CHAPTER 6

RADIATION BY PLATE FLEXURAL VIBRATIONS

Most underwater sound originating inside a marine vehicle is radiated by flexural vibrations of
hull plates; this is especially true for frequencies above 100 Hz. The subject of plate radiation,
along with the important topic of structural vibration, was first understood in Germany in the
1940’s under the leadership of L. Cremer. Much of the material presented in this chapter is based
on his work and that of a generation of investigators whom he influenced.

6.1 Plate Flexural Vibrations

In most recent analyses of plate flexural wave radiation the elastic equations for plate vibra-
tions and the acoustic wave equation are treated as a system of coupled equations using solutions
that are made to match at the plate surface. In this approach, the effect of the fluid is considered
to be that of a load on the vibrating plate. Before considering the coupled problem, we will
develop the applicable equations for plate flexural vibrations in vacuo.

Bending Rigidity of Plates

When classical elasticity theory is applied to solid plates, it is found that longitudinal waves
have a phase speed given by

(6.1)

as was discussed in Section 5.2. The same classical theory leads to the result that the bending
rigidity of a solid plate is

2 3 21,3
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per unit width. In deriving the equations for plate flexural motions from those developed for
beams, these expressions replace Y7 wherever it occurs.

6.2}

Thick Plate Bending Equations

The exact elasticity equations for bending of thick plates are very complex. A more tractable
approximate equation analogous to that of Timoshenko for beams was derived by Mindlin (1951).
Skudrzyk (1968) showed Mindlin’s equation to be equivalent to the Timoshenko beam equation
with B as given by Eq. 6.2, «' = [ and K related to o by
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The shear parameter for plates is given by

Y 2 E
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For a typical metal plate, Kp = (.85 and [‘p =3.3.
With the above substitutions, the differential equation for plates corresponding to Eq. 5.26 can
be written
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where u' is the mass per unit area, given by p . The gradient operator, . replaces each derivative
with respect to x, since motions propagate in two dimensions. It is assumed that changes of
thickness occur relatively slowly, making spatial derivatives of thickness negligible. The bending
equation corresponding to Eq. 5.28 can be written

o2 h? 4.3 . 33 W )
wo+ mp—l—vaw = — R *w + 27D = —I—~ (6.6)
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Flexural Wave Speed

Assuming an harmonic disturbance, the homogeneous equation for flexural motions in plates
can be expressed as an equation for k;, as done for beams by Eq. 5.31. The corresponding equation
is

0 0 r,
W - A+ (T, + ) — k] - L gt =g, (6.7)

12 12 ¢t 12

As with the case for beams, the two real solutions for k; represent waves and the two imaginary
solutions account for distortions at discontinuities. Assuming real values for & Eq. 6.7 can be
transformed into an equation for the flexural wave speed,

-

3 4 2 2 2
£, p £, p £,

(6.8)
which corresponds to Eq. 5.35. The reference angular frequency, Qp. is given by
¢ 12 .
N =23+ (6.9)

g h



160 6, FLEXURAL WAVE RADIATION

At low frequencies only the first two terms of Eq. 6.7 are important, and the expression for
the flexural wave speed is then similar to that given by Egs. 5.51 and 5.53 for bars,

Vv, = ( J_(Uf :J E{IEJ_L
Ie 4 =
Qp 12

The high-frequency limit for vy is

1
th =2 ('S-\’Kp = 0.87 (I + —a) By = 492, . (6.11)
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which is about 57% of the longitudinal wave speed, ¢q.

In the intermediate-frequency range, the flexural wave speed correction for plates is essentially
the same as that for solid rectangular bars, as given by Egs. 5.54,5.55 and 5.56, and as plotted in
Figs. 5.7 and 5.8.

Plate Vibrations

Plate vibrations are often more complex than those of beams since the motion is a function of
two spatial variables. However, for relatively narrow strips the motion can be treated as straight-
crested and the equations derived for beams can be used, with ¢g replaced by €y If the direction
of propagation of the wave has direction cosines n,, and n,,, then

k.= IK&2

il
! 7 + k3 (6.12)

where kf- = Htkf and kf = Hka. More often the plate extends in both directions and exciting
o - v -

forces pr(;duce motions that spread out uniformly in all directions.

Just as in Chapter 2 we treated acoustic waves from point sources in terms of symmetrical
spherical waves, so we can analyze flexural waves spreading out from concentrated sources on
plates as cylindrical waves in cylindrical (polar) coordinates with circular symmetry. The corre-
sponding Laplacian in polar coordinates is

92 ! 0
vi=s — + ——, (6.13)

or? r o or

and the Helmholtz form of the wave equation, Eq. 2.12, becomes

=4 . =4+ k=0 . (6.14)

This is a form of Bessel's equation, a solution of which is

6 = AJ (kr) | (6.15)

where J, is a Bessel function of the first kind and zero order and has the shape of a damped
cosine. For small values of Ar,
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ke N2 s
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b
while for very large values of the argument,
2 T
J (kr) = cos (kr - — (ke3> 1) - (6.17)
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[t can be shown that the harmonic form of the plate equation is related to the Bessel equation
of the form of Eq. 6.14. At low frequencies the plate equation reduces to

- ctph® 4
pwiw - 2L —T W =P (6.18)
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As in Eq. 5.59, the wave number may be expressed by

= = 12 — . (6.19)

Substituting for w. Eq. 6. 18 can be written

/2
we : (v“ o )& =p (6.20)
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Setting p = 0. the homogeneous equation can then be expressed as two simultaneous equations:
(vl + K} )wl =0 (6.21)
o]

and

(vz - B )wz =0 . (6.22)
(2]

The first of these is a Bessel equation wlen expressed in cylindrical coordinates and has a solution
of the form of Eq. 6.15. The second has as its solution Bessel functions of imaginary arguments. It
follows that w, and w, are the wave and near-field components of the displacement, w.

Dyer (1960) and Skudrzvk (1968) have shown that the homogeneous form of the Mindlin-
Timoshenko thick plate equation is equivalent to three simultaneous equations. These are

(v: bR w0 (6.23)
(vz _ ,},:) w, = 0 (6.24)
and

(vz - kg)H =0, (6.25)
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In these equations kf and v are related to kf by Eqs. 5.67 and 5.68, H is a vector potential of the
0

shear motion in the plane of the plate, and

5 r
ki = Kpkp | 28, - -2 1, (6.26)
25
p
where 6p is defined by
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[t can be seen from the above that w,, w, and # are all expressible by Bessel functions of either
real or imaginary arguments.

Input Impedance
The derivation of the input impedance for a point force exciting a thin plate involves several
types of Bessel functions and considerable manipulation. The approximate expression for the
characteristic impedance is surprisingly simple, being
5 4 .
psc‘plr = )ucph . (6.28)

Z-ib’\) ‘B = —
I pp ﬁ_ ﬁ

This expression, derived by Cremer (1950), is entirely real and is independent of frequency.
Measurements reported by Skudrzyk et al (1961) and Snowdon (1974) of input impedances of
resonant plates confirm that the characteristic impedance, as given by the geometric mean of
resonant and anti-resonant minima and maxima, is in good agreement with that calculated from
Eq. 6.28.

6.2 Fluid Loading

In writing the differential equations for plate flexural vibrations the forcing function was
expressed as a pressure. This pressure, p, represents the sum of any applied external forcing
function and the reaction on the plate of the fluid in contact with it. In this section we will
consider the effect of fluid loading on a plate that experiences no other external forces.

Boundary Conditions

Fluid in contact with a plate shares the plate’s motion at all points of contact. Boundary
conditions are therefore the same as those considered in Section 2.5 dealing with sound trans-
mission between two media. In this case the two media are the vibrating plate and a fluid on one
side of it. The wave numbers corresponding to this vibration, kf in the plate and A in the fluid,
will usually be different because the speeds of waves in the two media are different. However, by
Snell’s law. the component of the wave number for the fluid that is parallel to the plate must
match that of the flexural wave in the plate. From Eq. 2.14, the component of ka in the plane of
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the plate is

b, =R TR R - L (6.29)
and this must equal kf. it follows that
- 23 .2
k. =Nk, - ki (6.30)

Assuming straight-crested waves in the plate, any waves in the fluid will be plane waves, for which
the acoustic velocity will be related to the acoustic pressure by Eq. 2.68, namely,

o= |3 = Zs (6.31)
PoCo

The normal component of the acoustic particle velocity must equal the velocity of the plate if the
two are to remain in contact, hence

P (6.32)

’

. ¥,
w = v, = —
’
v Pyt

The ratio of the normal component to the full acoustic particle speed equals the ratio of k, to k,-
It follows from Egs. 6.30 and 6.32 that

p=-p = - iwp,c, =——= X (6.33}

LI —_ -

which result has a number of important consequences that are dependent on the relative values of
k, and kf.

