CHAPTER 5

STRUCTURAL VIBRATIONS

5.1 Structure-Borne Sound

In the previous two chapters we dealt with a number of sources that radiate sound directly
into the fluid medium. However, many noise sources in marine systems are not in direct contact
with the fluid. Vibrations generated by such sources are transmitted by structures to radiating
surfaces. The transmission of structural vibrations and radiation of sound by such vibrations
constitute the subject of structure-borne sound. This field was originally developed in Germany in
the 1940’s where it was applied both to submarine noise reduction and to building acoustics. An
early exposition by L. Cremer (1950) is still a classic. Rapid progress in understanding the role of
structures in both architectural and marine acoustics was made in the 1950’s and 1960’s, and the
field can now be considered to have matured. Several recent books devoted exclusively to this
subject are included in the references at the end of this chapter.

Most structures can be classified as either beam-like or plate-like. Beams are structures having
only one dimension long compared to a vibrational wavelength, while plates have two dimensions
that are relatively large. While it is somewhat of an oversimplification, it is nevertheless generally
true that the primary role of beam structures is transmission of vibrations; plates, on the other
hand, are usually in contact with a fluid medium and so are principal radiators of structure-borne
sound. The present chapter deals with structural vibrations of beams and beam-like structures,
while Chapter 6 covers sound radiation from plate vibrations.

Structures can experience a number of types of vibrations, as discussed in Section 5.2. How-
ever, the dominant mode of transmission of vibrational energy is by flexural (bending) vibrations
and these are also the most efficient radiators of sound. It was recognition of the central role of
flexural vibrations that has made possible the tremendous progress in this field of the past
40 years. Chapters 5 and 6 deal almost exclusively with flexural vibrations and their radiation.

In addition to the role of flexural motions in transmitting vibrations from machines to the hull
where they can radiate sound into the water, they are also a dominant low-frequency vibrational
mode of ship structures. The final two sections of the present chapter deal with beams immersed
in fluids and with the calculation of low-frequency bending vibrations of ship hulls, called
whipping modes in Section 4.11.

5.2 Wave Motions in Solids

As an introduction to the treatment of structural vibrations, it is useful first to define the
various types of sonic vibrations that can occur in solids. Some of these vibrations occur only
within the body of the solid, while others involve its surfaces. Solids of various shapes can be
classed according to the ratios of various dimensions to each other and to a wavelength. Thus, as
mentioned in Section 5.1, rods, bars and beams are structures having only one dimension large
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compared to a wavelength, while plates have two large dimensions, and all of the dimensions of
bulk solids are relatively large.

In Section 2.2, the wave equation was derived for acoustic disturbances in liquids. One of the
assumptions made as a part of the derivation was: “the fluid cannot withstand static shear
stresses, in the manner of a solid.”” Obviously, then, a most important distinction between solids
and liquids is the ability of a solid to withstand static shear stresses. Because of this property, wave
motions in solids are considerably more complex than those in fluids. Not only do solids transmit

compressional waves similar to those in fluids, but also they sustain shear waves, flexural (bending)

waves and various combinations of compressional, shear and flexural waves, as well as surface
waves.

The solids of interest in structure-borne sound are for the most part homoveneous and iso-
tropic. The vibrations are of small amplitude and so may be treated as linear, or Hookesian. Thus
any deformations, or strains, are directly proportional to the stresses causing them

Longitudinal Waves in Bars

One form of wave motion in solids is that which arises if one strikes, or otherwise excites, one
end of a thin rod or bar. A longitudinal compressional wave is set up in the bar which travels at a
speed, cg, given by

CQ = (5.1)

Y
o
where Y is Young’s modulus, defined as the stress required to produce unit strain, and p is the

density. Most metals commonly used in structures have longitudinal wave speeds between 4900
and 5200 m/sec.

Shear Waves

Another form of wave motion that can exist in a solid is associated with twisting, or torsional,
motions which occur in a plane perpendicular to the direction of propagation of the wave. Such
waves depend on the ability of a solid to sustain shear. They propagate at a speed, ¢, which
depends on the shear modulus of the solid,

c. = | — . (5.2}

The shear modulus, G, is invariably less than half Young’s modulus, so shear waves travel more
slowly than do longitudinal waves.

Compressional Waves in Bulk Solids

When longitudinal motions take place in a thin rod, there are associated changes in the
diameter and cross-sectional area which reduce the relative volume change. These lateral changes
play an important role in the wave process, making it easier for waves to propagate. When all the
dimensions of a solid body are large compared to a wavelength, the lateral motions cannot occur in
the same way as in a rod, and the medium is effectively less compressible. Defining the hulk
modulus, B, as the ratio of the hydrostatic pressure to the fractional change in volume or density,



108 5. STRUCTURAL VIBRATIONS

as in Eq. 2.53, irrotational compressional waves are found to travel in the volume of a large solid at
a speed given by

(5.3)

which expression reduces to that for a liquid when the shear modulus, G, approaches zero.

Poisson’s Ratio

The quantity that measures the lateral constrictions of a rod experiencing longitudinal vibra-
tions is called Poisson’s ratio. It is the ratio of the relative change in the diameter of the rod to the
relative change in length:

L dD
g o 9 (5.4)

D dL

The relative change in area is 2o, while that of the volume is I - 20. It follows that virtually
incompressible solids, such as rubber, have values of Poisson’s ratio close to 0.5. Values for most
metals are between 0.27 and 0.35.

The three elastic moduli, Y, G and B, are related to each other through Poisson’s ratio by

G !
—_—= —— (5.5)
Y 2(1 + o)
and
B 1
—_F — (3.6)
Y 3(1 - 20)
It follows that the wave speeds are related by
J "
€= € - 3 7
2(1 + o)
and
l -0 K
cg = €g s (5.8)

(1 + a)(l - 2a)

In the limit. for an incompressible solid, the shear wave speed equals about 3/5 of the longitudinal
wave speed: bulk waves cannot be sustained at all, since cp approaches infinity. These relations for
¢, and cp relative to c¢q are plotted in Fig. 5.1.

Longitudinal Waves in Plates

Plates are solids that are large compared to a wavelength in two dimensions and smaller than a
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Fig. 5.1. Wave Speeds in Solids as Functions of Poisson’s Ratio

wavelength in one dimension. Longitudinal waves travel in plates at a speed, Cpo which is slightly
larger than the speed in bars and rods:

(5:9)

As shown in Fig. 5.1, this ratio varies from about 1.05 for typical metals to 1.15 for rubber-like,
almost incompressible solids.

Surface Waves

Waves can propagate on the surface of a thick solid in much the same manner as surface waves
do on the ocean. Such surface waves, which decay exponentially toward the interior, are called
Rayvleigh waves and are of considerable importance at very high frequencies, especially in ultra-
sonics applications. Smaller waves found on plates are termed Lamb waves and are also important
in ultrasonics.

When a longitudinal wave propagates in a plate, the surfaces experience up and down motions
associated with the Poisson effect. These surface waves can also radiate sound. However, most
plate structural vibrations occur as bending motions, and radiation associated with longitudinal
plate waves is usually less important.
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Flexural (Bending) Waves

Beams and plates often experience wave motions in which one surface is experiencing
stretching at the same time that the opposite surface is experiencing contraction. As shown in
Fig. 5.2, the result of this combination is that the center of the beam or plate oscillates about the

NEUTRAL PLANE
—_ REST PLANE

Fig. 5.2. Flexural Wave in a Beam or Plate

rest plane. In this type of wave motion, the structure flexes, or bends. For small amplitude
vibrations. the amount of stretching and contraction is a linear function of the distance from a
plane, termed the neutral plane, which experiences neither, as shown in Fig. 5.3.
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Fig. 5.3. Stretching and Contraction of a Section of a Bending Beam

Examples of flexural vibrations from everyday experience including tuning forks, tall buildings
swaying in the wind, bending vibrations of aircraft wings, and the quiver of an arrow striking a
target. They are important because they are readily excited. A given force will generally cause
much larger flexural amplitudes than any other type of vibration.

Cremer made a significant contribution to architectural acoustics in recognizing the overriding
importance of bending (flexural) vibrations for both the transmission of vibrations in structures
and the radiation of sound. Since flexural waves also play the dominant role in vibration of and
radiation of sound by ship hulls and other structures, the remainder of this chapter is devoted to a
detailed exposition of their properties.

5.3 Beam Bending Equations

Differential equations relating to bending vibrations of beams can be derived by considering
the forces and moments acting on a differential element together with the motions resulting from
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such action. Figure 5.4 shows such a beam element of length dx. The displacement of the neutral
plane from an arbitrary reference is represented by w. The cross-sectional plane is shown rotated
by an angle 6 tfrom the normal. The element experiences shear. hence the angle of rotation of the
cross-sectional plane is greater than that of the neutral plane. A fiber element is shown at a
distance - from the neutral plane. The longitudinal struin, or extension, of this fiber is represented
by dk. The width of the element is represented by hiz).

NEUTRAL
PLANE

v

Fig. 5.4. Element of a Bending Beam

Forces and Moments

Figure 5.5 shows the forces and moments experienced by an element in bending. Although the
net extensional force on the element. F_.is zero, each fiber experiences a force proportional to its
extension and given by

3
dF, = - Ybd§ = - Yb LN (5.10)

ox

where Y is Young's modulus and b is the width of the element, as previously defined. From
Fig. 5.4 it is clear that the extension of each fiber is proportional to its distance from the neutral
plane and is also a function of the curvature of the element. From geometric considerations, it
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Zw

'

dx —p

X x+dx

Fig. 5.5. Forces and Moments Associated with Flexure

follows that

af af
df = —dx = zdf = z —dx .

