CHAPTER 4

RADIATION BY FLUCTUATING-VOLUME (MONOPOLE) SOURCES

As discussed in Chapter 3, motions of boundaries that cause fluctuations of fluid volume are
the most efficient radiators of sound. The basic fluctuating-volume source is a small, pulsating
spherical surface, called a monopole, which radiates sound uniformly in all directions. Monopoles
are defined as spherical sources whose dimensions are small compared to an acoustic wavelength.
Larger fluctuating-volume sources can be considered to be composed of many monopoles, and
their pressure fields can be found by superposition of monopole fields.

The approach taken in the present chapter is to develop the equations for a uniformly pul-
sating sphere of arbitrary size, and then to obtain the properties of monopoles by taking the limit
as size becomes very small. The equations derived for pulsating spheres are then applied to air
bubbles pulsating in liquids. and those for monopoles used to calculate pressure fields of linear
arrays, pistons and hull openings. Brief consideration is also given to several approaches for the
calculation of radiation fields of arbitrary vibrating surfaces. The final section is an overview of
hull radiation. Two other important practical examples of fluctuating-voluime sources, namely
plate bending waves and cavitation, are treated in later chapters.

4.1 Uniformly Pulsating Spherical Source

As an introduction to monopoles, it is useful to consider radiation from uniformly pulsating
spherical sources of arbitrary size. Monopole radiation is then simply the limit as size approaches
zero. The methodology used is similar to that employed in most fundamental radiation problems.
An expression for the acoustic particle velocity in a fluid medium is matched to the normal surface
vibratory velocity of a solid boundary, and the acoustic pressure is then found from the acoustic
impedance.

Consider a spherical cavity having a mean radius a,, experiencing a uniform, small harmonic
fluctuation of its volume. This volume fluctuation causes a rate-of-change of fluid in the medium,
i.e.. a mass flux, Q, which can be expressed by

01) = p V(1) = 0, cos wt = RP[Q, ¢''] . (4.1)

By assuming that the relative change of volume of the sphere is small, one can write the flux in
terms of the product of the area and radial velocity of the surface,

Q(t) = p,(4ma})a = p,S,u - (4.2)

It follows that the instantaneous surface velocity can be expressed by
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Since the fluid is everywhere in contact with the vibrating surface, the acoustic particle speed,
v'(ao), must equal the surface vibratory speed, u. With this relation, the acoustic pressure at the
surface of the sphere can be calculated by multiplying the vibratory speed, u, by the specific
acoustic impedance evaluated at the surface. From Eqgs. 2.78 and 2.79, it follows that
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where 0, is the phase angle between the pressure and the velocity on the surface of the sphere, as
defined by Eq. 2.80, and as given by

1
9, = fart‘l(w) . (4.3)
kao

It follows that the pressure at distance » from the center of the sphere is
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This expression has a form typical of that for the radiated acoustic pressure of many different
types of sources. The first term is independent of the relative size and shape of the source and
includes the first-power dependence on distance from the origin typical of spherical spreading. The
second term involves ka, and expresses something about the size and/or shape of the specific
radiator. in this case the size relative to an acoustic wavelength. The final, exponential, term
represents a propagating harmonic disturbance.

Intensity and Power

The intensity and power of a spherical source can be calculated from the pressure, using
expressions derived in Section 2.4. The intensity is

2 22 ]
PO i R , (4.7)
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and the total radiated power is
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Radiation Impedance
As indicated in Section 3.1, acoustic power can also be expressed as the product of the
radiation resistance and the mean-square surface velocity. From Egs. 3.3, 4.3 and 4.8 it follows
that the specific radiation resistance is given by
R W (ka, P

o, = L = ac___ = . (4.9)
PyCoS, W 1 + (ka,)?

