated by harmonics of the rotor meshing frequency, given by twice the product of
the rotational speed and the number of rotors. This may be as low as 30 Hz or as high as 400 Hz.
While the fundamental is usually the strongest component, Priede (1966) tound that each blower
has bands of frequencies for which higher harmonics are enhanced; these bands appear to be
related to cavity resonances of the unit. Priede also concluded that rotor tip speed and number of

rotors are controlling parameters.
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Rotary blowers are extremely noisy. Power levels of over 120 dB re 107! ? W are common and
even levels as high as 140 dB are sometimes experienced. The noise is especially unpleasant since it
is dominated by tonal components. Zinchenko suggested the use of large, low-speed units in order
to lower the dominant frequencies and thereby reduce annoyance. He also proposed the use of
multiple reflection intake mufflers to achieve at least 25 dB of noise reduction above 500 Hz.

9.5 Propeller Singing

Marine propellers sometimes emit strong tones between 100 and 1000 Hz. Known as propeller
singing, this phenomenon has been recognized tor about 50 years. Similar singing phenomena have
also been observed in hydraulic turbines. The sound is sometimes so intense as to be very
annoying, and blade vibrations associated with it are often strong enough to produce fatigue
tailure. For these reasons, early efforts by engineers were primarily aimed at eliminating the
problem when it occurred, and more recent scientific investigations have been motivated by the
desire to design blades that avoid singing altogether.

A notable characteristic of singing is its dependence on otherwise unimportant features. It is
not uncommon for one propeller of a set of seemingly identical propellers to sing while others in
the set do not. Most often only one blade of a propeller actually sings, and this occurs only during
part of its revolution. Occasionally two blades sing, but at somewhat ditferent frequencies. Since
small physical differences determine whether or not a blade will sing, it is not surprising that the
literature contains many apparently conflicting cures for this problem. Thus, sharpening of leading
edges, sharpening of trailing edges and blunting of trailing edges have all been reported to eliminate
singing in specific instances.

Early papers of Gutsche (1937), Hunter (1937), Kerr et al (1940) and Hughes (1945) attri-
buted singing to a wide variety of possible causes, including cavitation, hammer-like blows of wake
variations, stalling, shaft-bearing friction, and vortex shedding. Work (1951) described singing as
“vibration of propeller blades excited by hydrodynamic forces.” Gongwer (1952), Gutsche (1957)
and Krivtsov and Pernik (1957) all confirmed the dominance of vortex shedding and it is now
recognized that vortex shedding causes most cases of blade singing. Thus, Burrill (1946-1949) and
Hughes (1949) tfound coincidence of singing frequencies with resonance frequencies of blade
vibrations; Lankester and Wallace (1955) found that propeller sounds emitted in the absence of
singing have a broad peak about an octave wide in the same region of the frequency spectrum
where singing occurs; and Van de Voorde (1960) correlated singing susceptibility with trailing edge
shape.

Current understanding of blade singing is based on the description of vortex shedding
phenomena given in a previous section. Under normal operating conditions, each section of a
propeller blade has a vortex wake, frequencies of which differ from section to section because of
radial variations of both relative flow speed and trailing edge thickness. The sound emitted there-
fore covers a bandwidth of about a half octave to an octave and the intensity is within 10 dB of
that given by Eq. 9.71. Each blade also has a large number of resonant vibrational frequencies, a
few of which involve in-phase vibration of at least a quarter of the blade trailing edge. It is these
vibrational modes that are excited most easily by forces applied along the trailing edge. If one of
these easy-to-excite vibrational modes lies within the band of vortex shedding frequencies, then
the trailing edge may start to vibrate. Vortices in the immediate vicinity would then also shed at
this frequency, increasing the coherence length and consequently increasing both force and vibra-
tional amplitude. The process would continue to build up until a large part of the blade would be
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participating and at this point certain non-lincar effects would limit the motion. Ross (1964)
estimated the intgnsity from singing by assuming that about 25% of a blade participates in the

radiation, finding

3 X 10*® M
S ponD2Mt3 cos® 0 . (9.82)

r'Z
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Figure 9.14 shows the vortex pattern of a blade during singing, the vortices having been made
_ visible by cavitation.