0x 0x

Substituting into Eq. 5.10, the extensional force is

i of
dF. = - Ybz —dx .
ox

(5.11)

(5.12)

Although the net extensional force is zero, this force causes a rotational moment about an axis

in the neutral plane perpendicular to the plane of the motion, given by

oF .
M = '/.-.‘dF\r = '/;’ 8 -
' 0z

Using Eq. 5.12 for the extensional force,

20 a0
M:—‘/-szzédz=—Y4—f:2d:.
ox ox

(5.14)
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The integral in this expression is the moment of inertia, I, of the beam cross-sectional area relative
to the neutral plane. It is usual to express it as the product of the cross-sectional area, S, and the
square of the radius of gyration, K. Thus,

a6 06
M=-Yl— =- YSk? — . (5.15)

ox ox

The product of Young’s modulus and the moment of inertia is called the bending stiffness or
rigidity, B.

Transverse Acceleration

As shown in Fig. 5.5, the beam element experiences a net perpendicular force, dF_, which
force is related to the transverse acceleration of the element by Newton’s second law. Thus,

oF
n de = = dF, = = £dx , (5.16)
ot* ox

where u is the total mass involved in the motion per unit length of the beam, including any
entrained mass, m,,, of the fluid as well as the mass of the structure. Defining € as the ratio of the
entrained mass to that of the structure,

u=1(1+¢€ fpst = (1 + e)p,S (5.17)
S

and

oF . s -
Z o= - v =-(1+ epSw , (5.18)

ox

where each dot represents a differentiation with respect to time.

Rotational Acceleration

The p_erpendicular force, F,, and the net moment on the element combine to create a rota-
tional torque on the element about an axis through its center of gravity (c.g.) perpendicular to the
plane of the motion. This torque causes rotational acceleration of the element. From the rota-
tional form of Newton's second law,

- oM )
I'o dx = - (F,: -+ )d_\‘ , (5.19)

ox

where /' is the mass-moment of rotatory inertia about the c.g. and is given by

= ﬁsbz':’ dz' = p,Sk'? . (5.20)
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In this expression, z' is measured from the c.g. If the section is symmetric and homogeneous, I
will equal p /. We will find it useful to represent the ratio of [' to the product p/ as a non-
dimensional coefficient of relative rotatory inertia, o, as

[l’
o = — | (3.2T)
ol
Eguation 5.19 can now be written
. oM
oc'ﬁsm i By o — (5.22)
ox

Considerations of Shear

Equations 5.15, 5.18 and 5.22 are three independent equations relating the transverse tforce,
F_, moment, M. section angle, 6. and section displacement, w. A fourth equation is needed in
order to solve for w or @ alone. Early investigators, including Rayleigh, assumed that any shear
distortion of the element would be negligible and that the slope of the neutral plane would equal
the angle of rotation, 8. Timoshenko (1921) was the first to include shear distortion. He noted
that the transverse force causes the slope of the neutral plane to be less than 6 by an amount given
by the shear strain divided by the shear modulus, i.e.,

F
- L (5.23)

ox KGS

where K is a factor, always less than unity, that takes into account warping of the cross section
and the lack of constancy of the shear force over the entire section. K depends on both section
shape and Poisson’s ratio.

The product KGS has the dimensions of a force. It is useful to follow Plass (1958) and define a
non-dimensional shear parameter, T', by

Y I Y0
Y _ L fe\ _ AL+ (5.24)
KG K \c K

A

=
I

Since K is always less than unity, this parameter always exceeds 2. Equation 5.23 relating the slope
of the neutral plane to the transverse force can now be written

B s il , (5.25)

dax YS

Differential Equation for Bending

Equations 5.15, 5.18, 5.22 and 5.25 can be treated as a set of four coupled equations and their
solution found by finite difference, or other computational methods. They can also be combined
to form a single fourth-order differential equation for the displacement, w. In its most general
form, the resultant equation is quite complicated and of little practical use. However, it can be
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shown that a number of the terms are invariably small compared to others and can be eliminated
without materially affecting the result.

To derive the differential equation for bending, the second derivative with respect to x of
Eq. 5.15 and the first derivatives of Egs. 522 and 5.25 are combined with Eq. 5.18, and certain
third-order terms involving spatial derivatives of beam dimensions are eliminated. The result is an
equation for flexural displacement of a beam that ‘involves only even-order space and time
derivatives,

22 3?2 520 T3

wiv + i8N - (o + e+ o) g S 2B e e
ax? ax? ox? Y

(5.26)

where f(x,t) is any applied force per unit length. Assuming that the material is homogeneous, and
using Eq. 5.1 for ¢, the resultant equation is

. K’ 9*w 2.dl 9w 1 d*] d*w ; k: 9w
w o+ e — + — - (F(1+€)+Ci)
I +e€ dx* [ dx ax? I dx? oax? ] + € ox?

o«Tr? ...  flx.t)
=

(5271

cﬁ U

This differential equation is more general than the equation originally derived by Timoshenko. It
includes effects of non-uniformities and of entrained mass as well as rotatory inertia and shear
distortion.

Equation for Uniform Beams

Timoshenko’s equation applies to uniform beams and also to non-uniform beams for which
spatial derivatives of the moment of inertia are negligible. Retaining entrained mass terms,
Eq. 5.27 becomes

35 4 2 200 "2 /o

cher  0%w K 9w o Tk flx.t)
9% (o1 +e) + o) — T T _(5.28)
] +e ax* ] + e ox? ch u

w +

This final equation is the basis for analyses of structural vibrations covering a wide frequency
range. [ts validity has been corroborated by a number of investigators. Huang (1961) found it to
give results in excellent agreement with those of exact elasticity theory. Further, Ripperger and
Abramson (1957) confirmed Timoshenko’s theory as applied to relatively high frequencies by
experiments involving the response of beams to hammer blows. Equations 5.27 and 5.28 may
therefore be used with confidence over the entire frequency range of interest in structure-borne
sound.

Euler-Bernoulli (E-B) Equation

When dealing with relatively thin beams and/or low frequencies, the first two terms in Eq. 5.28
are dominant and the equation takes a simple form:
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chr?  tw _ fix.t)

I + e ox* u

w + (5.29)

This equation was derived independently by Euler and Bernoulli in the 19th century. In their
derivations, they ignored rotatory motion of the beam element and also shear distortion, which
amounts to setting both « and I" equal to zero. Their equation is often quite useful, and many
texts use it exclusively when treating flexural vibrations. In what follows we will find that low-
frequency limits of more complete expressions are solutions of the E-B equation.

5.4 Speed of Flexural Waves

Harmonic Solutions of the Timoshenko Equation

The complete Timoshenko beam equation can be used to solve for the displacement, w, of the
neutral plane for a given force distribution. Also of interest in acoustics is the effective phase speed
for flexural motions as a function of frequency. Equation 5.28 is a fourth-order linear differential
equation and not strictly a wave equation. However, only even-order derivatives are involved. As a
result. when motion at a single frequency is assumed, an effective wave speed can be found.

We may express the complete solution of Eq. 5.28 as the sum of four terms, of the form

4
w= 3, A, elwr-kxl (5.30)
=i

Substituting Eq. 5.30 and its derivatives into Eq. 5.28 yields

2 2

- w4, + ¢} K k4, - (D01 + @) + o) — e PR,
I + € 1 + €
o'Tk? (x,
o, w B (5.31)
g 7

This equation can be used to solve forced vibration problems, provided only that the effects of any
non-uniformities of the beam are negligible. Expressions for wave phase speeds can be obtained by
considering the homogeneous equation for free vibrations in the absence of any external forces.
Setting the forcing function equal to zero results in a quartic algebraic equation for k; for which
there are four solutions. Two of the solutions are real and two are imaginary. The two real
solutions are equal in magnitude but opposite in sign and represent flexural waves traveling in
opposite directions. We may represent these values of k; by * kj-. since kf has all the properties of a
wave number for propagating sinusoidal components. The two imaginary solutions are represented
by * iv. These terms have exponential form and account for non-sinusoidal distortions that occur
at discontinuities in the geometry of the structure, especially at the ends. Thus, the solution of the
homogeneous form of Eq. 5.31 may be written

wo= ée‘z-lcfx I3 Et,ikf.x + ge-‘Yx + QET_\' ) (5.32)

Alternatively, in terms of sinusoids and hyperbolic functions,
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-

w = asinkgx + bcos kex + csinliyx + dcoshyx . (5.33)

We will return to these equations when dealing with resonances of finite structures in the next

section.
Since the two real solutions are wave solutions, Eq. 5.31 can be transformed into an equation

for the fexural wave phase speed, vy which is related to the wave number by

vilw) = © (5.34)
kj-

The homogeneous form of Eq. 5.31 can be written

] - &T(1 + ¢€) (f_) Y
Q CQ
Lo v+ (2 () - (-f-) =i, (5.35)

where § is a reference angular frequency defined by
s € 3
Q= . = ,_Q\/TTZ (5.36)
Y/ K

This is a non-dimensional form of the complete Timoshenko beam equation, expressed as a quartic

for the relative flexural wave speed as a function of a relative frequency and three dimensionless

parameters representing the effects of entrained mass. shear distortion and rotatory inertia.
Applying the quadratic theorem, the complete solution of Eq. 5.351s

4 2 2
(Il +e- o« ) (ﬁ’. + 4 (-“."-> - (1 +e) +d) s
vy 2 B Q Q Q
] ; W\
2(1-daT(1+e) (H—)
Q

This is a complex function of the parameters, which fortunately can be represented quite ac-
curately in terms of approximate solutions applicable at low, intermediate and high frequencies.