As shown in Fig. 4.1, this factor is proportional to the square of ka, for small values and ap-
proaches unity in the limit of large ka,.The specific radiation reactance is given by the imaginary
term in Eq. 4.4 as

X k
g, = —I = % . (4.10)

X
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which function is also plotted in Fig. 4.1.
The total radiation impedance is the ratio of the force exerted on the surface of the uniformly
vibrating sphere to the surface velocity. It is simply the surface area multiplied by the specific
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Fig. 4.1. Specific Radiation Impedance for Uniformly Pulsating Sphere
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acoustic impedance evaluated at the surface,

(ka, )+ i(ka,)

Z, = 5S,z.(al=p,c.8S, (4.11)
I + (ka,)?
Radiation Efficiency
The radiation efficiency, defined by Eqs. 1.4 and 3.4, is
R g ka
Mosd = . = g ; (4.12)
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As shown in Fig. 4.2, the radiation efficiency is a linear function of ka, for small spheres and
approaches unity for large ones. The first-power dependence of the radiation efficiency on ka,, is a
characteristic of small. fluctuating-volume sources, as discussed in Chapter 3.

Entrained Mass

The reactive component of the radiation impedance is that of the mass of the fluid partici-
pating in the motion, i.e., the mass entrained by the motion of the spherical surface. The entrained
mass can be calculated by dividing the reactance by the angular frequency, w, giving
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Fig. 4.2. Radiation Efficiency and Relative Entrained Mass for Spherical Sources
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Thus, for small values of ka, the entrained mass is three times the mass of the displaced fluid,
while for large values it approaches zero. The relative entrained mass is also plotted in Fig. 4.2.

4.2 Monopole Radiation

The general expressions presented in the previous section for spherical sources of arbitrary size
are directly usable whenever a spherical radiator can be treated as pulsating uniformly, such asin
the case of pulsating bubbles, treated in Section 4.3. However, it is more useful to consider
spherical sources that are small compared to an acoustic wavelength. Monopoles are characterized
by ka < <. With this stipulation, the phase angle 6, between the pressure and the velocity at the

surface becomes
o~ =1 I i m
6, = tan” [— | = — - ka, | (4.14)
ka,, 2

and the second term in Eq. 4.6 reduces to i. The radiated pressure at distance » from the center of
the source is then

w ; ;
p'tr) =i —(—2-9'—6'("” =) (4.15)
- 4mr
The intensity is given by
» w’Q)
Ifr) = = . : (4.16)
: 20 g
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and the total power radiated is
w?. 2
TR Ry (4.17)
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The specific radiation resistance and reactance given by Egs. 4.9 and 4.10 reduce to
o, = (ka,)? (4.18)
and

o. = ka, , (4.18)

X Q

from which it follows that the radiation efficiency for a monopole is

Npgd = ik, - (4.20)

From Eq. 4.13, the mass entrained by a monopole is three times the mass of the displaced fluid.
These same results could have been derived by starting with Eq. 3.28 for the acoustic pressure

associated with volume acceleration. Assuming an harmonic oscillation, Eq. 3.28 leads to
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D(r) = P,V _ Q') _ iw@, (e = rie,)
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(4.21)

which result is equivalent to that of Eq. 4.15. The expressions for intensity and power follow
directly. The specific radiation resistance is then calculated from Eq. 3.3, giving

W
g, = ——'*C3£:— = (kaa)z . (4.22)
P,CyS u®

o 0

Since the radiation efficiency of a monopole was derived for a general spherical multipole of zero
order, Eq. 3.22, and shown to be equal to ka,,. it follows that the reactance ratio is

ks 2
o = T o (k) _ o (4.23)
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leading to the conclusion that the reactance is equal to three times that of the mass of the
displaced fluid,

X = p,e;8,0, = p,winal = 3wp,V (4.24)

0 0 0 X [V

in full agreement with the result obtained by letting ka, approach zero in Eq.4.13.