Coincidence

When K, = kf-‘ the fluid loading effect on flexural vibrations of an undamped plate approaches
infinity. This corresponds to equality ot the speeds of sound and flexural waves and was named
the coincidence effect by Cremer (1942). As explained by Yaneske (1972), coincidence describes
the maximum spatial coupling that can occur between waves in a plate and those in a fluid
medium in contact with it. Actually. as noted by Kurtze and Bolt (1959), exact coincidence
cannot occur since the implied infinite fluid loading would prevent the flexural wave speed from
equalling that of the fluid. Nevertheless. the coincidence frequency is an important concept in
dealing with plate radiation and fluid loading.

The coincidence frequency, fc, is the frequency at which the flexural wave speed of a plate
vibrating without fluid load would equal the sound speed in the fluid medium. For thin plates,
using Eq. 6.10 for the flexural wave speed,

- o (6.34)
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The corresponding wave number is

k. = 12 —<2— . (6.35)
cph
For metal plates in air (¢, = 340 m/sec and cp= 5300 m/sec),
12
£ e (air) , (6.36)
h

where /1 is the plate thickness in meters. For metal plates in water, the thick-plate intermediate-
frequency correction, Eq. 5.54. must be used, and the result is

i)
f. & (water) , (6.37)

At frequencies other than coincidence. flexural wave speeds are either greater or less than the
speed of sound in the fluid. It is sometimes useful to express the relative speed in terms of a
flexural wave Muach pumber, given by

. i
M; = LT S (6.38)
Ch kf kc‘

where the last two relationships for coincidence wave number and frequency apply only when thin
plate assumptions are valid.

Entrained Mass

Below coincidence &, < kf-. and Eq. 6.33 for the pressure attributable to fluid loading becomes

2
p,w W R
p = (639}
- .‘, 2 _ 12
kf K
This has the effect of adding a second mass term to Eq. 6.18. which equation now becomes
' Py X p'edh? " .
i wiw - —E2— Jiw =0 . (6.40)
1” 2 .2
;‘f -k 12
Substituting for (’p."z from Eq. 6.19, this can be written
I
(1 + ew - viw =0 . (6.41)
."\'4
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where € is the entrained mass and is given by

P, p I

) r)(Q

_ Po
u’\fk}- - k2 pskfh\fl - a’.’ca/.fcj-)2 -\’ 2p,c, | f-\} - M;"-

The relative entrained mass is thus a function of the densities and sound speeds of the two media
and of the relative Mach number. Table 6.1 lists values of the media constants for aluminum and

(6.42)
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Fig. 6.1. Relative Entrained Mass Function
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The entrained mass acts as a reactive load on the plate. From Eq. 4.10, the specific radiation
reactance is
X! wew M,

r

o, = - - , (6.43)
PyCo P,C, \/I - M}-

which function is plotted in Fig. 6.2. Calculations of the flexural wave speed of a fluid-loaded
plate should include the effects of entrained mass, as indicated in Section 5.4 for beams.

2
; Eq. 643 /

— =il
/ —<
/.—-' . |.f.approx.
—

Fig. 6.2. Specific Radiation Reactance of Entrained Mass

Radiation

Above the coincidence frequency, the effect of fluid loading changes from that of an entrained
mass to that of a radiation resistance and sound is radiated into the fluid. Thus, for &, > kf the
expression for the fluid pressure given by Eq. 6.33 is imaginary, representing radiation. It can be
written as

M
p=- it —L—w, (6.44)
\’ M} -1
where
g = PoCo _ Pofo _ PoSp W (6.45)

wi wp,h 12p.c, w
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is the ratio of the specific radiation resistance of the fluid to the mass reactance of the plate per
unit area. The frequency w'c is the low-frequency approximate value of the coincidence frequency
as given by Eq. 6.34. The effect on the plate of fluid loading above coincidence is thus that of a
radiation resistance. Equation 6.18 can be written

(1 - inJw - Viw =0, (6.46)
kd
f()
where
M
n, =B ———= (6.47)
M}% -1

is the loss factor for sound radiation into the fluid. This function is plotted in Fig. 6.3. The motion
of the plate above coincidence is damped by a loss factor, np, given by the sum of the radiation

Ty
D
B \

My

Fig. 6.3. Normalized Radiation Load Factor for Flat Plates

and structural damping loss factors. Since all power transmitted to the structure is eventually
converted into sound and heat, the radiation efficiency is

M (6.48)
nr n, T T

Myrad

Radiation only occurs at relatively high frequencies for which it usually is necessary to include
shear and rotatory inertia when calculating the flexural wave speed. It follows that the approxi-
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mate relations for M,, given by Eq. 6.38, are not valid. In fact, the highest possible value of MJ.- is
that given by using Eq. 6.11 for v

. K .
M, = SNAy L5y S (6.49)
h ¢ ¢
Q ]

The value is 8.5 for metal plates in zir and only 2.0 for plates immersed in water.
As shown in Fig. 6.4, the requirement of trace matching of the acoustic and tlexural waves
establishes the direction of propagation of the acoustic wave. Thus,

A c 1
1 B = 9 = 0 = _ _
o = 7T T u (6.50)
i f f

Sound waves travel parallel to the plate when z‘llf- = [ and approach the perpendicular as Mf
increases. The steepest angle is. of course. limited by the maximum value of ;‘f[f-. Another approach
to understanding Eq. 6.50 is to think of a plate with tlexural waves as being composed of a line
array of alternating-phase pistons spaced ?\f-/J apart. From the analysis of arrays in Section 4.7, the
steered angle, f . for such an array is that given by Eq. 6.50.

The angle 0, is real only if M.> 1. When .~1'!f < ].it is imaginary, corresponding to the tact
that below coincidence no sound is radiated from an infinite plate and the effect of fluid loading is
entirely that of added mass, as discussed above.

Returning to Eq. 6.33, the intensity of the sound radiated into the fluid can be expressed as a
function of the plate velocity and the flexural Mach number by

_?—'2_ /\:2 e —_— 1'112'
P e o W2 ' f (6.51)

p;’)C() ‘o !\f Illj. - 1
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Fig. 6.4. Trace Matching of Acoustic and Flexural Waves
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The power radiated per unit area of the plate is given by

—— M ‘
W = Tegst, = ,oocow2 -f—zf—— (6.52)
\f Mf -
From Eq. 4.9, it follows that the specific radiation resistance is
W' M, 1
g = —2 = —L—=— : (6.53)
P €W Mf- 1 cos 0,

and that the loss factor, 7,, equals the product of g, and the impedance matching function, @, i.e..

N = Bor = _,T_B_ ) (6.54)

cos 0 Y

Figure 6.3, which is a plot of n,/B, is thus also a plot of the specific radiation resistance, 0,. These
results were first derived by Gosele (1953) and Westphal (1954).

6.3 Point-Excited Infinite Plates

The conclusion that no sound is radiated below coincidence applies only to straight-crested
waves on freely vibrating infinite plates. Sound will be radiated if a plate is excited by a concen-
trated force. As explained in Section 6. 1, flexural waves spread out equally in all directions from a
point source. The solution for the velocities is in terms of Bessel functions and includes exponen-
tial near-field terms as well as wave terms. The power radiated from point-excited thin plates has
been derived by Heckl (1959, 1963) and Gutin (1964) and its directional properties by Maidanik
and Kerwin (1966) and Feit (1966), as well as by Gutin.