(5.37)

Low-Frequency Approximation

Examining Egs. 5.35 and 3.37, it is apparent that the terms which invoive the shear parameter
and the relative rotatory inertia are proportional to the square of the relative frequency. These
terms are negligible for relatively low frequencies, for which
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(_}fj_) Jw WK 1 4 WYl (w)l
. ’___:_ r{Z\ <<i
Fi Q ‘\’]+e i Q2

Q 0 €Q ¢ M

This same result could have been derived directly from the homogeneous form of the E-B equa-
tion, Eq. 5.29. We can now interpret £ to be the value of w for which the flexural wave speed
would equal the longitudinal wave speed, if the E-B equation were valid at all frequencies.

Since the flexural wave speed depends on frequency, low-frequency flexural waves are dis-
persive. The speed \0i is the phase speed for a monochromatic component. If a wideband pulse is
transmitted, it will travel with a group velocity, Vo equal to twice the phase speed at the median
frequency, provided Eq. 5.38 is a valid approximation.

(5.38)

High-Frequency Limit

At the very highest frequencies, flexural waves degenerate into shear waves. Although these
waves have little practical importance in structure-borne sound, the expression for their phase
speed is useful as a limit. In the high-frequency limit, the entrained mass approaches zero, and

2 2
Y L gl & r(i"—)>>1 ‘ (5.39)
C‘Q r (‘Q Q

h

Since the effective shear area is always less than the cross-sectional area, the limiting flexural wave
speed is always somewhat lower than the shear wave speed. In terms of the low-frequency, E-B
result, the high-frequency limit may be expressed by

; 1
fli ER . (5.40}

Yo r (f_)
Q

Intermediate-Frequency Approximation

Between the lowest and highest frequencies, the wave speed curve, as given by its complete
solution in Eq. 5.37, makes a smooth transition from the low-frequency values of Eq. 5.38 to its
high-frequency limit given by Eq. 5.39. In this intermediate frequency range the entrained mass
has a decreasing effect. In addition, Budiansky and Kruszewski (19537 and others have shown that
the effects of shear distortion are always at least three times as great as those of rotatory inertia.
These facts can be used in deriving approximate relations for the flexural wave speed for inter-
mediate frequencies. Equation 5.37 can be written

AN AN N R R s 1]
co o ), I - 485 h

where

ol +
5 = L—i(f) (5.42)
> Q
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and

r

e .- B (5.43)

(1 + €

The parameter & expresses the magnitude of the rotatory inertia correction relative to that for
shear. This factor never exceeds 1/3 and is often smaller. In the limit as @ — 0, Eq. 5.41 reduces to

r é(\,] T8 =5 . (5.44)
V.

fe

Since the effect of rotatory inertia is relatively small, Eq. 5.44 can be used to calculate corrections
to the E-B solution for all frequencies. The correction is not significant for values of & less than
about 0.05. For values of & > 3, Eq. 5.44 gives values in very close agreement with those from the
high-frequency expression, Eq. 5.40. Between these limits it may differ from that given by
Egs. 5.37 and 5.41 by as much as 3%. as shown in Fig. 5.6. Since values of other quantities such as
entrained mass are often uncertain, Egs. 538 and 5.44 are recommended for calculation of the
flexural wave speed throughout the entire frequency range unless very precise values are required,
when Eq. 5.41 should be used.

Solid Rectangular Bars

The equations for bending vibrations derived thus far in this chapter are quite general in that
they apply to any type of cross section and include entrained mass. Beam structures having solid,

1
— APPROX. (Eg. 5.44)
0.8 =N |
- EXACT-T X\ _.— HIGH—FREQ. APPROX.
: (Eq.5.41) (Eq. 5.39)
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Fig. 5.6. Flexural Wave Speed Relative to Low-Frequency Approximation, for &= 1/3
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rectangular cross sections are frequently encountered in practice. It is instructive to consider the
special case of such uniform rectangular beams vibrating in air. For solid bodies of rectangular

cross section having width b and thickness 7,

and

and

The low-frequency approximation of Eq. 5.38 leads to

(J.) L@ eh
; 2 12
e /g °Q

and the high-frequency limiting value is

vY 1L . 4+0 04
co r 10(1 + o) 3

The low-frequency solution can also be expressed in terms of the flexural wave number, k..

dividing both sides ot Eq. 5.51 by Vi giving

VfQ wh kjh

€ va \’12 12

2(1 + 1+ 5 3
F—( U)ﬁm 7 2 — 171 4+ —0
K 4+ 0 2 4

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.53)
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The intermediate-frequency correction given by Eq. 5 44 can be used for solid rectangular bars
with § given by Eq. 5.50. However, for metal bars the more exact solution of Eq. 5.41 has an
especially simple form. For most metals, the shear parameter, Eq. 5.48, is close to 3. TakingI'=3
and o = I, Eq. 5.37 reduces to

w ; w

, 1+ (—) -2 —

. Q Q
i : 2 (5.54)

2
V.
e ;- 302
Q

This result is plotted in Fig. 5.7. Also shown is the high-frequency limit and a simple approximate
formula,

i

(5.55)
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Fig. 5.7. Relative Flexural Wave Speed of Solid Metal Rectangular Bars

Nelson (1971) derived a universal dispersion curve for solid rectangular bars which he ex-
pressed in terms of the flexural wave number, kf-. His results for metal bars can be represented by
the expression
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2
T = (5.56)

. 3
fe 1 +\F + = (kh)?
4

up to kf/z = 8, as shown in Fig. 5.8. Above !cf-!r = &, Nelson’s values are in good agreement with

th ) 3

va kflz

Most of the expressions for flexural wave speeds given in the present section on rectangular
bars can be applied to solid rods having circular cross sections. Since the radius of gyration is

K = . (5.58)

it is only necessary to replace /1 by \/(3/2)D wherever it occurs.
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Fig. 5.8. Dispersion Curves for Rectangular Metal Beams
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5.5 Flexural Resonances

Just as an organ pipe has resonant frequencies which are related to the ratio of its length to the
acoustic wavelength, so finite length beams have resonant frequencies for flexural vibrations. Beam
resonant frequencies depend upon method of support, much as pipe resonances depend on
whether the pipe end is open or closed. Since flexural resonances of finite structures play an
important role in structure-borne sound, considerable attention has been given to this subject in
the literature.

Uniform Thin Beams

There are two approaches that can be used to find resonances of uniform beams. The more
common one starts from the assumption that the solution of the differential equation involves
four terms, as given by Egs. 5.32 and 5.33. Values of the four coefficients can be found by using
cither of these two equations, its first three derivatives, and mathematical expressions for the
physical conditions at the ends. Resonance frequencies are then determined by assuming that the
applied force is zero.

In the second approach, a wave is considered to travel from one end, to reflect from the other
end, and to reflect again from the first. Resonance occurs when the wave that has completed a
round trip is in phase with a wave that is just starting out. In this approach, the beam equation is
used to find the flexural wave speed, from which the time of travel can be computed. The
boundary conditions at the ends merely act to impose phase shifts. Both methods will be
developed. The first is more usual and the second has the advantage that it can be readily applied
to many non-uniform beams.

In the frequency regime for which the E-B equation, Eq. 5.29,is valid, the complete solution
of the homogeneous equation is as given by Eqs. 5.32 and 5.33 except that v = kj-. From Eq. 5.38,

)
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(5.59)

For an infinite beam, all values of kj- are valid solutions of the homogeneous equation. However,
for a finite beam only certain values can occur and these are dependent on the end conditions.

The mathematical end conditions depend on the physical nature of the end attachments. There
are three basic end conditions generally considered:

a) free,
b) clamped, and
¢) simply supported.

For a free end, no requirement is imposed on w or on its first derivative. However, both the
moment and the force must be zero. From the derivation of the bending equation in Section 5.3,
it can readily be shown that these conditions require that the second and third derivatives of w be
zero. For a clamped end, both w and its first derivative must be zero. For a simply-supported end,
both w and the moment must be zero, from which the second derivative of w must also be zero.

With these end conditions and simultaneous solution of the resultant equations, it can readily
be shown that, for free and/or clamped end conditions, the condition for resonance of a beam of
length L is given by
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cos kpL cosh ka =% F (5.60)
where the plus sign applies to bars that are free or clamped at both ends, and the minus sign
applies to a beam that is free at one end and clamped at the other. If both ends are simply
supported, the corresponding resonance condition is

sin kgL = 0. (5.61)

The frequencies that satisfy Eqs. 5.60 or 5.6 1 are the resonance frequencies.

Except for the lowest frequency resonances, the beam length is large compared to a flexural
wave length, i.e., ka > > ]. The hyperbolic cosine in Eq. 5.60 is therefore large compared to
unity, and the resonance condition is simply that cos ka be zero. Thus, for free and clamped
ends, the condition for resonance is

ke L =(2m - “_zr_ . (5.62)

‘tm 2
where the index. m. indicates the number of nodes that occur along the length of the beam.
Solving for the resonance frequency,

g = Ym = g2 g2 ot som-1p L L (5.63)
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It follows that, in the low-frequency regime, the frequency separation between resonances in-
creases linearly with frequency.

For a beam free at one end but clamped at the other, m can be any integer starting with 1.
However, the case m =/ has to be ruled out for a beam free at both ends (tree-free) because it
would imply a rigid-body translation or rotation of the beam. Since no external forces or moments
are allowable in a resonance condition, this case is not admissible. The lowest natural frequency of
a free-free beam is therefore the two-noded one, for which m = 2. Figure 5.9 illustrates some of

Fig. 5.9. Low-Order Resonances of a Free-Free Beam
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the lower order resonances of a free-free beam. Since a clamped end is a node, the lowest order
resonance of a clamped-clamped beam is also the two-noded one. The resonances of clamped-
clamped beams are therefore also given by Eq. 5.63 with m = 2

The resonance frequencies for free and clamped thin beams given by Eq. 5.63 are quite
accurate for m = 3. However, the values for m = | and m = 2 are somewhat in error. The reason
for this is that at the lowest resonances the hyperbolic cosine is not sufficiently large and the
cosine, while small, can not be set equal to zero. Equation 5.63 can be made to give correct
resonance frequencies if m is adjusted slightly. The adjusted values for m are given in Table 5.1.