4.3 Sounds from Gas Bubbles in Liquids

[t is not uncommon to find gas bubbles present in the ocean, in streams and in pipe flows.
Minnaert (1933) concluded that the almost musical sounds of running water are caused by air
bubbles oscillating at their natural frequencies and radiating as monopoles. Sounds are also
radiated when bubbles flow into regions of varying hydrodynamic pressure. Examples of this are
bubbles entrained near the bow of a ship when acted on by the pressure field of that ship and
when passing through its propeller, and bubbles flowing through a constriction in a pipe or around
a pipe bend. Sound is also generated when bubbles form, collapse, divide or coalesce. The sounds
radiated by these phenomena can be estimated by using a differential equation for bubble wall
motion to find the volume acceleration and then using Eq. 4.21 to calculate the sound pressure.
While changes of shape invariably accompany volume pulsations, Strasberg (1956) has shown that
any sound radiated by such changes is negligible and that valid estimates of sound radiation can be
made by considering only volume effects.

Linear Bubble Pulsations

Volume pulsations of a gas bubble in a liquid can be treated as a mass-spring system in which
the mass of entrained liquid provides inertia, and adiabatic compression of the gas acts as a spring.
Resistance to the motion is caused by liquid viscosity, thermal losses in the gas and radiation of
sound energy. Differential equations for bubble motions can be derived by equating the sum of the
forces acting at the bubble surface to the rate-of-change of momentum of the entrained liquid.
Such equations usually include surface-tension torces and several non-linear terms. However, a
linear second-order differential equation can be used to analyze relatively small pulsations of
gas-filled bubbles. Strasberg (1956) has written this equation in terms of the bubble volume, ¥, as
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m,V + RV + K(V(1) - V,) = S2(p, - p(1) , (4.25)

where m,, is the entrained mass. as given by Eq. 4.13, K is the spring constant of the compressed
gas inside the bubble and R is a coefficient of resistance. Subscripts zero refer to equilibrium
values of the static pressure, p, and the bubble volume, V. The spring constant can be derived from
thermodynamic relations for a nearly spherical volume,

dF i dr
k=-2 - s 2 2 (4.26)

da da dv
For an adiabatic process, for which p 1Y = constant, the spring constant is given by

Po — 350Po
V a

o] Q

(4.27)

where 7 is the ratio of the specific heats of the gas inside the bubble.

Second-order linear differential equations of the form of Eq. 4.25 are quite common in me-
chanics as well as in other branches of physics, and their solutions are well known. The complete
solution is composed of two parts: that of the homogeneous equation for which the applied force
is set equal to zero, and a solution having the same form as the applied force. The solution of the
homogencous equation describes the motion when the system is acted on by a transient distur-
bance and allowed to respond freely. The nature of the solution depends on the relative amount of
damping. Bubbles are generally lightly damped and the applicable solution is that of a damped
oscillation, of the form

V=V, + A% D" (4.28)

where A is the amplitude of the motion as determined by initial values of the volume and its time
derivative. and « is a dissipation coefficient given by

o = . (4.29)

The ratio of the resistance coefficient to the inertial reactance of the entrained mass at the
frequency of oscillation is called the /oss factor, m, and is related to the dissipation coefficient by

R
i -7 2, (4.30)

(.A.Jo??‘!e w

In most instances, the loss factor is less than unity, and Eq. 4.28 then represents an ¢Xpo-
nentially damped oscillation having a rate of decay that is slow compared to the period of
oscillation. as depicted in Fig. 4.3. The period between maxima is simply the reciprocal of the
frequency,

27
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Fig. 4.3. Damped Oscillation of a Gas Bubble

and the relative decay in one period is the logarithmic decrement, &, given by

1 2ra

§ = In — =, = — =70 . (4.32)

Since the mechanical energy of a vibrating system is proportional to the square of the amplitude of
its vibration. it follows that for a lightly damped system the relative energy lost in one vibrational
period is 28, or 2mn.