Radiation below Coincidence

For low frequencies, for which MJ,- < < ]. Heckl and Gutin used Fourier transform methods to
derive the radiated power, finding

k2F? I
PSR |y g et | . (6.55)
2rw?u? B

W =

ac

where it is assumed that fluid loading occurs on one side only. The effect of fluid loading given by
the term within the brackets is identical to that for piston radiation, Eq. 4.131, and is plotted in
Fig. 6.5. For << 0.05 it is essentially unity, while for > 2 it is given by

1 of
] - Btan™' — = - (g > 2). (6.56)
8 3B

The two limiting cases of light and heavy fluid loading lead to significantly different results.
Light fluid loading is experienced by metal plates in air, for which g <0.05 over most of the

frequency range of interest. For this case, it is instructive to exXpress the radiated acoustic power in
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Fig. 6.5. Radiation Fluid Loading Factor, from Eq. 6.55

terms of the velocity w , at the excitation point. Using Eq. 6.28 for the input impedance, Eq. 6.55
becomes

32 CZ.F'I2 — 32 P c‘3 —
W = 7 P wl=___"020 “'3 (6.57)
In2 r2
T 12¢, T W,

Comparing this result with that for a circular piston radiating in a baffle, as given by Eq. 4.123
supplemented by Eq. 4.9, one finds

32 p.c 32 k2 T . -
scm 0'20— = — p,C, TO = — p,c,klal (6.58)
T k. T kf 2

from which it follows that the power radiated is the same as that for a circular piston of radiusa,,
given by

(6.59)

Practical sources extend over a finite area and may be treated as pistons in infinite baffles, with the
piston radius being the sum of the radius of the applied force and a quarter of a flexural
wavelength.
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As found by Gutin (1964), Maidanik and Kerwin (1966) and Feit (1966), the radiation pattem
under light loading conditions is virtually omnidirectional, the pressure at distance r being given by

F : :
piir) = Loto pifwr-kr) (6.60)
2au'r

Under these conditions the radiation efficiency is given by

32 poco ——

wg
W A 4 c
Mgy = —2— = = .. . W (6.61)
wvibr Ziwé L V I?,OSCO

This is independent of both frequency and plate thickness, being about 9 X 10™ for steel plates in
air and 2.6 X 107 for aluminum plates.

For metal plates in water at low frequencies, §> 1 and therefore Eq. 6.56 for heavy fluid
loading is applicable. Equation 6.55 for the radiated sound power reduces to

k2F? WF?
W, =—o — = ——, (6.62)
6mp,C, 6mp,C)

which has a cubic dependence on Mach number typical of dipole radiation. Indeed, well below
coincidence the directional pattern is a cosine one. Thus, when radiating into water, a point force
acting on a thin plate radiates sound at low frequencies as though the plate were not there, very
much in the same manner as an oscillating hydrodynamic force, as discussed in Sections 3.4
and 9.1.

Directional Radiation at High Frequencies

Feit (1966) used the Mindlin-Timoshenko thick-plate equations in his analysis of radiation
above the coincidence frequency, finding

iko FO cos 8

2ar

2 2 2

1 - A, sin® 8 - ‘% sin? @ - I‘p 2

P 3 cos Gv wp, c, ¢,
4 2 2

B 1+ (2 (Z) 1, (sine - Lo

w, £y &,

where w;_, is the coincidence frequency as calculated for a thin plate by Eq. 6.34. For heavy fluid
loading, the second term inside the brackets is negligible and the pressure corresponds to the
conditions for Eq. 6.62. On the other hand, if 8 << I, as is usually true at high frequencies even
in water, then Eq. 6.63 reduces to

o

(6.63)
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B ]

w3 Je % e\
1 + | — —o \ . | sin*0 - (2=
, pF, w, e, £y _
p = . (6.64)

2ni'e W\ , e\ o e\
I - | — sin? @ - < sin 0 - I"p =AL
w, £ ¢p
L

The function in brackets is unity when 9 = 0. It follows that Eq. 6.60 applies in the direction
perpendicular to the plate and that the expression in brackets is the directivity function, D(6), as
defined by Eq. 4.66. Above coincidence D(0) has a peak at the angle, 0 . for which the denomi-
nator inside ihe brackets is zero, i.e., for which

' 2 2 2

w 2 C B ) ¢ - -

(—Q) = [|sin® 8, - (—”—) sin® 8, - Fp (—0 : (6.65)
w e, €y

The lowest frequency for which the solution of this equation is real is the coincidence frequency
itself. corresponding to 0,, = 90° and given by

ul‘ 2 ¢ 2 ¢ 2
e =(1- (=2 i = I —o . (6.66)
W p CP

Putting in the constants appropriate to metal plates in water, w, is 21% higher than {.ul This is in
agreement with the value derived using Eq. 5.54 and expressed by Eq. 6.37. Solutions of Eq. 6.65
for 6,, at other frequencies are in good agreement with that expected for straight-crested waves, as
given by Eq. 6.50 with ¥ calculated by the methods of Section 5.4. Figure 6.6 shows the ungle of

.
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Fig. 6.6. Angle of Maximum Radiation for Metal Plates in Water, from Eq. 6.65
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maximum radiation as a function of relative frequency for metal plates in water. Figure 6.7 shows
a typical directional radiation pattern, as calculated by Feit. At very high frequencies. 0, ap-
proaches the limit.

¢ ¢
sfn()mi B o = i\/l" , (6.67)
1

th ¢y

which is about 31° for metal plates in water. In addition to the peuak defined by Eg. 6.65, a
second. smaller peak is sometimes observed atsinf,, = c{)/cp. This corresponds to radiation from
the surface bulges associated with longitudinal plate waves. The angle for this secondary peak is
about 3-2/3° in air and 16-1/2° in water.

dB

Fig. 6.7. Directional Radiation from Plate Flexural Vibrations at High Frequencies, after Feit (1966)

6.4 Radiation from Finite Plates

Radiation Resistance

The acoustic power radiated by point excitation of a very large plate below coincidence is
independent of the area of the plate. For such a plate. from Eq. 4.9 for g, and Eq. 6.57 for W, ..
the specific radiation resistance for radiation into air at low frequencies is

W 32 N2
5. = g = 2% =008 —— . (6.68)

p,C,SWo wk*S S
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Since 7\; increases linearly with plate thickness, the radiation resistance for point-excited plates at
low frequencies in air is proportional to the square of the plate thickness and inversely propor-

tional to the area of the plate.
Gosele (1953, 1956) considered straight-crested standing flexural waves on baffled rectangular

plates. He found
_ W by
g, = —ac_ = £ (Mf << 1) . (6.69)
.OU(‘OSt'v2 wl

where L is the plate length in the direction of the waves as illustrated by Fig. 6.8. Nikiforov (1964)
and Smith (1964) each considered finite plates with various edge conditions. They reported that

W

L

Fig. 6.8. Baffled Finite Plate with Straight-Crested Flexural Waves

clamped plates radiate most efficiently, that freely supported plates produce half as much sound
and that plates with free edges radiate very little.

Gésele also considered traveling flexural waves for which the radiation efficiency is roughly
half that of standing waves. His now classical plot of the radiation resistance for three relative plate

lengths is reproduced in Fig. 6.9.

dB

10 log q

-10 —

=30 | 1 | I
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Fig. 6.9. Radiation Resistance of Traveling Waves on Finite Plates. after Gosele (1956)
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Modal Approach

The general subject of radiation from plates and beam-plate systems can best be understood by
following an approach to radiation problems developed by Muaidanik (1962. 1974) which has
received wide acceptance. As discussed in Section 5.8, finite systems have resonances which act as
modes when the system is excited by an external force. All of the modes are excited to some
degree. Maidanik considered all modes having flexural wavelengths shorter than that for sound
waves in the fluid to be non-radiating, and those with longer wavelengths to radiate with unity
efficiency. For frequencies above coincidence, most of the modes excited are radiating modes.
Below coincidence, however, most of the vibratory energy is in non-radiating modes. To find the
radiated power, one must calculate the fraction of the vibratory motion that is in radiating modes.
Maidanik observed that below coincidence the reverberant flexural motions in the central area of a
plate do not radiate and that radiation occurs only from strips at the edges that are about the
width of a quarter of a flexural wavelength. Near-field pressure measurements by Blank (1968)
confirm that the radiation is indeed from plate edges.