Table 5.1.
Resonance Conditions for Thin Beams Using Equation 5.63

No. of Free-Free
Nodes Clamped-Free Clamped-Clamped

1 m = 1.0968
2 m=1.994 m = 2.0056
3 m = 3.000 m = 3.000

The resonance condition for a simply-supported beam is satisfied by

k. L =(m-Dr (m=2), (5.64)

fm

from which the resonance frequencies are

w T Ke
fou m - (m - 1)? ¢

2w 2L% \’1 + €

and no corrections are required, even for the fundamental.

The upper frequency limit for applicability of thin-beam resonance conditions, § <.03, can
be translated into a limitation on the order of the resonance. Thus, thin-beam approximations are
valid provided

0.08L
T

Higher order resonances require use of the complete Timoshenko equation.

m < (5.66)

Correction for Shear and Rotatory Inertia

The thin-beam approximations for resonance frequencies are only valid as long as the flexural
wave speed is given closely by the E-B equation. At higher frequencies, shear and rotatory inertia
influence the result in two ways: first, the phase speed is reduced relative to the E-B value:
second, the effects of the ends are increased, introducing a phase shift.

The effect of the flexural wave speed on the wave number is readily calculated from the results
of the previous section. Thus, from Eq. 5.44,
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where kf is the low-frequency approximation, as given by Eq. 5.59. The parameter y which
o

controls the space-rate-of-decay of the influence of the ends is given by

7=kfolf—=/\-fo\[\f1+5l—a *—-kf-( 1+52f5) : (5.68)

va

It is to be noted that the low-frequency wave number, k}- , equals the geometric mean of vy and kf-.
[}

Leibowitz and Kennard (1964) have shown that when end conditions are applied to the full
Timoshenko solution, Eq. 5.33, and its derivatives, the resonance condition for beams with free
and/or clamped ends becomes

kz _ 2
x 1 = cos ."\'J,-L cosh yL + i sin ka sinft yL . (5.69)
_"ykf
Substituting for v from Eq. 5.68, one finds
+ ] = cos ka cosh yL + & sin fch sinh yL , (5.70)
from which it can be shown that, form = 2,
T } -
ke L =(2m - 1) — + an' s . (5 71)
‘m )

-

Equation 5.71 is identical to Eq. 5.62 except for the phase shift. The effect of this phase shift is to
raise the resonance frequency from its low-frequency value. However, the effects of shear and
rotatory inertia on the wave number itself, as expressed by Eq. 5.67, are much greater. The net
result is that the resonances in the intermediate-frequency region are lower in frequency than they
would be if the thin-beam solution were applicable. Since & is itself a function of the frequency,
solutions for resonance frequencies require an iterative process. A formula which fits the results
very well is

¥ 2
f n wm -

= % — (5.72)
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where 52 is calculated in terms of the low-frequency estimate of resonance by
Ol +e © Pl +e ©m& T ¥ B\
= L = € " - fom-n2Z2) (573
¢ 2 Q 2 2 2 L

Z CQ



55 FLEXURAL RESONANCES 127

Substituting this expression into Eq. 5.72 leads to a formula for the correction factor in terms of
the order of the resonance and geometric factors,

! w 2

Im = n - . (5.74)

g - 2
j’”Q wmQ 1 + ’ ] + 30(m - 1)Pn* “
L:’.

This same expression also applies to resonances of simply-supported beams. It is graphed in
Fig. 5.10.
In the limit at high frequencies,

(m - l)n cq
=k T : 5. 75)
wmh fm th T ,J_F (
and
e ) L KGS
. = . (5.76)
= 4
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This relation is also plotted in Fig. 5.10. Equation 5.74 can be rewritten in terms of the ratio of
the two limiting values of resonance frequency as
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Fig. 5.10. Correction Factor for Beam Resonance Frequencies
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2
Im = _“m . - _ (5.77)
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Thus, the procedure to be used in calculating flexural resonances is as follows: first, calculate the
E-B value from Eq. 5.63 or 5.65; next, calculate the high-frequency limit for the same order from
Eq. 5.75, or its ratio to the low-frequency value from Eq. 5.76; and, finally, correct the E-B value
from Fig. 5.10 or Eq. 5.77.

For solid rectangular bars having ¢ = 0.3, Eq. 5.74 reduces to

2
Im = _“m . - | (5.78)
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This result differs significantly from the formula originally derived by Timoshenko (1921) and
published in a number of texts. The Timoshenko formula,

- 2 2 2
fm = “on = ] - i m? __TL _;_1 , (5.79)
f wmQ 4 2 i
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agrees with Eq. 5.78 only up to a 10% correction. For higher frequencies it overestimates the
correction by increasing amounts, as shown in Fig. 5.10.

Wave Approach

In the approach to resonances used thus far, boundary conditions at the ends were used to
evaluate the four coefficients of the complete solution for uniform beams and thus to determine
resonances. The wave approach to resonance calculation allows a single unified solution indepen-
dent of the frequency regime, and it has the important advantage that it can readily be applied to
non-uniform beams.

In the wave approach, emphasis is placed on the two wave terms of Eq. 5.32 and resonance is
found in the same manner as for an organ pipe or for standing waves on a string. The boundary
conditions at each end are assumed to act independently and to introduce phase shifts between
incident and reflected waves. The condition for resonance is that a wave that has made a round
trip and is starting out again be exactly in phase with a wave being generated. This is the well-
known condition for standing waves in any kind of linear resonator. Stated differently, the
condition for resonance is that the change in phase of the motion at one location in the time that
the wave makes a complete round trip be equal to the phase shifts suffered by the traveling wave
upon reflection from the two ends. The phase shift at a fixed point during the time of travel, 7, is

b = wT . (5.80)
Resonance occurs when

(b - (A(b] + Aéz} = .277”1 . (5\‘9])

o
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The time of travel, T, is obtained by integrating the reciprocal of the velocity,

k4
T =2 f Sy (5.82)
V.

0 /

Combining Egs. 5.80, 5.81 and 5.82. the general resonance condition for any type of plane wave
motion may be written

L

1 ] e

- (bo = wn! f d_\f = f kf dx = InmT + A¢ . (583)
2 m
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where A¢ is the average of the phase shifts at the two ends. The integer m equals the number of
nodes of the vibration along the structure.

The problem of calculating resonances using Eq. 5.83 reduces 1o the two separable tasks of
determining the wave speed, or wave number, and finding the average phase shifts. The wave speed
or wave number can be calculated using any of the previously developed approximations. Except
at the very lowest resonances, H= | to m = 3, the two ends may be considered to act indepen-
dently. The exponential term is Zero for a simply-supported end. producing a - 180° phase shift at
all frequencies.

The situation is not so simple for free and clamped end conditions. The reduction of ¥ relative
to k. which occurs for thick beams, implies a change in the influence of the exponential terms.
Not only does the influence extend further from each end. but also the relative amplitude in-
creases. As an example, consider a clamped end at x = 0. The expressions for the displacement and
the slope are '

w0) =4 +B8+C. (5.84)

and

aw s
—(0) = - ik;Ll4d - B) - 4LC . (3.83)
ox

Setting both equal to zero,

ks K. k
= L = / i _ (5.86)

= I————

I+z’(-—1 1+(_7_>-
kg ke

The phase angle introduced by the reflection equals the angle whose tangent is the imaginary part
of the ratio of A to B divided by its real part:
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0!
- 0
A¢ = tan™ kf = - tan’! ’ ( VI * il 5)2 = - tan’! i
]_(ly 1-(,f1+52-5) 5
Vi (5.87)

Since 6., defined by Eq. 5.42, is a function of frequency, the phase shift varies with frequency,
from - m/2 at low frequencies to zero at the highest frequencies. The phase shift at a free end is
also given by Eq. 5.87.

For uniform beams, application of Eq.5.83 with the appropriate phase shifts leads to
resonance conditions identical to those derived by the more common method, as expressed by
Eq. 5.71 for free and/or clamped ends and by Eq. 5.64 for simply-supported ones.

5.6 Non-Uniform Beams

Turbine blades and ship hulls are examples of beam structures whose resonance frequencies are
affected by non-uniformities of their cross sections. There are two ways in which these non-
uniformities act to alter flexural wave speeds and hence resonance frequencies. Variations of the
radius of gyration along the beam result in different values of the flexural wave speed at each
section, as computed by the formulas of Section 5.4. In addition, changes of the moment of
inertia, 7, add terms to the basic differential equation. Thus, the correct differential equation for
non-uniform beams., Eq. 5.27, includes two terms involving derivatives of / that are not considered
in Timoshenko’s equation, Eq. 5.28.

A number of approaches have been used to find resonances of non-uniform beams. Some
beams vary smoothly and solutions can be found by analytic methods. Other cases are better
treated by dividing the structure into a number of finite elements and solving the resultant
network matrix. The author’s wave approach to finding resonances described in the previous
section can also be applied to non-uniform beams. It is relatively simple to use and can often
replace other methods.

Finite-Element Methods

In the finite-element approach, the structure is divided into as few as 4 to as many as 400
discrete elements, and the basic bending relations are expressed as a set of four equations for each
element. The resultant matrix of simultaneous equations is then solved by an analog or digital
computer. Resonance frequencies are those frequencies for which the resultant solution agrees
with the end conditions.

When dealing with a finite section of length Ax, Egs. 5.15, 5.18, 5.22 and 5.25, which relate
forces and moments to displacements and angles, may be written in the form

Ax =
Al = - (—)M : (5.88)
Y1

AF, = (uAX)w*w (5.89)
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(I'Ax)w?8 = FzAx + AM ‘ (5.90)
and
Ax -
Aw = 0Ax - ( )Fz ) (5.91)
KGS

The computation is started by assuming a frequency and assigning arbitrary values to the non-zero
quantities at one end and zero to the others. The four equations are then used to calculate the
changes over length Ax. The procedure is followed until the other end is reached. It is then
repeated for other values of frequency. Those values of frequency which give the proper values at
the second end are resonance frequencies.