The complex amplitude, A, of the motion is an involved function of the initial volume
displacement, AV(0), and the initial volume velocity, V(0). Tts magnitude is given by

. . 2
1 TR 1
a=amo |1+ 10, (— ))) : (4.33)
w, AV(0) w, AVI0)

and its phase angle, ¢, by

V(0
¢ = Ian‘l (1 -+- —_— ( ) ) . (434)
2w, AV(0)

In most situations the initial velocity is small; hence the magnitude A equals the initial displace-
ment. AV(0), and the phase angle ¢ reduces to - n/2.
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Frequency of Bubble Oscillation

An expression for the resonance frequencies of gas bubbles in liquids was first derived by
Minnaert (1933). He assumed that damping is negligible and that the bubble diameter is small
compared to the wavelength. Thus, ignoring damping,

Ve aV- 1/, (4.35)
and the homogeneous form of Eq. 4.28 becomes
= iy + Kiiv-EJ)=0, (4.36)

from which

1P (4.37)
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Minnaert’s experiments with gas bubbles in water appeared to confirm this expression and to
justify his assumptions. When damping is included, the resonance frequency is modified slightly,

the more complete expression being
I K 2
i —( - _”-) . (4.38)
27 m, 8

Thus, the effect of damping on the resonance frequency is less than 1% if n < 0.3, which condition
is invariably satisfied in low-viscosity liquids such as water.

In deriving Eq. 4.37, Minnaert assumed that the entrained mass equals three times the dis-
placed mass, which follows from Eq. 4.13 provided (Jl'{ao)2 < < ]. Combining Egs. 4.13 and 4.37,

w, a
ka,, A (4.39)
(l()
For air bubbles in water at pressures up to several hundred atmospheres, this reduces to
ka, = 0.0136 \[PA . (4.40)

where P, is the static pressure in atmospheres. The assumption is therefore verified for static
pressures up to 100 atm. Under this condition, Eq. 4.37 yields

. 3.28
f, = \lP_A H: (4.41)
o]

a

for the resonance frequency of an air bubble in water. Thus, an air bubble having a radius of 1 mm
in water at 1 atm. would have a resonance frequency of about 3.3 kHz.

Equations 4.37 and 4.41 for the natural frequencies of bubbles are accurate for bubbles that
are neither too small nor too large. If bubbles are smaller than about 3 X 107 cm in diameter,
surface tension and viscosity raise the frequency, while bubbles larger than 1 c¢m tend to take
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shapes so far removed from spherical that the assumptions made in deriving Eqs. 4.13 and 4.27 are
not valid. Strasberg (1953) has shown that the resonance frequency of a prolate spheroid having a
7.1 ratio of its axes is 2% higher than that calculated by Eq. 4.37. The effects of nearby boun-
daries on bubble pulsations, which are more serious, are beyond the scope of the present volume.

Damping Mechanisms

As indicated above. damping has only a secondary effect on bubble resonance frequencies, but
it controls the rate of decay of bubble pulsations set into motion by transient disturbances. A
number of investigators have made theoretical calculations and experimental measurements of
bubble damping. In a survey of this subject, Devin (1959) listed three dominant mechanisms:

1) sound radiation,

2) thermal losses in the gas, and

3) viscous losses in the liquid.

Of these, only sound radiation is independent of bubble size. Both thermal and viscous losses
increase with decreasing bubble size.

For a bubble containing an ideal gas pulsating in an ideal, lossless liquid, the only loss mechan-
ism would be the radiation of sound itself. The loss factor. n, of the vibratory motion would then
equal the radiation efficiency of a vibrating sphere, as given by Eq. 4.12. Combining with Eq. 4.39,
the loss factor would be given by

ka 3vp
HE Nepg = 0_ - = ——-; (4.42)
\f] + (ka,) B
which for air bubbles in water is
= g = 0.0136 \IPA . (4.43)

Devin and others have shown that, for most air bubbles in water at atmospheric pressure,
thermal damping equals or exceeds radiation damping, becoming as much as an order of magnitude
greater for bubbles having diameters of less than 1072 ¢m. Viscous losses are not important in
water, but are usually dominant in oil. Measurements of damping factors made by different
investigators are not in complete agreement. Figure 4.4 presents approximate values, based on the
summary of results published by Devin (1959).