For plates that are large in both dimensions relative to 4 flexural wavelength but small com-
pared to the wavelength in air. Maidanik found

_ L N\, w 2L
o, = ZpTe | = —E- (6.70)
TS oJ'C 'rrkL,S

where Lp is the plate perimeter. This relation shows a weuk frequency dependence of
1.5 dB/octave, whereas that given by Eq. 6.68 for point excitation slone shows none. For a point-
excited finite plate, the radiation is the sum of the forced-field component given by Eq. 6.68 and
the reverberant. or edge, component given by Eq. 6.70. Before adding these two expressions, it is
necessary to relate the mean-squarc reverberant plate velocity either to the force or to the plate
velocity at the location of the force. The mean-square reverberant velocity of a flat plate can be
calculated by equating the power dissipated to the vibratory power input. Thus.

—~9

npwpSW? = — = Zaw? (6.71)
I

where Z,, the input impedance, is a real quantity given by Eq. 6.28. It follows that

Wi 8 8
—_ = = — (6.72)
2 = a) 2
w2 nTRUAcS n kjS
and that
_ P
W o= ; (6.73)
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When the reverberant contribution is added to Eq. 6.68, the result is



176 6. FLEXURAL WAVE RADIATION
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When the forced radiation is added to the reverberant contribution, Eq. 6.70 becomes

7% L\ 2k
7 = ae_ o 2ot [ @ ;4 2T (6.75)
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Effect of Damping

In Section 5.9 it was indicated that damping is often an effective way of accomplishing noise
reduction when it is used to attenuate structural vibrations and thereby reduce the excitation
transmitted to a radiating surface. Originally, however, damping materials were developed for
direct application to surfaces radiating into air. While several dB of radiation reduction were
usually achieved, the resultant noise reduction was always found to be much less than the vibra-
tion reduction and consequently much less than what had been expected. Nikiforov (1963) ex-
plained this relative ineffectiveness of damping by noting that below coincidence most of the
vibratory energy is in short wavelength modes which are relatively easy to dampen but which do
not radiate, while the radiating long wavelength modes are only slightly affected by applied
damping. Examination of Eq. 6.74 leads to the same conclusion. The most that damping can do is
to reduce the second term. Since even without damping this term is often smaller than unity, it is
apparent that damping will usually have relatively little effect on radiation by point-excited plates
below coincidence.

Orthotropic Plates

Orthotropic plates, i.e., plates having directionally dependent flexural rigidity, are useful in
analyzing many practical structures, at least over part of the frequency spectrum. Heckl (1960)
was the first to recognize the importance of radiation from orthotropic plates. Maidanik (1966)
expressed the bending rigidity as a vector quantity. As indicated by Eg. 6.34, the coincidence
frequency varies inversely with the square root of the bending rigidity, Bp. [t follows that the
Mach number corresponding to a given frequency is highest in the direction of maximum flexural
rigidity and lowest in the direction of least rigidity. In addition, it follows from Egs. 6.68 and 6.70
that the specific radiation resistance is also highest for radiation associated with vibrations in the
direction of highest bending rigidity. Stated another way, more of the modes are of the radiating
type when the bending rigidity is increased.

Feit (1970) determined that radiation patterns for orthotropic plates have a range of fre-
quencies for which directional radiation occurs in one direction but does not occur in the perpen-
dicular plane. This phenomenon has been confirmed experimentally in connection with radiation
from cylinders.

Beam on a Plate

Beam-plate systems are quite common. The presence of a single beam attached to a plate has
three distinct effects: it changes any resonance frequencies; when a vibratory force excites one
region of the plate, it acts to attenuate the vibratory velocities experienced at the other side: and it
increases the sound radiated by the plate.
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The effect of an infinite beam attached to a plate on the propagation of straight-crested
flexural waves has been analyzed by Cremer (1948) and Ungar (1961). They found that trans-
mission occurs only at those angles for which Snell’s law is satisfied for flexural waves in the plate
and flexural or torsional waves in the beam. Heckl (1961) considered finite systems and found that
peak transmissions occur at frequencies close to beam resonance frequencies. For relatively high
frequencies and long beams, Heckl found the broadband average transmission coefficient to be
given by

v ki :
R R L I (6.76)
v? kzuB kg

where subscript p refers to plate and subscript B to beam. The second term in Eq. 6.76 is negligible
for heavy beams but important for relatively light ones. Heckl measured transmission through a
2.5 ¢cm high steel beam on an 0.8 mm thick aluminum plate in air, finding transmission loss values
of from 15 to 35 dB. Without including beam resonances in his analysis, Nikiforov (1969) showed
that Eq. 6.76 can be derived by considering the transmission of diffuse fields by infinite beam-
plate systems.

The attenuation of flexural waves by a beam or other obstacle may be reduced significantly if
the plate is immersed in liquid. Lyapunov (1968) has shown that an appreciable fraction of the
incident energy may be transferred past the obstacle by the near-field acoustic disturbance in the
liquid.

As for sound radiation, Maidanik (1962), Lyon (1962) and Romanov (1971) have all shown
that the presence of a beam can significantly increase plate radiation below coincidence. Maidanik
established that beams have the effect of increasing the ratio of perimeter length to surface area,
thereby increasing the contribution from the reverberant field, as implied by Eq. 6.70. Lyon
evaluated the radiation resistance per unit length of beam for a number of assumed boundary
conditions and found that

R;, = 0.(),00111)('@441- (6. 77

at low frequencies, with only slight dependence on boundary assumptions. Romanov noted that
the increase in radiation occurs if plate damping is small, but that heavy damping, 7> 0.1, can
negate the effect of the beam. It thus appears valuable to apply damping to plates for which
attached beams would otherwise result in increased radiation.

Periodic Structures

Heckl (1961) examined plates with periodically-spaced beams both experimentally and
theoretically. He found that the first of a series of beams has the greatest effect on vibration
transmission. The first beam only passes waves which approach it at angles such that there is wave
number matching between the incident waves and waves propagating in the beam. Since these
angles are also the correct ones to pass the second beam, only scattering within the bays will result
in additional attenuation by the second and subsequent beams. Heckl confirmed this under-
standing by showing experimentally that varying the spacing of identical beams has little effect but
that varying the shape of one beam has significant effect. Thus, beams on plates can be considered
to be filters which pass flexural waves having certain propagation directions and frequencies.
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Putting identical filters in series adds little attenuation in their pass band. Variation of filter
characteristics is much more effective in reducing transmission.

Maidanik (1962) and Plakhov (1967) found that periodically-spaced ribs increase the radiation
from a plate by from 6 to 12 dB, the higher values being measured for plates radiating into air and
lower ones being more typical of water loading. The theoretical expressions derived by both
investigators are quite complex and imply considerable variability of the effect of multiple beams
on sound radiation.

At very low frequencies, for which the spacing between beams becomes short compared to a
flexural wavelength, the beams no longer act as periodic impedance elements. Instead they act to
distribute stiffness in the parallel direction and add mass in the perpendicular direction. Thus, at
very low frequencies periodic structures behave acoustically as orthotropic plates with the direc-
tional radiation characteristics previously discussed.

Cylindrical Shells

The dominant effect of plate curvature is to add stiffness without adding mass. Thus, conclu-
sions reached in our discussion of orthotropic plates apply to curved plates and are also indicative
of properties of cylindrical shells. The parameter that expresses the relative importance of plate
curvature is

. (6.78)

¢p cQ
where « is the radius of curvature. If » < I, curvature affects both vibrations and radiation signifi-

cantly. On the other hand, for » > 2. curved surfaces behave as flat plates. Heckl (1962) calculated
modal densities of cylindrical shells by using an approximate formula for resonance frequencies,

2 J
) . (mma/L) n ! (”2 + (nma/L)Z) , (6.79)
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where 7 is the number of longitudinal modes, 7 the number of circumferential ones, and a, L and
/i are the radius, length and thickness of the shell. Heckl found that for » <] there are approxi-
mately /7 as many resonances per frequency band as there would be for a flat plate. He also
showed that low-order longitudinal modes of cylindrical shells have much higher flexural wave
speeds than do those of flat plates. Manning and Maidanik (1964) measured the acoustic power
radiated by a point-driven cylindrical shell in air. As shown in Fig. 6.10, they found that below
coincidence the radiation resistance decreases at a rate of about 6 dB/octave until it reaches the
value attributable to the force alone. Similar results were found by Szechenyi (1971).

As noted by Komarova (1969), applied damping is less effective in reducing radiation from
cylinders than from plates. As she explained, most of the vibratory energy is in circumferential
modes which, though readily damped, do not radiate efficiently. Radiation is dominated by the
relatively stiff longitudinal modes which have higher flexural wave speeds and which are also
harder to damp.