Prior to the development of high-speed digital computers, McCann and MacNeal (1950) and
Trent (1950) independently developed electrical analogy methods for solving vibrating-beam prob-
lems. In these methods, the expressions in parentheses in Eqs. 5.88-5.91 are represented by electric
circuit elements, usually inductances and capacitances. Two nets are used, coupled by trans-
formers. One net deals with forces and involves mass and shear; the other has elements for bending
rigidity and rotatory inertia related to Eqs. 5.88 and 5.90. Figure 5.11 shows such a coupled
circuit for a beam element. With the electric analog, resonances are indicated by peaks of the
voltages that occur as frequency is varied. Damping can be taken into account by adding resis-
tances. The problem with this method is to pick a scaling factor such that the circuit elements will
have reasonable values.

Other finite-element methods assume a deflection curve and use variational techniques to
determine modal frequencies.

. i Ax
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5 v KGS
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Fig. 5.11. Electric Circuit Analogy for Section of a Vibrating Beam
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Wave Method

The wave approach described in the previous section can be extended to non-uniform beams
provided that the terms in Eq. 527 that involve derivatives of the moment of inertia are small.
Substituting Eq. 5.44 for Ve and Eq. 5.38 for va into Eq. 5.83, the expression for resonance

frequencies of a moderately non-uniform beam is

%(i/jiagég_(qq‘17ﬁ7k5)¢u

L4 e
= f Rl (1/1 + 852 + 6)2 dx = M . (5.92)

0 Yl Wi

Since the parameter 8, defined by Eq. 542 is a function of frequency as well as of position,
solution of Eq. 5.92 requires an iterative procedure.

There are several practical ways of solving Eq. 5.92. [n one method, the integral is evaluated at
a number of frequencies spanning the range of interest and the result plotted as a function of w.
The right-hand side is also plotted as a function of w for a number of mode numbers. Each
intersection represents a resonance frequency. In a second method, the effect of non-uniformity is
separated from that of shear. The low-frequency approximation for the resonance frequency is
found from

&)

+ A
g = i , (5.93)
L
L+ €
f dx
0 ke

and the high-frequency approximation from

_ CQ(rmr + Eh) _ S (m'"' + @1) ‘ (5.94)
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Either Eq. 5.77 or Fig. 5.10 is then used to estimate the correction for shear in terms of the ratio
of the two limiting values.

An advantage of the wave method relative to most finite-element methods is that, when
carrying out the integrations, the beam can be divided into natural elements rather than into even
parts. Another advantage is that the effects of non-uniformity and of shear are clearly distin-
suishable. The major disadvantage is that it is not valid when derivatives of the moment of inertia
are important or when end conditions at one end affect the other. Both of these problems occur
only at the lowest frequencies, i.e., for the lowest-order modes.

g
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Tapered Cantilever Beams

The limitations of the wave approach can best be understood by examining the extreme case
of a doubly-tapered cantilever beam. Such a beam, having rectangular cross section, is shown in
Fig. 5.12. It is usual to express each resonance of a tapered beam in terms of that of a uniform

Fig. 5.12. Doubly-Tapered Cantilever Beam

beam having the same dimensions as its base. Using the wave approach and ignoring any effects of
shear distortion, this ratio is

(—h) : o ) : : (5.95)
0 L : L #
W, (0) 0 ] f dx f h, d( b )

L ~p \f K 0 h L

Eoe _"—(1 £ it = 9 (1 - i)) , (5.96)
h o L

2
_Ym |\ = Codol- . (5.97)
“m(0) ), 20 - 24

This result is independent of both the resonance order and taper of the width. Also, it predicts
that resonance frequencies of tapered beams should always be lower than those of a uniform beam
having dimensions of the base throughout.

Martin (1956) measured the resonances of a number of tapered beams. He found that the
fundamental increases with increasing taper, while a1l of the harmonics decrease. Mabie and Rogers
(1964, 1972 and 1974) calculated the resonance frequencies of doubly-tapered cantilever beams,
starting with the differential equation

it follows that
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- 04 2 dI 93 d* 9*w
ww + Y/ L it s ! ! " =0, (5.98)
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which accounts for changes of the cross section but not for shear distortion. Their results are
summarized in Fig. 5.13. It is clear from these resuits that derivatives of the moment of inertia are
important for the first four or five resonances, and that the wave approach solution given by
Eq. 5.97 is accurate for higher order resonances.

Since doubly-tapered cantilever beams represent an extreme, it appears that derivatives of the
moment of inertia can be neglected when dealing with moderately non-uniform beams, especially
when calculating resonances involving five or more nodes. This matter is discussed further in
Section 5.11 on the flexural resonances of ship hulls.

0.4

0.3 ] | ]

Fig. 5.13. Effect of Taper on Resonance Frequencies of Cantilever Beams,
as computed by Mabie and Rogers (1972, 1974)
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5.7 Forced Vibrations of Non-Resonant Structures

Mechanical Impedances

As discussed in the introduction of this chapter, beam-like structures often act as transmitters
of vibrations from sources to radiating surfaces. The response of beams to exciting forces and their
properties as transmitters of vibrations are commonly described in terms of input and transfer
impedances and/or admittances, or mobilities. Since the differential equations describing bending
are linear. vibratory responses are proportional to exciting forces. Mechanical impedances are
defined as ratios of exciting forces to resultant structural vibratory velocities. Thus,

Flw)

Zlw) = (5.99)

wlw)

If the velocity is measured at the point of application of the force, the resultant is called the input
impedance. If the velocity is measured at a different location, then a transfer impedance is
determined. Since force and velocity are generally not in phase, impedance is a complex quantity
consisting of a real, or resistive, component and an imaginary, or reactive, term.

The resistive component of the impedance controls the flow of power in the system. If the
source is a vibratory velocity, then the power transferred to the structure is given by

W= F* - b, = RF(ZW? = R} . (5.100)
If the source is in the nature of a torce, then the power transferred is

R e
F? . (5.101)

1

W= w* -, =RP _{ F—il—:
z | z|?

The reciprocal of impedance is called either admittance or mobility. The power absorbed or
transferred when the source is a force is therefore proportional to the real part of the admittance,
called conductance in analogy to electric circuits.

While almost all structures have resonances, their impedances as non-resonant structures have
special significance. Thus, when dealing with excitation of one end of a finite beam, the solution
involves its impedance as a semi-infinite beam, and excitation far away from a beam end is related
to that for an infinite beam. The two derivations are closely related. We will first consider
semi-infinite beams.

Semi-Infinite Beams

A semi-infinite beam is defined as a beam that is not only long relative to a flexural wave
length but also sufficiently long that any wave reflected from the far end would be damped out
and therefore negligible at the near end. Thus, in the vicinity of the near end, only two terms are
required to describe the motion. Equation 5.32 can be written

win) = Ae ¥ + Ce™ . (5.102)

Since the beam must be free to respond to a force at its end, the moment there must be zero.
From Egs. 5.15, 5.18 and 5.25, the moment is
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a0 90*w Mupew?
M=« W2 =~ 1 4 w ). (5.103)

0x ax* YS

Using Egs. 5.42, 5.59, 5.67 and 5.68, the coefficient of w can be expressed in terms of &, kf and vy
by

TMuw? Q
SHOT o 05 Y = 28k = K2 - 4t (5.104)
" f f
YS CQ
Hence,
32
M= - YI( * + (k} - ,Yz) m) . (5.103)
2
ox
The second spatial derivative of Eq. 5.102 is
azﬂi 2 -ik g
= - kf*-ifl.ei o+ Ce ™ (5.106)
ax?

Substituting Egs. 5.102 and 5.106 into Eq. 5.105 and setting the moment at x = 0 equal to 0
yields a relation between the two complex coefficients A and C,

- kA + YO+ (k} -¥) A4 +0=0, (5.107)
from which

2 2 _ a2 ,
k}' - (i\f - 'y') v

Since velocity at any point is related to displacement by the time derivative, it follows that

(5.108)

o

2
: k. .
wix) = iww = iwC (—-ﬁ) ethpX + oW . (5.109)

%

The expression for the force corresponding to this velocity is somewhat more complicated. From
Eqgs. 5.22, 5.25 and 5.105,

Pw ow 9 r
E=F, =Yl ( =+ (&2 - 1) J—L) + «p J? (i” + __gz) . (5110)

ox3 ox ox ¥S

After some manipulation, this becomes

Y7 1 - 4&8?

F (1 + ) (k- )W
= (f ~ v (5.111)
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where each prime indicates a differentiation with respect to x. Carrying out the differentiations of
Eq. 5.102 with A given by Eq. 5.108, an expression for a force at x = 0 is

K _
i (1 5 Jaﬁ—ﬁ) . 7(1 + 2a6 _7-)
k
F(0) = YICK} i rr (5.112)
1 - 4a8°

The required force appears to become very large as the denominator approaches zero. However,
the magnitude of the numerator also becomes zero and the ratio remains finite. Just as was done
when deriving the flexural wave speed in Section 5.4, a close approximation for the force can be
derived by ignoring the terms involving rotatory inertia. Setting @ = 0, Eq. 5.112 becomes

F(0) = YICKE (ik; - 1) - (5.113)

Dividing the force by the velocity at the end. x = 0, the input impedance is

L =k I(L>
_ Ho0) _ YICk} (ikf— v) - Y!k_y ketiv _ ) ki

w(o) ((_A—L.j . ]) w kv AN
T\ \y Y % &

(5.114)
where the ratio of v to k. is given in Eq. 5.68 asa function of 8.
At low frequencies, i.e., for & <0.05, the input impedance reduces to
I + i
Z. = uv, ————— . (5.115)

Thus, at low frequencies the resistive and reactive components of the input impedance are equal.
As frequency increases and effects of shear distortion are felt, the resistive term becomes some-
what larger and the reactive term smaller. At very high frequencies, 6 > 3, the reactive term is

negligible and Ve in Eq. 5.114 can be replaced by vf’ )
1
The power transferred to a semi-infinite beam by a velocity source is given by

W, = Rwk = - w2 o, (5.116)
I + ( 7)
i
while that transferred by a force source is
R. = I —
W, = —L_F? = — F* | (5.117)
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This simple result is valid over the entire frequency range. Effects of shear at higher frequencies are
incorporated in the expression for the flexural wave speed.