Sound Radiation

The sound radiated by a gas bubble excited into resonant vibration can be calculated using
equations developed in Sections 4.1 and 4.2. Most of these equations are expressed in terms of the
mass flux, @, which equals the volume velocity, V, multiplied by the fluid density. Taking the time
derivative of the bubble volume, as given in Eq. 4.28, and assuming the loss factor, n, to be small
compared to unity. it follows that

’

o) = p Vit') = ic.ao,LJ().-ﬁte)"“f’_E'Wjj e M2)w,t it (4.44)

where ¢ is retarded time as defined by Eq. 2.6. In most cases the transient disturbance can be
assumed to have created a difference, AV, between the initial volume and the equilibrium value,
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Fig. 4.4. Damping of Resonant Air Bubbles at Atmospheric Pressure, after Devin (1959)

and F(0) can be assumed to be zero. [n these cases. Eq. 4.44 for the mass flux reduces to

r

;([r) = f(..dupuAV (_'-(n’f'?)w()! elWol (4.45)
It follows from Eq. 4.15 that the acoustic pressure at distance r is given by

’ 2 AL
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” ™ (4.46)

where the minus sign implies that an oversize bubble will initially contract. thereby creating a
rarefaction. The amplitude of the acoustic pressure can be expressed as a function of the static

pressure, bubble dimensions and ratio of specitic heats by using Eq.4.37 for the resonant fre-
quency. The resultant expression,

), AV 5 _
\ﬁ'(r.r)l = ————7[ 2 o e (M2 (Wt = KyT) 7]
r/’an ’

a

shows that, other factors being equal, the peak pressure increases linearly with bubble diameter.
[t is of interest to calculate the total energy radiated by a bubble given an initial volume
displacement. From Egs. 4.17 and 4.45, the instantaneous power is

wQ* W AV)? '
W o= 2% o Foo m T MW (4.48)

ac R Q
8mp, ¢, Swe,
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Integrating from the time of the disturbance,

{ee]

3 2

. . pywy(AV)

Eow = f W,.dt = J—“—:’———A (4.49)
0 8me,n

Using Eq. 4.37 for the resonance frequency and utilizing Eq. 4.20 for the radiation efficiency. the
total energy radiated during the entire decay period is

7P(J(A V) Mrad

I
= L apay Tred (4.50)
2V, n 2 n

ac

where Ap is the magnitude of pressure change associated with volume change AV for an adiabatic
expansion of a constant amount of gas.

The above equations have been derived for a constant-mass gas bubble and apply to such cases
as 2 bubble set into oscillation by passage through a pressure jump, as in a pump, or to a bubble
acted on by a pressure pulse. Strasberg (1956) has shown that the result is essentially the same
when a bubble is formed at a nozzle, Ap being the excess pressure of the gas supply forming the
bubbles. and AV being the final volume of each bubble. Sound is also emitted when bubbles split
or coalesce. In this case, the pressure difference causing the volume change is the difference
between the surface tension pressures of the two sizes of bubbles.

Most practical examples of bubble noise involve many bubbles. Since the sounds add inco-
herently, the acoustic power is simply N times the radiated energy per bubble, where NV is the
number of bubbles experiencing the pressure jump or volume change each second. Thus, the sound
radiated by a gas jet in water should be primarily controlled by the flow rate and not influenced
significantly by the size of the orifice. This result has been verified by Mithle and Heckl (1971),
who measured the sound when gas jets discharge into still water. However, measurements by
Gavigan, Watson and King (1974) in a water tunnel have shown that when gas discharges into a
moving turbulent flow the orifice size is a critical parameter. Apparently bubble breakup and
collapse can be a dominant noise-generating mechanism in a turbulent tlow.

4.4 Sounds from Splashes

Splashes associated with the impact of water droplets on the ocean surface are a major source
of underwater noise. The droplets are generally created by breaking waves, but are also caused by
rain and by the breaking of surface ship bow waves. While numerous photographs of the resultant
spatter have been published, very little attention has been given in the literature to underwater
noise aspects. The only thorough study of this subject known to the author is that of Franz
(1959).