Radiation from Hull Sections

Although curved plates and reinforcing ribs make hull structures quite complex, the discussion
of orthotropic plates and cylindrical shells given thus far in this section indicates that general
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Fig. 6.10. Radiation from a Cylinder in Air, after Manning and Maidanik ( 1964)

characteristics of hull radiation can be predicted from rather elementary formulas. Thus, Eq. 6.62
can be used at low frequencies for which water loading is significant. This can be written:

R M
w, = 2e L (M << . (6.80)
p,c, 6T

At high frequencies essentially all of the vibratory power accepted by the structure will be
radiated. Thus,

1?2— o.:'zf_?; c
W = — = 2

L Pop
“ Z, 8 p,cd J—IEPSCO
where the factor in parentheses is given in Table 6.1. The result of combining Eqgs. 6.80 and 6.81 is
shown in Fig. 6.11 for aluminum and steel plates in water. This ignores any reverberant
contribution.

Donaldson (1968) measured the radiated power for several ship-like structures tloating in a
tank of water, finding good agreement with Fig. 6.11 for frequencies above about 400 Hz, corre-
sponding in his case to w/w; = 0.02. Below this frequency, the measured power exceeds the
calculated power by an increasing amount. At the low frequencies, resonances are prominent and
reverberant energy is apparently dominant. Donaldson’s low-frequency results correspond to a

radiation factor, as given by Fig. 6.11, of about - 45 dB. Thus his results are consistent with those
of Fig. 6.11 provided a minimum floor of about - 45 dB is used for the lowest frequencies.

(Mf = 1) . (6.81)
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Fig. 6.11. Sound Radiation by Forces Applied to Flat Plates in Water

Equations 6.80 and 6.81 combined with Eq. 6.34 for w'c indicate that hull construction plays
a relatively minor role in governing the acoustic power radiated by a given force. In the mid-
frequency range for which Eq. 6.80 applies the power radiated is independent of hull parameters.
At high frequencies, above the coincidence frequency, less sound is radiated the thicker the hull
and the lower the value of wL. Steel radiates a few dB less than aluminum. No conclusions can be
stated for the lowest frequencies since Donaldson’s tests did not cover a wide range of plate
thicknesses. The reverberant field is important at these frequencies and structural details may be
expected to affect the amount of sound radiated at specific frequencies.

6.5 Transmission through Structures

A common situation in acoustics is that in which sound waves in one body of fluid are
transmitted into a second fluid separated from it by a solid structure. In a sonar dome the aim is to
minimize any effects of the structure. In other cases maximum transmission loss may be desired.

Response of Structures to Sound Waves

The response of structures to incident sound waves is the inverse of the problem of radiation
of sound by structures. Lyamshev (1959) noted that the acoustic reciprocity principle, whereby
sources and receivers are interchangeable, applies equally well to structural radiation situations.
Thus, the velocity of a plate structure that is excited by a uniformly distributed sound field is
directly related to the sound field radiated by the same structure when excited by a point force.
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The radiation resistance coefficients derived in the previous section are therefore indicative of the
sound-absorbing properties of structures. Sound excites radiative long wavelength modes and does
not excite non-radiative short modes. Thus, above coincidence flexural waves are readily excited
by sound, but below coincidence their response is relatively weak.

Low-Frequency Transmission through Walls

Below the coincidence frequency, the dominant mechanism of sound transmission through
plates and walls is that involving longitudinal waves. Consider the situation depicted in Fig. 6.121n
which fluid body 1 is separated from fluid body 2 by a solid wall of thickness /i, which is thin

= 7 B 7T

Fig. 6.12. Wall Separating Two Fluids

compared to a wavelength in the solid. The two fluids may be the same or different. It is assumed
that both density and sound speed are higher in the structure than in the fluid. Application of
Snell’s law at both interfuaces. taking into account phase shifts as well as amplitudes. results in

{ —)2. _J_?T 4p504 ¢
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for normal incidence. Taking the reciprocal, and noting that p /i equals the surface density u'. it
follows that

1

] 5
— + + . (6.83)
&, 4 P2C2 Py b1Ca P2C2

and the transmission loss. TL. is 10 log D‘_rl There are several special cases of interest:

1. Water to water. The two fluids are identical and Eq. 6.83 reduces to
I
o, (2B)*

where {8 is the load factor defined by Eq. 6.45. The resultant TL is plotted in Fig. 6.13,
where it is seen that the loss is less than 3 dB provided f < 1/4f,..

(6.84)

3. Air to air. Equation 6.84 applies and § is very small. Hence.

’

[T &) -
TL = 20 log — . {6.853)

2
98
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Fig. 6.13. Ideal Transmission Loss for Steel Plates in Water. from Eq. 6.84

The transmission loss increases with frequency and with structural density. This is the
familiar /mass law that governs transmission by walls at low frequencies up to about I/2f,.

3. Water to air. In this case 0, ¢y > > p,ca, and Eq. 6.83 reduces to

{ ' !
BN LU () | (6.86)
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Since 3, > 1 for water loading at low frequencies. this result differs very little from that
derived in Section 2.5. Thus, well below coincidence the solid structure has no effect on
the transmission loss. Only for f > 1/5 f, does it reduce the power transmitted.

4. Air to water. In this case p, ¢, < < pacq,and Eq. 6.83 reduces o
i 4 (o
e 2R P2C2 ] +
at 4pl(11 6::

(6.87)

Since water is now the second medium. the result is identical to that for water to air, in
conformity with the reciprocity theorem.
It is clear from these four examples that the structure plays a relatively minor role below coinci-
dence if water loading occurs on one or both sides. Only in the air-to-air case can a large TL be
achieved in the low-frequency regime.

Use of Impedance Concepts

The equations for normal-incidence transmission loss at low frequencies can readily be ex-
tended to other angles of incidence and other types of wave motions in the structure by using
relatively elementary network concepts. In this approach. each medium is characterized by one or
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more impedance elements in series or in parallel and these elements are placed in series with each
other. The power transmission coefficient, «,, is the ratio of the power transmitted through the
intervening structure to that which would have been transmitted if the structure were absent and
medium 2 were identical to medium 1. Consider the circuit shown in Fig. 6.14. The power

Fig. 6.14. Network Representing Transmission Loss
delivered to the load. Z,. is

z R, F?
2 - - . (6.88)
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[t follows that

W, 4R R,

a, = = : (6.90)
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At a surface, the normal impedance for longitudinal waves in 1 fluid medium is given by
2.8
g, = i (6.91)
cus 0,

which is purely resistive. At frequencies sufficiently below coincidence. walls can be treated as
masses for which Z, = jwm = iwu'S. Substituting these relations into Eq. 6.90 and assuming
normal incidence, Eq. 6.83 can be derived for the transmission coefficient. For oblique incidence.
each pe product should be replaced by pc/cosB. where 6 is the angle relative to the normal.

Role of Flexural Vibrations

As discussed by Beranek (1959) and Schiller (1967). flexural waves become dominant in wall
transmission for frequencies above about /2 j';. Those components of a diffuse sound field that
match the reverberant wave field of the structure are transmitted virtually without loss. The
remainder is reflected. The reverberant velocity of the structure is controlled by the damping
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factor as given by Eq.6.73. Cremer, Heckl and Ungar (1973) used reciprocity to show that the
radiation process is related to the absorption process by k;S/41r. They found that the effective
wall impedance, Z_, for flexural waves above coincidence is a pure resistance given by

2 w
k;p'ZnvaS‘"‘ a 207 (—) (wu'S)? . (6.92)
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This resistance is relatively small when either fluid is a liquid, but is significant when both tluids
are gases. Thus, for air-to-air transmission, substitution of Eq. 6.92 into Eq. 6.90 leads to

R? 3 2 w
TL = 10log —=— = 20log . o B 10 log L 10 log — . (6.93)
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The first term is the mass law of Eq. 6.85, the second term is negative by an amount that depends
on total damping and the third term is an additional dependence on frequency. It is apparent that,
for frequencies controlled by flexural wave transmission, the amount of isolation that can be
achieved by built-in damping is second only to that caused by the wall’s mass.