Infinite Beams

A beam may be considered infinite if the excitation occurs far enough from the ends that
reflected energy is negligible. The derivation of the input impedance for this case is actually
somewhat simpler than that for a semi-infinite beam. The force generates waves that progress away
from the point of application, x = 0, in both directions. Thus, forx =0,

wix = 0) = Ae™*r® + Ce ™ (5.118)

At the point of application of the force, the beam moves straight up and down without rotation.
The boundary condition is therefore 8(0) = 0. From Eq. 5.25, it follows that w'(0) = 0. Taking the
derivative of Eq. 5.118 and setting it equal to zero, one finds

A=iYe¢e |, (5.119)
Ky

from which it follows that the velocity is

wix = 0) = iwC (x X etkpx 4 e“‘/-’f) _ (5.120)
K
Since the applied force creates waves progressing in both directions, it must be twice as large as

that required to create only the positive-direction wave. Setting 0 and w’ equal to zero, Egs. 5.15,
5.18, 5.22 and 5.25 yield

. aM 3’0 o’w
F=-2—=2YI = 2YI (5.121)
ox ox? ox3
Taking the third derivative ot Eq. 5.118, with A given by Eq. 5.119, Eq. 5.121 becomes
F =~ 2YICY (kf 4 73) = - 4Yl_(_’1rk;: [ + 8% (5.122)
a
from which the input impedance is
F k
Z = =2uv, (1 +i-L) . (5.123)
W, %

At low frequencies, this is four times as large as that for a semi-infinite beam, Eq. 5.115. As the
frequency increases, the reactive term increases more rapidly than the resistive term. The magni-
tude of the impedance therefore continues to increase with frequency rather than approaching a
constant value, as does that of a semi-infinite beam.

The power transferred by a velocity source to an effectively infinite beam is

— —_—

W. = Rw? = ,"uvftifg , (5.124)

2
1] Lo
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while that received from a force is

5
_ /] - —
- lRf‘Tz . MPE (5.125)
Z Fuvy

The latter expression shows that away from their ends beams become increasingly resistant to the
absorption of power from applied forces as frequency increases. It was this fact that led to the
statement in Section 5.4 that flexural waves are not usually dominant at the higher frequencies,
i.e., for 6 > 3.

Role of Damping

The criterion for a finite beam to behave as an infinite beam is that reflected energy be
negligible. This will occur if power is absorbed at an end or if the vibration is sufficiently damped
in traveling from the source to the end. Every flexing beam experiences at least a little damping.
The alternating extensional motions of its fibers involve storing and release of energy, which
process invariably involves energy dissipation.

In dealing with linear systems at a fixed frequency, energy dissipation can be incorporated into
the analysis by replacing certain real quantities with complex ones, the imaginary components of
which are proportional to the dissipation. This was done in Section 2.4 in considering damped
sound waves in slightly lossy fluids and in Section 43 relevant to pulsating bubbles. In treating
beam flexural vibrations, the elastic moduli ¥ and & control energy storage and therefore account
for dissipation. Since the two moduli are related through Poisson’s ratio by Eq. 5.5 and that ratio
is usually real, the same loss factor applies to both. The procedure used is to replace Y by
Y(1 + in) and G by G(I + in) wherever they occur. When this is done,

cg C'Q‘\/I + in = cQ (] + i 1) 5 (5.126)

5

4 T .n -
Yo - va‘\’] + in = /) (] + z—) , (5.127)

5 n
6 > —4m —— =6 |1 -1— ; {5.128)
\f]+in 2

and

ke = e iy (1 - fi) . (5.129)
0 v o 4
\ fQ

The effect of damping on input impedances of non-resonant structures is usually quite small.
In effect. the out-of-phase components are altered slightly. Thus, neglecting secondary effects, the
input impedance of a semi-infinite beam becomes



140 5. STRUCTURAL VIBRATIONS

. 4 o
= vy / L ) [5,130)

Unless n > 0.5, the effect of damping is quite small.

A more important effect of damping is that it causes spatial decay of the vibrations. Without
damping, the vibratory motion would be the same at all positions on a non-resonant beam remote
from the source. The effect of damping is to introduce attenuation. Substituting Eq. 5.129 for kf
in Eq. 5.109, the velocity at distance x becomes

2
R (i‘f_) o (M4 K px pilwt = kgx) (5.131)
7

Thus, the space-rate-of-decay of the vibration is
-— — T — nkf = [3.65n  dB/wavelength . (5.132)

A beam can be treated as effectively infinite if the source is located distance 1/2n flexural
wavelengths from the nearest reflecting termination.

Damping also controls the rate at which a vibration will decay once the source is removed.
Thus, it can readily be shown that, upon securing a source, a flexural vibration will decay at a rate
given by

)
- —— = —nw = 27.3nf dB/sec . (5.133)
3 2

Damping is often measured by finding the time-rate-of-decay of vibration.

5.8 Forced Vibrations of Resonant Structures

Role of Resonances

As discussed in Section 5.5, finite beams are multiply-resonant systems. When allowed to
vibrate freely, finite beams vibrate at one or more of their resonance frequencies. These resonances
also play an important role in the beam’s response to an applied force, acting as modes or
eigen-frequencies. Response of a beam to applied forces can be calculated as the sum of its
responses at all of the eigen-frequencies. Skudrzyk (1958 and 1968) has based his extensive
treatment of this subject on the fact that any lumped or homogeneous system can be represented
by an infinite number of series-resonant circuits all connected in parallel, each of which represents
one mode. Obviously, the closer the exciting frequency is to the resonant frequency of a mode,
the greater its excitation, provided the force is not applied at a spatial node of that mode.

Usually one is interested in a structure over a range of frequencies. The approach taken is to
plot its calculated or measured impedance or admittance as a function of frequency. Resonances
and/or anti-resonances will then show clearly and the suitability of the system for its intended
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application should be clear. Skudrzyk (1968) and Snowdon (1968) have shown that input impe-
dance and admittance functions are characterized by alternating resonances and anti-resonances,
while transfer functions sometimes exhibit only resonances.

Modal Responses

The total impedance of a number of parallel circuits is the reciprocal of the sum of their
admittances. In most cases, the location and nature of the source is such that the different modes
experience different amounts of excitation. The total response of the structure is then the sum of
the modal responses weighted by the excitation of each. For an infinite number of undamped
modes,

o

. F w¢m

w N — _—
2

pul m=1 w, - @

(5.134)

2

where ¢, is a weighting function giving the relative force for each mode. Without damping, the
response is infinite at each resonance.

In resonant systems, material damping has the important role of limiting resonant and anti-
resonant responses. From Eqs. 5.63 and 5.126,

W, = w I +i—\ (5.135)

and the mean-square velocity is

— 7
Wi A

8

2.2
wqu

272 . 2 2y° 2. .4
T § m=1 (wm—w) + n*w

(5.136)

The half-power points on the resonance curve occur when the two terms in the denominator of
Eq. 5.136 are equal, i.e., at

W . (5.137)

g =S == % = &2 (5.138)

It can also be shown that at low frequencies the amplitude of the motion occurring at a resonance
is O times that which would occur if the system were non-resonant. Also, at low-frequency
anti-resonances the impedance is Q times that for the non-resonant system. Thus, the input
impedance of a structure treated as non-resonant equals the geometric mean of the values at
resonances and anti-resonances.
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Broadband Excitation

In many instances the exciting force covers a band of frequencies that is wide compared to the
bandwidths of any resonances within the band. In this case. the response of each resonance is
obtained by integrating over frequency across the resonance. Thus

Wa

—-: o] - -~
=7~ Frg wdw
m ( a5 3

pili(w, - wy) s Wi - WPt n*w?

= T _ (5.139)

uil(w, - wy)  2nwy,

<4l

provided (w, - w, /) is large compared to the width of the resonance. The power accepted by this
resonance is given by Eq. 5.100 as

<3 W T Fd)—f; _
w, = Rws = nwul * w, = ) (5.140)
2 pliw, - wy/

If the density of resonances is dN/d w, then there will be

AN _
N = —-—((JJ'_; - (AJ|) (.:‘141)

dw

resonances within the band, and the total power will be

W. =

(3

# F* dN )
o (5.142)
2

ul  dw

provided each resonance is excited equally.
The expression of power transferred to a resonant structure is seen to depend only on the
modal density divided by the total effective mass. Following Nelson (1972). we may write

ﬂ;_@_f‘_”izL_‘_fi(;_kfi’l’L):_L_(f_kfii)

dw dkf dw vy dkf dw Vg dew
(5.143)
and the input power becomes
F dv,
W, = I -k —E) . (5.144)
_?,uvf dw
At low frequencies. the dispersion term is 1/2 and the power reduces to
P .
Wi, = : _ (5.143)
¢ 4uv



5.9 VIBRATION ATTENUATION 143

in complete agreement with that for an infinite beam, as given by Eq. 5.125. It follows that the
response of a resonant structure to wideband excitation is the same as that of a non-resonant
structure having the same parameters.