Franz’s Measurements

Franz measured the underwater noise produced by the impacts of single drops as well as that
from sprays of droplets. He found that two distinct noise mechanisms account for the sound. and
that both radiate with cosine directional patterns typical of near-surface sources. A sharp pulse is
radiated by the actual impact of a water drop on the surface, and this is followed by sounds
emitted by bubble volume pulsations. Impact sounds are proportional to the kinetic energy and
cube of the Mach number of the impacting body, but bubble sounds are quite erratic and do not
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vary consistently with droplet size or velocity. Franz was able to separate the two types of sounds
and to measure their spectra individually.

The spectra radiated by the impact phase of splashing water droplets were found to cover a
wide frequency band and to vary consistently with drop size and impact speed. Figure 4.5 sum-
marizes Franz’s results for this type of sound. It can be seen that a broad peak is centered at a
dimensionless frequency close to unity, decreasing at a rate approaching 5 dB/octave at the higher
frequencies. For drops of a given size, the sound radiated increases by 13 to 17 dB for a factor of 2
increase of the impact velocity.

Sounds from bubble pulsations were found to be more nearly sinusoidal, producing spectra
with relatively sharp peaks, generally between 500 Hz and 10 kHz. Franz found that bubble
sounds usually dominate in the octave for which they are strongest, with impact sounds con-
trolling the spectrum at the other frequencies, as illustrated in Fig. 4.6.
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Fig. 4.5. Spectra of Sounds From Surface Impacts, as measured by Franz (1959)

Wind-Generated Ambient Sea Noise

Splash noise from breaking waves is a major source of underwater ambient noise, generally
dominating measured spectra above 300 Hz and sometimes being dominant to as low as 20 Hz.
Noise levels measured during World War II, mostly above 500 Hz, were aimost invariably con-
trolled by the degree of agitation of the sea surface as described either by wind speed or sea state.
The famous summary curves published by Knudsen, Alford and Emling (1944, 1948) and repro-
duced in Fig. 4.7 have a constant - 5 dB/octave slope extending from 100 Hz to over 30 kHz.
However. measurements made following the end of WWII revealed that levels below about 200 Hz
are often independent of sea state and that extrapolation of the Knudsen curves below 500 Hz is
erroneous. It was found that the spectral shape of the sea agitation contribution to ambient noise
is quite similar to that reported by Franz for splash noise (as depicted in Fig. 4.5) with the peak
frequency occurring between 300 and 600 Hz.
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In a comprehensive summary paper. Wenz (1962) attributed the wind-independent noise at
low frequencies to distant shipping, which source is discussed in Chapter 8. Measurements made at
low frequencies in remote regions free of shipping show spectra that are practically flat from 20 to
500 Hz. decreasing above this frequency at a rate of about 5 dB/octave. Figure 4.8 summarizes a
number of these modern measurements of wind-generated deep-water ambient noise. As indicated
in this figure, decp-water levels above 1 kHz are somewhat lower than those reported for the same
wind speed by Knudsen et al. On the other hand, Piggott (1964) and others have reported
shallow-water levels higher than the Knudsen values, and a trend to lower levels in deeper water
was also found by Perrone (1970). Apparently the curves developed from WWII data apply to
medium water depths of the order of 100 fathoms. [n any case, the important feature shown by
the curves in Fig. 4.8 is the peaks at about 400 Hz with slight decreases below this frequency. This
results in levels as much as 15 to 25 dB below Knudsen extrapolated values for frequencies below
100 Hz.

Rain Noise

The spectra generated by breaking waves are typical of what would be expected from Franz's
results for droplet impact speeds of the order of only a few meters per second. Raindrops fall at
higher speeds and so produce spectra with higher peak frequencies as well as higher levels.
Figure 4.9 shows several typical rain-generated ambient noise spectra, as measured by Heindsman
et al (1955) and Bom (1969) for several rain rates. At 10 kHz the levels are as much as 20 to 30 dB
higher than those typical of breaking waves.
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Fig. 4.9. Examples of Measured Rain Noise in Shallow Water

4.5 Radiation by Two Equal Monopoles

Many practical fluctuating-volume noise sources have dimensions that are large compared to a
wavelength. The sound fields resulting from such sources can in principle be calculated by dividing
their surfaces into a large number of small sources and then summing all the individual sound
fields, being careful to retain phase information. Such calculations are often quite laborious and
usually require high-powered computers. The topic of the present section is radiation from two
equal monopoles separated by an arbitrary distance, which is the simplest example illustrative of
the calculation for a large radiator.