Sound Isolation by Walls

When walls are being used to isolate one space from another acoustically, several things can be
done to decrease the transmission. The most obvious is to raise the coincidence frequency above
the frequency range for which high TL is desired. This poses a problem in that f, is inversely
dependent on thickness and TL in the mass law regime is proportional to thickness. Kurtze (1959)
and Kurtze and Watters (1959) proposed that the flexural wave speed be reduced without
sacrificing mass by using multilayered plates in which a viscous liquid, a viscoelastic solid or a
porous layer is placed between two thin elastic layers. A number of practical wall constructions
have been developed using this principle.

[t has been demonstrated that anything adding stiffness to a wall without adding much mass is
detrimental to sound isolation. Venzke et al (1973) demonstrated that adding stiffeners to walls
increases their sound radiation below coincidence and thereby decreases the TL. Shenderov (1963,
1969), Plakov (1968) and Warren (1974) demonstrated that periodically-spaced stiffeners on
plates cause rejection bands for which the 7L is high as well as pass bands for which it is low.
Shenderov (1964) proved theoretically what a large number of investigators have found experi-
mentally, namely, that the method of support of a panel affects its acoustic transmissivity.

It is clear that, at coincidence as well as above it, the 7L of a wall is a direct function of its
damping. Increasing the damping is probably the single most effective way of increasing TL in
cases where it is impossible to use /imp walls that have both high mass and low stiffness, i.e., low
flexural wave speeds together with high surface mass densities.

6.6 Boundary-Layer Flow Noise

When fluid flows past a surface, a boundary layer is formed in which the flow velocity
decreases from a value related to the free-stream velocity to zero at the surtace. Often the
boundary layer is characterized by turbulent flow conditions involving fluctuating velocities and
pressures. The radiated and sonar self-noise associated with such turbulent pressure tluctuations is
called boundaryv-laver flow noise. Although this topic has interested many investigators over the
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past 20 years, full understanding of all of the noise-generating mechanisms is still lacking. This
section begins with a description of the significant characteristics of turbulent boundary-layer
flows based primarily on papers published by the author.

Turbulent Boundary Layers

If a fluid were completely inviscid, it would theoretically be able to flow past a surface with
finite relative speed. However, even small amount of viscous friction is sufficient to cause Z€ro
local flow speed right at the surface. The transition region from the surface to the point where
viscosity has no effect is termed the houndary laver. Close to the nose of a body, or in pipes at
very low flow speeds, fluid viscosity dominates and the boundary layer is laminar. However,
further downstream and/or at higher flow speeds the laminar shear layer becomes unstable and
eddies form. These eddies become dominant and eddy momentum transfer becomes more impor-
tant than viscous transfer as the boundary layer becomes turbulent. Since flow fluctuations asso-
ciated with laminar flows are very small. laminar boundary-layer flow noise is negligible. It is the
eddy motions of turbulent boundary layers that give rise to velocity and pressure fluctuations and
thereby cause flow noise. Hence. all discussions of boundary-layer flow noise refer to the turbulent
condition.

The physical quantities which characterize a turbulent boundary layer are the mean flow
velocity distribution, uf=). and the distributions of turbulent stresses, 7(z), eddy mixing lengths.
o -). and turbulent velocity components, it v' and w'. The thickness of the disturbed layer, 8. 18
an indefinite quantity and it is common practice to describe the extent of the layer by the
displacement thickness, 8%, defined by

o0

i
5% = f ] - — Ydz ., (6.94)
7] L
and/or the momentim thickness, @, given by
o0
u u
6 = ] - — | — d= . (6.95)
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where u, is the flow velocity immediately outside the disturbed region. The displacement thick-
ness measures the extent by which the ideal potential flow streamlines are displaced from the
surface by the boundary layer, while the momentum thickness measures the momentum
deficiency.

Figure 6.15 shows several typical turbulent boundary-layer velocity profiles. Each boundary
layer consists of two basically ditferent major regions. called inner and outer. The inner region is
controlled by local wall conditions and the outer region is dominated by eddies that were created
relatively far upstream. As shown in Fig. 6.16, a blending region connects the two. The inner
region is further divided into three zones: a laminar sublayver in immediate contact with the wall
in which the turbulence level is low and viscosity dominates, a buffer zone in which viscous and
turbulent shear stresses are both active, and a turbulent zone in which the level of turbulence is
governed by local wall conditions.

The velocity distribution in the inner region is related to the value of the shear stress at the
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Fig. 6.15. Four Typical Turbulent Boundary-Layer Fig. 6.16. Regions of a Turbulent Boundary-Layer
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wall, 7. This is usually expressed by a velocity, u;’.‘. called the friction velocity, or wall-shear-stress

velocity, defined by

(6.96)
The inner velocity profile is a function of the non-dimensional distance from the wall.
zu®
= T
z, = , (6.97)
v
and the relative wall roughness. In the laminar sublayer adjacent to a smooth wall,
u
—;— = :T i (69&5))
ul

As shown in Fig. 6.17, this linear region extends only as far as z,.=3. Beyond z_ =20 and
extending outward for about 10% of the total boundary-layer thickness the velocity profile is
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Fig. 6.17. Properties of the Regions of a Smooth-Wall Turbulent Boundary Laver, from Ross (1936)
logarithmic, of the form

_i_ =4 + Blog=z_ . (6.99)

(b N
>

For smooth walls, both constants are approximately 5.6. That these coefficients are practically
universal constants independent of pressure gradients, Reynolds number and upstream history was
first proposed by Ludwieg (1949) and is known as the law of the wall. For smooth walls, the
log-law relation of Eq. 6.99 intersects the linear relation of Eq. 6.98 at u;f =11.5.

As shown in Fig. 6.17. the outer turbulent region is characterized by having essentially con-
stant eddy mixing length. Its velocity distribution is a defect relation in which the velocity is

expressed relative to its undisturbed value by

LR SN (6.100)
Uty )

That the magnitude of the velocity defect should be a function of upstream rather than local
conditions was proposed by Prandtl (1935) and by Schultz-Grunow (1938). Ross and Robertson
(1950) demonstrated that this fact is central to an understanding of boundary-layer phenomena.
They called the dependence of the outer profile on upstream conditions the history effect. and
Coles (1956) later named it the law of the wake. The outer profile can be expressed as a pOwer
function of the distance inward from the outer edge of the layer, namely

R R 1—i> . (6.101)
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Ross (1956) chose n = 1.5, writing

u 2 \32
—m e Bl == E (6.102)
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other investigators have found better fits to their data using somewhat different values of the
exponent. The critical point is that the outer region in all cases is a defect region in which the
magnitude of the velocity deficiency and its shape are determined by upstream conditions.

The inner and outer profiles connect in the blending region. As shown in Fig. 6.15, this may
involve an inflection point. In the blending region both local wall conditions and spatial history are
important and no simple velocity profile has been proposed. Figure 6.18 shows how inner and

0 DISTANCE, z

Fig. 6.18. Typical Boundary-Layer Profiles Illustrative of Blending Region, after Ross (1956)

outer regions blend for a number of typical velocity profiles. In some instances the functions for
the two major turbulent regions seem to overlap and blending is unnecessary. However, for profiles
that have large momentum deficiencies blending may occur through as much as 20% of the
boundary layer.

Boundary layers on smooth plates in parallel flows having zero pressure gradients grow quite
slowly and have outer turbulent regions which bear a constant relation to their inner regions.
Clauser (1956) has called these equilibrium boundary layers. Unfortunately, most published
boundary-layer analyses treat all boundary layers as though they were equilibrium layers. Not only
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does this lead to serious errors regarding the mean flow. but also, as will be discussed, it leads to
erroneous results concerning turbulent boundary-layer noise. It is essential that the spatial history
extending over an upstream distance of about 50 boundary-layer thicknesses be taken into
account.

Boundary-Layer Friction

The drag which a body experiences due to its boundary layer can be expressed in terms of a
dimensionless friction coefficient, p defined by

# 2
¢ = _Tw - (f) . (6.103)
1 [Th

2
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As shown by Ross (1953, 1956), this friction coefficient is a function of a Reynolds number, Ry,
defined in terms of the local momentum thickness,

0
By = 2L, (6.104)

v

and the effective velocity, ug, at a distance out from the wall equal to the momentum thickness.
Thus, the law of the wall can be written

i u* %
9 _"r | 56+ 56l |~ Ry , (6.105)
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the solution of which is approximately
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From his study of several hundred velocity profiles, Ross (1956) found

3
"9 - 885 - D . (6.107)
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It follows that the friction coefficient for a smooth wall is a function of both the local momen-
tum-thickness Reynolds number and previous history of the flow, as expressed by D or an
equivalent parameter.