5.9 Attenuation of Structural Vibrations

In Section 1.1 it was noted that reducing the efficiency of vibration transmission from a source
to a radiating surface is usually the easiest way of achieving noise reduction. There are a number of
ways of attenuating such structural vibrations, several of which will be discussed briefly in this
section. Readers desiring more information are referred to the extensive list of references on this
subject at the end of this chapter. '

[solation Mounts

The most common method of reducing structural vibrations is to interpose a relatively flexible
vibration isolator between a source of vibrations and a structural member. The force generated by
a machine, £, normally would act to cause both the machine and its foundation to vibrate. If the
two are rigidly connected, they must share the same velocity and the input force must be divided
between them in proportion to their impedances. The force transmitted to the foundation is
therefore

Fp = ! S (5.146)
Z, + 4

where _Z_J,- is the foundation impedance and Z_ is the internal impedance of the source. If we now
interpose an isolator with impedance Zf between source and foundation, the isolator and founda-
tion will share the same force but divide the velocity. In other words, they will act as parallel
impedances. The force imparted to the foundation will then be given by

p,
. Z. + Z. J
Fl=—= = = . (5.147)
=s
z +Z

The effectiveness of the mount is defined as the ratio of non-isolated to isolated foundation forces
and is given by

o W, + Z.7.
o= | E| o |Gh v EL T 44| (5.148)
-Ej!“ Zf(zf * Zs)

This expression is somewhat simpler if instead of the impedances of the elements one uses their
mobilities, or admittances. Thus

Y.+ Y + Y.
e = | = = =1 . (5.149)
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The logarithmic expression for mount effectiveness is called insertion loss. Insertion loss measures
the value of an isolator as a noise reduction device. It is more meaningful than the often measured
transmission loss, which is the ratio of the vibratory motion of the source to that of the founda-
tion. This ratio is given by

A Z. + Z. Y. + Y;
P Ws = | =i = & | Sl S} (5.150)
iy Z v

and is always larger than the insertion loss. It only measures whether an isolator is operational, i.e.,
whether Z; << Zf as it must be for maximum effectiveness.

The expressxons for mount effectiveness given by Eqs. 5.148 and 5.149 are general. We can
better understand how mounts work by considering some special cases. The simplest system is one
in which the machine is a mass, the isolator is a lossy spring and the foundation presents infinite
impedance. In this ideal case,

) 2
e x| 1= {2\ 2 -w0]. (5.151)
7

where /, is the resonance frequency of source mass and isolator spring constant, and 7 is the loss
factor of the system, assumed less than 0.1. As shown in Fig. 5.14, the mount is ineffective at low
frequencies. In fact, at resonance, it serves to magnify the transmitted force by an amount that is
only limited by damping. Well above resonance, the effectiveness of an ideal mount increases by
12 dB/octave.
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Fig. 5.14. Insertion Loss of an Ideal Isolation Mount
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In the ideal case, insertion loss increases indefinitely with increasing frequency and the opti-
mum mount is the one with the lowest resonant frequency. [n practical shipboard systems,
however, actual insertion losses seldom exceed 30 dB and 10 to 20 dB are typical. There are a
number of reasons for this departure from the ideal. First, springs used as isolators are themselves
distributed systems which may have resonances at high frequencies. At these resonances. their
mobilities are very small and mount effectiveness, by Eq. 5.149. is close to unity. It is to avoid
such wave effects that most modem isolators are composed extensively of rubber, used either in
compression or in shear. A second reason for less than ideal performance of mounts on ships is the
relative mobility of the toundation. Foundations are generally composed of beams which, being
finite. resonate at a number of frequencies. At such resonances the foundation impedance can
become very small relative to that of the source itself. In such a case,

Z,
e = |1 + =L | . (5.152)
Z

=i

and the mount effectiveness is controlled by the ratio of foundation to isolation impedances. At
resonances. as discussed in Section 5 8. the impedance is entirely controlled by the resistive com-
ponent. It is for this reason that Sykes (1958. 1960). Klyukin (1961), Ungar (1962) and others
have recognized the importance of building extra damping into foundation structures. The final
reason for less than ideal mount performance is that the machine itsell also has resonances. With
increasing frequency, its mobility tends to become constant on the average, rather than to decrease
as it would if it were 4 pure mass. Since springs composed of rubber have almost constant mobility
at high frequencies. the insertion loss tends toward a constant, limiting value.

Applied Damping

The importance of damping in limiting system responses at resonances has been stressed in
both Section 5.8 and the discussion of vibration isolation mounts. As will be indicated in
Chapter 6, dumping also controls plate resonant vibrations and thereby affects sound radiation.
For instance, mastic undercoat is used on automobiles and railway cars to reduce their resonant
responses and make them sound less finny. In fact, development of damping for plates and
structural members has been one of the more active areas of noise control development over the
past 30 years.

One approach to damping has been the development ot a number of structural materials having
high internal damping. In his review of this subject, Adams (1972) noted several materials having
favorable damping characteristics. However, these materials are quite expensive and most research
in this area has focused instead on ways of damping ordinary metal structures. Many rubbers have
high internal damping and much of the research has concentrated on the development of rubber-
like (viscoelastic) materials that can be sprayed on or otherwise readily attached to metal. Oberst
(1952, 1954, 1956) and his co-workers in Germany have developed chemical methods to produce
such damping materials.

Oberst analyzed the damping of plates by homogeneous lavers of damping material. attributing
the damping to the extensional-compressional motion which these layers experience as the struc-
ture flexes. Consider the single-layer treatment sketched in Fig. 5.15. The solid rectangular base is
characterized by Young's modulus Y and thickness /. The viscoelastic layer has thickness H, and
its Young's modulus. which includes damping, is Yafl + in, ). The neutral plane of the combined
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Fig. 5.15. Homogeneous Damping Treatment

plate is displaced z, from the centerline of the base section due to the additional layer. The
bending rigidity per unit width of the combined structure is given by

H3 i H3
B =B(1+in= 2, YI =Y + Y HzE Y, —
12 12

H + H g
+ Y,H, (—1——_ . :0) . (5.153)

2

The displacement of the neutral plane can be found from the requirement that the net extensional
force be zero; thus,

| H, + H,
Y \H,z, = yﬂff + n2H, (-4 2 - :O) _ (5.154)

2

Assuming the extensional stiffness of the damping layer, Y, H,, to be small compared to that of
the base, Y H,,

Y, H H, + H

2, = — 21+ 7t (_L-L) , (5.155)
Y Hj 2

Substituting Eq. 5.155 into Eq. 5.153, the effective damping factor of the combination is
Y,H 3H? + 6H,H, + 4H}
n =M, — 2 : = = . (5.156)
Y,\H Y. H
R 4 22 (3HY + 6H\H, + 4H3)

¥l

For many cases, this reduces to

¥yl H
g & Bp b (1 + _2_) , (5.157)
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showing that the damping is proportional to the product of the loss coefficient of the material and
the extensional thickness of the damping layer, magnified by a factor that represents the relative
separation of the centers of the two layers.

Oberst’s results are plotted in Fig. 5.16. For very thin layers, the dependence on relative
thickness is linear, but the resultant loss factor is less than 0.01. If a damping treatment is to be
really useful, it should produce a loss factor of at least 0.05, which for most materials requires a
thickness of treatment of the same order as that of the base. Ross, Ungar and Kerwin (1959)
showed that, using the best damping materials then available, a thickness ratio of 1.25 was
required to achieve n=0.1 on steel structures, and a ratio of 0.7 on aluminum ones. These
thicknesses correspond to weight ratios of 16% for steel and 28% for aluminum.
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Fig. 5.16. Relative Dampingas a Function of Layer Thickness, after Oberst (1952)

The problem with homogeneous damping treatments is that they are relatively heavy and
bulky. They were developed for use on relatively light plates and are of little use on beams. Kerwin
(1959) observed that the use of a thin metal cover on top of a damping layer causes the latter to
experience shear and that such shearing action can be more efficient in producing damping. He
derived an expression for the loss factor of constrained-layer damping treatments and verified the
results experimentally. Ross, Ungar and Kerwin ( 1959) published formulas for optimized con-
strained-layer treatments, finding that the same weight of treatment produces from two to four
times as much damping as that of a homogeneous layer. Significant damping can be achieved with
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treatments weighing less than 8% as much as the base. If very high damping is desired, a sandwich
can be built in which two equal metal bars or plates are separated by a thin viscoelastic layer, as
described by Kurtze (1959). In this case, the resultant loss factor is about 25% of that of the
damping material.

As found by Kerwin, Ross and Ungar, shear damping treatments are more frequency and/or
temperature dependent than are homogeneous, extensional types. Figure 5.17 shows the fre-
quency dependence of a typical shear treatment at two temperatures. There are several ways of
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Fig. 5.17. Frequency and Temperature Dependencies of a Typical Shear
Damping Treatment, from Ross, et al (1959)

overcoming this problem. Ungar and Ross (1959) analyzed multiple-layer treatments and found
that increasing the number of layers broadens the peak region, as shown in Fig. 5.18. Grootenhuis
(1970) has developed treatments in which two different viscoelastic materials are used under a
single constraining layer, achieving significant broadening of the region of high damping.

A major advantage of shear damping is its applicability to beam structures. Ruzicka (1961)and
Ungar (1962) have developed and evaluated a number of different ways of incorporating damping
in beams, some of which are shown in Fig. 5.19.