General Equation for Pressure Field

Consider two equal monopoles radiating at exactly the same frequency and separated by
distance d, as depicted in Fig. 4.10. Their midpoint is taken as origin. The field point. P, at which
the pressure is to be calculated is located at distance r from the origin that may or may not be
large compared to their separation. The x axis is taken to be perpendicular to their connecting line,
and 6 is the angle of the field point relative to this axis. The distances »; and r, of the individual
sources from the field point are given by

“ o | - C[ :
r2eost 0 + [rsinf - —
&

~
—t
1]

5 d
=p2 +—) - rdsinf . (4.51)
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Fig. 4.10. Geometric Representation of Two Monopoles
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12 =rtcos® O + |rsind + —
2
2
=2 +|— ) + rdsinf (4.52)
2
It is useful to express these distances in terms of the rms distance, r, defined by
2 2
— r{ +r
F=N7 = [—F = (4.53)
2
and a dimensionless parameter, 3, defined by
rd rd N
= ————sin® = —sinb . (4.54)
2+ ri 2r*
The expressions for the distances r; and r, can then be written
_ rd _ .
r, =F[1 - —=sing =rNl - 28, (4.55)
2
P
and
_ rd . ~
ry = F — s5in@ = r\/] + 28 . (4.56)
2

2

The acoustic pressure at the field point is simply the sum of the individual monopole pressure

fields as given by Eq. 4.15, namely
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p = ino pifwt = kry) 4 _fff& elfwt — krg = V) ) (4.57)
47r, 47r,

where ¢ is the phase angle of the second source relative to the first. It is useful to calculate this
resultant pressure field in terms of that which would exist at distance 7 from a single source
located at the origin and radiating with the average phase angle. Defining such a reference pressure
by

"= i_w.Q_iLgif‘-Uf - k- y/2) (4.58)
4nr

I
e

Eq. 4.57 for the pressure field of the two sources becomes
JAKF( - VT - 2B) et oikF(1 - V1T +2B)
A ! ei Z +

g e I - 28 -\’]Jr-L’B

This result is valid throughout the pressure field. Except in the immediate vicinity ot each source,
the parameter § is less than 0.2. With this condition, the square roots in Eq. 4.59 can each be
expanded as a power series. Retaining only the linear terms, one obtains an approXimate expres-

eiVI2) | (4.59)

sion for the pressure,

{,i(ﬁkF'*'f\b/.?}) N e'j(5k7+f§b/2))

1 -8 I +8

(4.60)

p=p,

which is valid throughout most of the field.

Far-Field Pressure Pattern

Most often interest is limited to the far field that exists at distances large compared to the
separation between the sources. At these long ranges all distances can be assumed to be equal, and
the parameter § is small compared to unity. Substituting for 8 from Eq. 4.54, Eq. 4.60 reduces to

5 &g [ei((kd/‘?)sin 6+ (y/2)) 4 i((kd/2)sin 0 + (lb/l’)):l . (4.61)

From Eq. 1.58, the sum of the two exponential terms can be replaced by a trigonometric function,
leading to

- 2 2

Ao B [ kd v 4
p' = 2p,cos| —sinf + — |, (4.62)

and to the alternative form

, . sin(kdsin@ + y)
p' = p, .4 . (4.63)

kd /
sin (A- sin@ + ﬁli)
2 i
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The pressure patterns described by these two equivalent expressions have maxima whenever
the argument of the cosine is zero or a multiple of m, that for zero being called the principal
maximum and the others being secondary maxima. The angle, 0, of the principal maximum is
related to the phase shift by

b, = - sin™! i . (4.64)
ke

Expressing the phase difference, ¢, in terms of this angle, Eq. 4.62 for the pressure field can be
written

kd
p' = 2p. cos — (sin @ - sin B . (4.65)
- - 9

Directivity Function

When calculating or measuring the far-field radiated pressure field of any large source, it is
customary to express the result in terms of the pressure in the direction of the principal maximum
multiplied by the normalized pressure pattern, or directivity function, D(8), defined by