The above relations apply only to walls that are hydraulically smooth, i.e., any roughnesses are
smaller than the thickness of the laminar sublayer. Walls having larger roughnesses are called
hydraulically rough. For such walls. the laminar sublayer is thicker than it would be for a smooth
wall since turbulent motions cannot penetrate into the roughness region. As discussed by Hama
(1954), the logarithmic and linear curves for a hydraulically rough wall intersect at a value of z =€
related to the roughness heights and type. It follows that
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u eur* z
= I + 56log — (6.108)
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in the inner turbulent region of rough boundary layers. It also follows that the skin friction
coefficient is higher than for a smooth wall by an amount that depends on the ratio of eu;."/v
to 11.5.

Boundary-Layer Turbulence

The basic equations for viscous flows are the continuity equation and the Navier-Stokes form
of the momentum equation. These were extended to turbulent conditions by Reynolds (1895),
who assumed that instantaneous velocities could be expressed as the sum of time-independent
mean values and fluctuating components in much the same manner as in Section 2.2 in deriving
the acoustic wave equation. Reynolds found that the turbulent stress is given by

o | (6.109)

Ty = 0

t

which relation was used by Lighthill in deriving Eq. 3.16 for turbulence noise sources. The
turbulent stresses in a boundary layer can also be related to the velocity gradient through a length

scale, €, called the mixing length:
ou \ 2
T = pUQZ (_4) . (6.110)
oz

It follows that the level of turbulence is proportional to the product of the mixing length and the
velocity gradient.

The 3/2-power velocity deficiency relation, Eq. 6.102, is consistent with the assumptions of
constant mixing length and linear dependence of shear stress in the outer region, as indicated in

Fig. 6.17. Thus, expressing 7 by
dgh =, (I —4) ; (6.111)
8
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it follows that

and that

Comparing with Eq. 6.102, the magnitude of the deficiency, D, is related to the turbulence level
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by
Y
p=2 2 To (6.114)
3 U

Both the turbulence level and the scale of the eddies in the outer region are dependent on
upstream history. Since the mixing length is roughly proportional to the boundary-layer thickness
and since this thickness is close to that of an equilibrium boundary layer. it follows that the
velocity deficiency is primarily controlled by the level of turbulence generated upstream.
Figure 6.19 shows a typical shear stress distribution in which the local wall shear stress. T, 18

significantly lower than the effective value, T that describes the outer region.

0’

o
\

SHEAR STRESS, 7

Fig. 6.19. Typical Shear Stress Distribution, from Ross (1936)

For boundary layers on flat plates with zero pressure eradients, 7, 18 related to 7, and a single
universal velocity can be derived in terms of u;’,‘. The boundary-layer turbulence level can in this
case be related to the wall sheur stress. However, such relationships between boundary-layer
turbulence levels and local wall shear stress coefficients are applicable only when equilibrium
conditions exist.

Intermittency Effects

Equation 6.109 pertains to average turbulence levels in a turbulent flow. Actual turbulent
shear flows are characterized by certain large scale phenomena that are called intermittencies to
distinguish them from the smaller scale turbulent motions. These occur in both the outer and inner
regions of a boundary layer. Corrsin and Kistler (1953) reported that the outer edge of a free
turbulent shear flow is an irregular surface dividing non-turbulent from turbulent regions. The
scale of the waviness is close 1o half the boundary-layer thickness. Thus. an instrument sensitive to
turbulence placed in the outer part of a boundary layer will find itself in a turbulent field only



192 6. FLEXURAL WAVE RADIATION

part of the time, the percentage decreasing from 100% at z = §/3 to zero somewhat beyond the
apparent boundary-layer thickness. '

A second important intermittent effect was discovered by Kline et al (1967), who found
evidence of semi-periodic eddy formation in the laminar bu ffer zone involving large-scale spanwise
motions and explosive bursts of turbulence into the turbulent zone. Streaks of vorticity preceding
the bursts were photographed and were found to move at speeds close to 13.8 « . The importance
of this phenomenon was recognized by Black ( 1966) and by Landahl (1975). The latter concluded
that these explosive bursts are a dominant source of high-frequency boundary-layer flow noise.

Wall Pressure Fluctuations

Many boundary-layer noise investigations of the p'ast 20 years have concentrated on measuring
various properties of wall pressure fluctuations associated with turbulent boundary layers on flat
plates and in pipes. The results have been presented as fluctuation spectra and spatial correlations.
As shown in Fig. 6.20, pressure fluctuation spectra sometimes peak at a non-dimensional fre-
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Fig. 6.20. Typical Wall Pressure Fluctuation Spectrum

quency ratio of about 0.2. They decrease markedly at higher frequencies by as much as 9 to
12 dB/octave. Moreover, as calculated by Corcos (1963, 1967) and confirmed by Gilchrist and
Strawderman (1965), Lyamshev and Salosina (1966) and Geib (1967, 1969), measured high-
frequency spectra are frequently affected by cancellation effects due to finite transducer size.
Low-frequency spectra show a great deal of scatter, primarily due to extraneous noises but also
due to actual differences of the test configurations.
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The total wall pressure is dominated by low-frequency components and therefore is not much
affected by transducer size. For equilibrium boundary layers with zero pressure gradient,

B Ay & 0.005q, . (6.115)
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Different measurements have shown appreciable scatter for this quantity. Also, Mugridge (1971)
found that wall pressures in the adverse pressure gradient region of a lifting airfoil are as much as
15 dB higher than those for a flat plate. Schloemer (1967) also found that the spectral distribution
of pressure fluctuations is affected by favorable as well as adverse pressure gradients.

Longitudinal correlation measurements show that turbulence is convected by the mean flow.
As would be expected, low-frequency components associated with larger eddies in the outer flow
are convected at higher speeds than are higher-frequency, small-scale components. Typically, the
convection velocity, u,., for low-frequency components is about 80 to 85% of the free-stream flow
speed while for the highest frequency components the ratio is only 60 to 65%.

Since turbulent pressure fluctuations are dependent on turbulence levels which in turn are
related to hydrodynamic drag through the wall shear stress, it would be expected that anything
that could be done to reduce drag would also reduce pressure fluctuations. Kadykov and
Lyamshev (1970) confirmed that the addition of dilute polymer solutions reduces pressure fluc-
tuations by from 1 to 8 dB. This reduction of pressure fluctuations is related to the drag reduction
first reported by Toms (1948) and more recently confirmed by Fabula (1965), Van Driest (1970)
and many others.

Self-Noise of Flush-Mounted Hydrophones

One form of flow noise is that of flush-mounted hydrophones under a turbulent boundary
layer. For such hydrophones, wall pressure fluctuations, sometimes referred to as pseudo-sound,
are usually the dominant source of self-noise. The pseudo-sound component of the self-noise
spectrum is given by the product of the pressure spectrum, as depicted in Fig. 6.20, and the
hydrophone size cancellation spectrum; it therefore depends on the ratio of hydrophone size to
boundary-layer thickness as well as on the dimensionless frequency.

At the lowest frequencies, hydrophone size effects are negligible and the pressure spectrum is
approximately flat. As mentioned above, measurements in this frequency regime show con-
siderable scatter depending on test configuration. However, as summarized by Haddle and
Skudrzyk (1969) and by Blake (1970), the wall pressure spectrum can be estimated within a factor
of two from

pllw) = 0.003p,u3/?5+1/2 (6.117)

Thus. low-frequency self-noise levels increase with boundary-layer thickness as well as with flow
speed.