Impedance Mismatches

Another approach to the attenuation of flexural waves is the introduction of changes of cross
section and the attachment of mass elements, all of which create impedance mismatches which act
to reflect a fraction of an incident flexural wave. Cremer (1933, 1956) analyzed cross-sectional
changes. finding a transmission loss of 3 dB for a 5:1 ratio of section thicknesses, which increases
about 4 to 5 dB for every doubling of this ratio. Rader and Mao (1971) have analyzed this case by
analogy to Snell’s law. When bending waves are made to turn a comer, a 3 dB reduction occurs.
This can be increased by simultaneously changing the structural rigidity. Cremer also found that
the attachment of a concentrated mass load to a beam may produce a change in moment of inertia
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Fig. 5.18. Damping Curve for a Double-Layer Damping Treatment Having a Total
Weight of 5% of the Base Plate, from Ungar and Ross (1959)

Fig. 5.19. Examples of Damped Beam Structures, after Ruzicka (1961) and Ungar (1962)

sufficient to cause as much as 20 to 30 dB of attenuation above a minimum frequency. Below this
frequency, the mass acts as though distributed and the loss is negligible.

Periodically-spaced impedance discontinuities in the form of attached masses are not as effec-
tive as might be expected. The reason is that the structure itself develops resonances with nodes at
the attachments. Waves at these frequencies are passed without attenuation. Mead (1970) and Sen
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Gupta (1970) have analyzed periodic structures by methods similar to those developed by
Brillouin (1953) to analyze energy propagation in crystal lattices. They defined a complex propa-
gation constant which is sometimes real, corresponding to attenuation, and which is imaginary in
certain frequency bands that pass energy virtually unattenuated. Obviously, multiple attachments
are best used with irregular spacings, so that there will be significant attenuation at all frequencies
above the low-frequency limit.

Vibration Absorbers and Suppressors

Yet another way of attenuating flexural waves is by attaching devices to a vibrating structure
that will either absorb the energy or feed back a cancelling signal that suppresses the vibration.
Klyukin (1960), having noted that vibration-sensing instruments act to suppress the vibrations
they are intended to measure, proposed a number of different passive vibration absorbers. These
attachments, which are resonant, consist of masses on springs with dampers. Such systems having
Q’s as low as 2 can provide as much as 40 dB of attenuation over an octave. Machinery on isolation
mounts located inside ships undoubtedly contribute to the damping of hull tlexural
vibrations by just this mechanism.

Active electromechanical feedback vibration suppressors have been developed and tested by
Knyazev and Tartakovskii (1965, 1966 and 1967). The dispersive nature of flexural waves makes
such an approach more difficult than when the wave speed is constant, but this difficulty was
overcome with a phase-compensating feedback system. Attenuations at resonances of the order of
15 dB were achieved. In a parallel development, Rockwell and Lawther (1964) demonstrated
similar reductions for a uniform beam supported by rubber mounts, using a co-located sensor and
feedback source. In principle, and with sufficient investment, active dampers would be very
effective.

5.10 Fluid Loading

Immersion of a structure in a relatively dense fluid such as water can change its vibrational
characteristics significantly. As compared to vibrations in air, the effective mass of the structure is
increased by the mass of the entrained fluid, and both fluid viscosity and the radiation of sound
add to the damping. Of these effects, the first two are more important for beams, while the last is
a major consideration for plates (see Chapter 6).

Entrained Mass

Entrained mass has been accounted for in the derivations given in Sections 5.3-5.8 by inclusion
of the relative entrained mass, €, defined as the ratio of entrained mass to that of the structure.
However, its significance was not evaluated, nor were methods for its calculation discussed. In
many instances, such as heavy toundation structures, the relative entrained mass is very small.
However. in the case of neutrally buoyant structures, such as ship hulls, the entrained mass may
exceed the structural mass. From Egs. 5.65 and 5.115 it is apparent that low-frequency resonance
frequencies are inversely proportional to+// + € and that flexural impedances increase linearly
with total mass. Accurate calculation of entrained mass therefore becomes increasingly important
as its magnitude increases, and it is not surprising that naval architects have given extensive
attention to this subject. At these frequencies, compressibility of the fluid is unimportant and
classical incompressible hydrodynamics theory can be used.

As derived by Morse (1948) and others, the entrained mass of an infinitely long, rigid, cylin-
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drical rod oscillating in a plane equals that of the displaced fluid. Thus, for a rigid cylinder.

Py (5.1358)

€ =
Ps

However, actual structures are neither cylindrical, infinite nor rigid. Lewis (1929) assumed vibra-
tional mode shapes to be the same as those in air and calculated the entrained mass for slender
bodies of circular, rectangular and ship-like cross sections in incompressible tluids. His results are
usually written in the form

wh*

4

J, (b[L)C(b]h, S[bh) . (5.159)

where J,, accounts for finite flexural wavelengths and C is a shape factor which equals unity for
circular and elliptical cross sections. Chertock (1975) has obtained Lewis’ results by a simpler
formulation derived from the Helmholtz integral, Eq. 4.140. Townsin (1969) has matched other
theoretical and measured values of J for various order modes by

b 1
J =102-3—|12-—]". (5.160)

m
L in

Because of the complexity of ship structures and of their resultant vibrations, simple formulas for
ontrained mass are not likely to be accurate. On the other hand, values within +10% are suf-
ficiently accurate for most purposes.

Hydrodynamic Damping

Damping due to fluid viscosity depends on section shape, amplitude of the motion. and the
steady-state flow speed. Sharp edges increase this damping. Blake and Maga (1975) found values of
the hydrodynamic loss factor to be from 107 to 10! for struts in water. Further discussion of
this topic is beyond the scope of the present volume.

Sound Radiation

As long as the cross-sectional circumference of a submerged beam is small. each section will
radiate sound as an unbaffled piston. As discussed in Section 4.3, unbaffled structures radiate as
dipoles at low frequencies, with radiation efficiencies proportional to (kaoP. Since the various
sections of a long beam vibrate out of phase, the radiation efficiency for beam vibrations should be
even less than that for a free piston.

Yousd and Fahy (1973)and Kuhn and Morfey (1974) have calculated the sound radiated by a
uniform beam, finding a strong dependence on both the aspect ratio of the beam and the ratio of
the flexural wave speed to the speed of sound. Their results have been confirmed by experiments
reported by Blake (1974). His data show 1,4 <107 when v, <0.5¢,-1In view of these results.
one can conclude that radiation damping of structural vibrations is generally negligible for beam-
like structures in comparison with hydrodynamic damping.
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5.11 Flexural Resonances of Ship Hulls

Although the sound radiated is negligible. resonant flexural vibrations of ship hulls are of vital
importance to naval architects both because of potential damage to the structure and because of
adverse responses of humans exposed to such vibrations. The problem faced by a ship designer is
to estimate both the driving and resonance frequencies and to take steps to prevent their
coincidence.

The methods discussed in Section 5.6 pertaining to the calculation of resonance frequencies of
non-uniform beams are all applicable to this problem. Using the terminology used earlier in this
chapter, ship hulls are characterized by very large values of the shear parameter, T and much
smaller values of the relative rotatory inertia coefficient, o'. Thus, examples of ship structures
described by McGoldrick and Russo (1955) and Andersson and Norrand (1969) have values of I’
greater than 200, while o« seldom exceeds 10. The reason for the high I" is that the effective
shear-carrying area of a ship is a very small fraction of the total cross section.

There are two important practical consequences of the high values of T found for ships. First,
shear effects are experienced even at the lowest resonance, and calculations which ignore shear are
seriously in error. Secondly, since o < <T, it is quite safe to ignore rotatory inertia when calcu-
lating ship flexural motions. Thus, the approximations involved in Sections 5.4 and 5.7 in calcu-
lating flexural wave speeds and input impedances, in which o was set equal to zero, are especially
valid.

Methods used by naval architects to calculate flexural resonances of ships are described by
Leibowitz and Kennard (1961) and by McGoldrick (1960). These include finite-element tech-
niques involving both analog and digital computers. Generally, the ship is divided into 20 equal
sections, each of which is assumed to form a Timoshenko beam element. Also, there are more than
a dozen semi-empirical formulas which can be used to find the fundamental frequency. The higher
order modes can then be assumed to be linearly related to the fundamental. One especially simple
formula for the fundamental, based on measured natural frequencies of commercial ships, relates
this frequency inversely to the length by

1
Frund = 2— () (5.161)

where A = 215 if L is in meters and A = 700 if L is in feet.

The wave approach to resonance calculation described in Sections 5.5 and 5.6 would seem to
be particularly well suited to this problem. The author has attempted to use this method to
calculate the resonances of a specific ship with moderate success. The problem is to determine the
phase shift caused by the ends. When the ends are each assumed to cause a 90° phase shift, as they
would for a free-free uniform beam, frequencies calculated for the lowest order resonances are
much too low. On the other hand, if it is assumed that the shear rigidity is zero at the ends and the
phase shifts are zero, then these frequencies are somewhat too high. Based on this single attempt,
it appears that the assumption of zero phase shift is more useful. However, more research needs to
be done.

One advantage of the wave approach, as compared to finite<element methods, is that the ship
can be divided into sections at natural boundaries. The flexural wave speed for each section can
then be calculated and the total travel time found from
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T= 3, L. (5.162)

Using the symbology of naval architecture, the reciprocal of the flexural wave speed, Eq. 5.44, can
be calculated from

= 1/2

1
s H + ( i ) + e ) (5.163)
7 WYl 2KGS 2KGS

Since vy depends on frequency, the procedure used is to calculate T for four or five frequencies
covering the likely range of resonances and to plot 7 vs w or f. Since resonances occur when
mmw + A¢

(5.164)
Lo,

this expression for T can also be plotted as a function of frequency for various values of m, and
resonance frequencies are then those values for which the curves from Eq.5.162 and 5.164
intersect.

It seems unlikely that more than five modes would occur with sufficient strength to be
excited. For higher frequencies, attenuation due to both hydrodynamic damping and reflections at
structural discontinuities would preclude the occurrence of flexural resonances that involve wave
travel over the entire hull length. Instead, resonances involve vibrations of only part of the length
of the ship. Such compartment resonances are usually dominant at frequencies above about 10
times that of the lowest flexural resonance.
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