Fig. 9.14. Singing Propeller, as Photographed in Water T unnel at
Hamburg Shipbuilding Research Establishment

With this understanding of singing it is now clear why singing is such a critical phenomenon.
Only a few vibrational modes of a blade can be readily excited by trailing edge excitation. One of
these must coincide with a vortex shedding frequency. Any change of a blade that either changes
natural frequencies or vortex shedding frequencies will probably eliminate singing. In this connec-
tion. it should be noted that blades with relatively straight trailing edges are more prone to singing
than those with curved edges.

In a study of singing carricd out in a water tunnel, Cumming (1965) found that the range of
operating conditions over which singing is encountered is smaller than that for which singing can
be maintained once it has started. He also confirmed that only a small fraction of blade vibrational
modes is likely ever to be involved.

Apparently singing requires appreciable vibrational amplitudes. Therefore, one way to avoid
singing is to reduce the resonant response by building blades of a high damping alloy or incor-
porating vibration damping treatments of the type described in Section 5.9. Arnold et al (1961)
and Eagleson et al (1964) have developed theories for singing that include non-linear effects and
demonstrate the importance of damping. Hughes (1949) noted that cavitation bubbles on a blade
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act to increase the damping by absorbing vibrational energy. This explains the rather common
observation that singing ceases when cavitation becomes pronounced.

While very annoying when it occurs, singing is readily curable. Anti-singing trailing edges such
as those described by Van de Voorde (1960) and Eagleson et al (1964) can be used and/or blades
can be damped.

9.6 Flow-Excited Cavity Resonances

Another example of vortex sound that can attain very high levels and also cause fatigue failure
is that of flow-excited cavity resonances. As discussed in Section 4.9, when certain conditions are
met, vortices shed by flow past a cavity mouth may excite resonances of the cavity which act to
further strengthen the vortex pattern and thereby produce intense pressures. The phenomenon is
similar to singing in that a vortex motion is strengthened by a vibratory motion. Instead of a solid
body the vibration is provided by a confined fluid, and instead of being relatively rare the
phenomenon is quite common. An example is sound made by blowing across the mouth of a coke
bottle.

Relations governing the frequency of vortex formation for rectangular cutouts are less straight-
forward than for cylinders. One complicating factor is that several vortices may exist in the mouth
of a cavity. Another is that thickness of the boundary layer plays an important role in frequency
of vortex formation. Figure 9.15 shows a rectangular cutout of length L and depth 4, showing that

Fig. 9.15. Flow Past a Rectangular Cutout

a shear layer is produced between the outside and inside flows. This shear layer is unstable.
According to Dunham (1962) and East (1966), the Strouhal number for vortex development
obeys a relation of the form

_fL i, L
Sy E—=m —_— (9.83)
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where m is the number of simultaneous vortices, i, is the average travel speed of a vortex in the
shear layer, and L is the formation distance of the first vortex. S, values of 0.3 to 0.6 are
common.

East has shown that strong acoustic coupling exists when the frequency also satisfies the
relation

? 0.25
ELPR (9.84)
c

o 1+

This may readily occur for flow of air past a cavity. In water, however, acoustic coupling can only
be a factor if the cavity is very deep or m very large. In water, coupling usually occurs with
flexural resonances of the cavity walls, as explained by Dunham and discussed in Section 4.9.

Ingard and Dean (1958) measured intensity of sounds emitted by cavity resonators excited by
vortex flows. They found that the sound at resonance increases as Ug. This compares with Uf)
calculated by Blokhintsev (1945). However, Blokhintsev assumed very low level interaction of
cavity resonances with vortex formation processes. as would occur at very low speeds, while the
Ingard and Dean results are for strong coupling.

Several instances of very strong vortex-excited cavity resonances have been reported, the
pressures in some cases being sufficient to cause fatigue cracking of tank walls. Cures are relatively
simple, changing the shape of the mouth being the most obvious. If the opening is large enough,
vanes can be used to break up the flow. Vortex generators similar to flow spoilers on aircraft wings
can also be used to change the nature of the turbulent flow approaching the opening.
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