For somewhat higher frequencies, most measurements display a negative slope of about
9 dB/octave for about two decades of frequency. For this part of the spectrum, Lyamshev and
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Salosina (1966) found
3/2 5% 314
5 i,
p'lw) = 0.003,00“‘0?/351”“ — . (6.118)
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At a given frequency in this part of the spectrum, self-noise increases with the cube of flow speed.
At high frequencies the hydrophone size cancellation effect adds to the spectral slope of the
turbulent fluctuations and produces a very rapid decrease of pseudo-sound flow noise. However.
flow noise measurements by Skudrzyk and Haddle (1960) showed no such trend. In a later article,
Haddle and Skudrzyk (1969) stressed the importance of directly radiated turbulence noise from
the boundary layer itself and proposed that such acoustic noise dominates relative to pseudo-
sound at the higher frequencies.
. Hydrophone shape is important in the frequency region for which flow noise is dominated by
pseudo-sound. The dimension which controls in Eq. 0.1 18 is that in the direction of motion of the
flow. Thus, White (1967) has reported reductions of self-noise levels of up to 8 dB by using
rectangular and elliptical transducers with their longest dimensions in the direction of flow. These
lower tlow noise levels in the pseudo-sound regime are associated with the fact that turbulent
oddies are convected across the transducer face at a relatively slow speed. Defining a turbulent
hydrodynamic wave number, k,. as the ratio of the angular frequency to the convection wave
speed. 1.€..

k, = — . (6.119)

one can interpret White's result as the reduction of response of a continuous line array having
kL > 1.analogous to that tor Jcoustic waves as derived in Section 4.7.

Arrays of Flush-Mounted Hydrophones

Just as an array of point transducers can be used in place of a continuous line as a spatial filter
for acoustic waves, so an array of small transducers can be used to discriminate against turbulent
pressure fluctuations. Jorgensen and Maidanik (1968) compared the filtering action of systems of
two and three elements with that of a continuous line, finding equally sood discrimination for the
discrete systems provided k.d < 2. where d is the separation of the elements. Maidanik (1967)
considered a larger number of elements and pointed out that the response could be altered by
steering the array, i.e., by introducing phase shifts between the elements. More recently, Kennedy
(1975) has shown that optimum beam-forming techniques can be used to design transducer arrays
having maximum discrimination against turbulent pressure fluctuations while still having full sensi-
tivity to sonic signals.

Maidanik and Jorgensen (1967) proposed the use of an even-number array of alternating
polarity transducers as u system that would be insensitive to acoustic disturbances but would
respond to turbulent fluctuations obeving certain relations between wave number and frequency.
Such a system, which they termed a wave-vector filter. is analogous (O 2 ditfraction grating in
optics. Its purpose is to study boundary-layer pressure fluctuations without interference from
acoustic components of the flow noise. Blake and Chase (1971) applied wave-vector filters to a
series of boundary-layer measurements, finding them useful in suppressing wind-tunnel back-
ground noise. Wave-vector filters are particularly valuable when making measurements of con-
vection speed as a function of frequency.
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Radiated Flow Noise

There are several basic physical mechanisms by which noise may be radiated from turbulent
boundary layers. Controversy concerning their relative importance has pervaded the literature on
this subject and the evidence does not solidly establish any one mechanism as dominant. Further-
more. the effectiveness of any of them is often dependent on secondary factors. [t seems likely
that in any given situation several physical mechanisms may contribute to the total noise field.

One source of radiated noise from any turbulent fluid motion is the direct quadrupole radia-
tion from the turbulent stresses treated by Lighthill and discussed in Section 3.4. However, this
radiation is strongly dependent on Mach number and is negligible at the low Mach numbers of
liquid flows. Curle (1955) showed that in the presence of a rigid boundary fluctuating shear
stresses can produce dipole radiation associated with the resultant wall pressure fluctuations.
Powell (1960) noted that when the wall is planar, rigid and large compared to a wavelength these
dipole components tend to cancel and in this case the only effect of the boundary is to augment
the quadrupole radiation by a factor of four. More recently, Landahl (1975) reexamined this
question in light of the discovery by Kline et al (1967) of turbulence bursts in the laminar buffer
region. Landahl showed that the intensity of dipole radiation associated with these bursts is

u* : Cr ’

I~gar——)8= P, L\ M3S . (6.120)
c 2
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Since i varies with flow speed approximately as u}’ /5, this direct radiation can be expected to
vary with flow speed to approximately the 5.4 power.

Haddle and Skudrzyk (1969) measured the noise radiated by metal shell and solid wood
buoyant bodies of torpedo shape. Their measured levels were independent of body construction,
from which they concluded that direct radiation from the turbulence was the dominant
mechanism. However, other (unpublished) results indicate that noise radiated by buoyant bodies
may come from the stabilizing fins rather than from the body itself. Since the same fins were used
on both models. the Haddle and Skudrzyk results cannot be said to prove conclusively that
rigid-wall turbulence radiation is dominant. ‘

The mechanism that has received the most attention is that of excitation of flexural vibrations
by wall pressure fluctuations and radiation by these vibrations. Evidence that this mechanism can
be a dominant one was found by Ludwig (1962) and Maestrello (1965). Both investigators
measured the noise radiated by rectangular panels in wind tunnels. finding roughly fifth-power
dependencies on flow speed and inverse variation of radiated acoustic power with plate thickness.

While several theoretical analyses of flow noise involving wall flexural vibrations have been
made. none can be said to be consistently in good agreement with experimental results. Most of
the turbulent energy is convected at speeds that are low compared to the speeds of both plate
flexural waves and sound in the acoustic medium. As a result, all but a very small fraction of the
vibratory energy induced in the plate by the turbulence is in non-radiating modes. Radiation can
only occur trom that very small fraction of the turbulent energy that is in the very low wave
number part of the spectrum and from any of the higher wave number vibratory components that
are converted to low wave numbers  through scattering by ribs, supports and other discontinuities.

The first attempt to calculate radiated flow noise involving plate flexural vibrations was made
by Dyer (1958, 1959). He found that the mean-square plate vibration is independent of turbulence
convection speed when that speed is small compared to the speed of flexural waves, as is true for
liquids. Dyer also predicted that plate damping would be an effective method of reducing tlow
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noise. A similar analysis by Aupperle and Lambert (1973) for thin plates gave results in good
agreement with experimental data reported by Ludwig (1962). White (1966) and Davies (1971)
applied modal analyses treating corner as well as edge modes to derive formulas for the radiated
flow noise of thin panels in air. Their results also appear to be in good agreement with thin panel
experimental measurements. Davies found that fluid loading effects can reduce radiated flow noise
levels from thin panels by as much as 10 to 15 dB.

Turbulent pressure fluctuations seem clearly to excite structural vibrations in non-rigid walls.
Strawderman and Brand (1969) and others have successfully calculated these vibrations using
measured wall pressure spectra and Corcos’ (1964) results for cross-power spectral densities. The
degree to which these vibrations radiate and the ratio of their radiation to rigid-wall dipole
radiation remain unknown. The author agrees with Vecchio and Wiley (1973), who concluded that
flexural wave radiation is usually dominant at low frequencies while direct dipole radiation is often
stronger at the higher frequencies.

Domed Sonar Self-Noise

In order to avoid the direct pseudo-sound noise of turbulent boundary-layer pressure fluctua-
tions. most sonar receivers are located inside thin domes that isolate them from the turbulence
while transmitting acoustic signals virtually undistorted. The turbulence is then on the other side
of the structure from the receiver, and flexural vibrations and their radiation must be the domi-
nant mechanism whereby flow noise is received. Analyses of this case have been published by Dyer
(1958). Plakhov (1966), Maidanik (1968) and Dowell (1969, 1970). Dyer attempted a complete
analysis of both vibration excitation and cavity radiation aspects of the problem but was forced
for lack of sufficient information to make a number of simplifying assumptions. He noted that
coincidence may occur within the frequency range of interest and that radiation should be treated
differently in the two frequency regimes. Plakhov treated the problem in a manner similar to that
of transmission through a wall placed between two fluids having respective wave speeds of u, and
¢, He concluded that those structural properties which increase the 7L of a wall also tend to
decrease turbulent flow noise. In agreement with this conclusion, Maidanik noted that ribs and
other discontinuities that increase radiation of flexural waves from plates also increase the trans-
mission of turbulence noise. Dowell included the effects of non-linear plate stiffness and cavity
fluid motions, finding that flutter can occur in some cases when the panel is very thin.

In summary, while no single, simple formulation is available, it appears that domes do indeed
reduce flow noise levels in most cases, and that dome design should follow the principles of good
wall design by avoiding discontinuities that can act to transform vibrations from high wave
number, non-radiating modes into low wave number, radiating modes.
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