D(@)EMB_)I__ - ﬂ, (4.66)

lp' (60)1 p(0,)

where the p’s in the second form represent rms pressures. In the case of two equal monopoles, the
directivity function is the cosine expression of Egs. 4.62 and 4.65. Usually the directivity function
is expressed in decibels by taking 20 times the logarithm of the pressure ratio of Eq. 4.66.

Electrical Steering

Phase differences between radiators are often introduced electricially by means of time delay.
The phase angle at any frequency is related to the rime delay. T, by

Y = wr, (4.67)
from which it follows that the angle of the principal maximum,

§ = -sint ki - sin! ‘o , (4.68)

kd d

is independent of frequency. Thus 0, is the angle whose sine is the ratio of the time delay. 7, to
the time for an acoustic wave to travel between the two sources. This frequency independence of
the peak angle is the reason that electrical steering is so popular.

Two Equal In-Phase Sources

If two sources are in phase, then ¢ = 0 and Egs. 4.62 and 4.65 reduce to
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kd
p' = 2p, cos| — sin@} , (4.69)
£ Lid "

which has a maximum for 6 =0 equal to the in-phase sum of the two pressures, and a directivity
function given by

kd
Do) = ms(—t- sin 8) . (4.70)
2

This function is plotted in Fig. 4.11 for three values of the parameter kd. Secondary maxima occur
when kd is greater than 2m. For values of kd less than unity, the radiation pattern is practically
nondirectional.

1.0 o T I T 0
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D(H)
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Fig. 4.11. Radiation Pattern for Two Equal In-Phase Monopole Sources

Out-of-Phase Sources

An important special case of two equal sources is that for which the two sources are exactly
out of phase with each other. Setting ¢ = w in Eq. 4.60 leads to

oiBkT o IBKT
p' = ip, - — ; (4.71)
1-8 1+8

where the reterence pressure, ,u;). is now

= 99 iter - k) (4.72)

47r

r
By
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By algebraic manipulation and the use of Eq. 1.59 relating the exponentials to a trigonometric
function, Eq. 4.71 can be written in the form

plo= - E%L plifwt = k7) [sin (BkF) - iBcos (BkF)] , (4.73)

2ar

provided that § <0.2.

The approximate expression for the instantaneous pressure for two equal out-of-phase sources
given by Eq.4.73 retains phase information. Of more general interest is the magnitude, P, of the
pressure and its relation to that of a single monopole. From Egs. 4.53 and 4.73,

w@, 2

d7r (d )2
1+ (=
2r

where the first term is the magnitude of the pressure from a monopole at the origin. The cosine
term is negligible except when the sine term is near zero. The pressure is seen to go through
alternate maxima and minima. In the far field. maxima equal to twice the pressure from a single
monopole occur whenever Bk7 is an odd multiple of /2. Minima equal to 2@ times the monopole
value occur when k7 is a multiple of 7.

P= \]?m?- (BkF) + B2 cos® (BkF) (4.74)

Dipoles

A dipole consists of two equal out-of-phase radiators whose separation is very small compared
to both wavelength and distance to the field point. With this condition both B and Bkr are very
small compared to unity and Eq. 4.73 becomes

s P gitwr- k) | ka1 -  \gne | . (4.75)
47r kr

In the far field, kr > > 1. Dropping the out-of-phase component, Eq. 4.75 then reduces to

‘2 .
w Qodsm 0 pifwt = kr)

p' = - (4.76)

4mrc,,

The product of the separation. d. and the source flux magnitude, @, 18 the dipole strength, D ,.
The most characteristic aspect of dipole radiation. making it readily recognizable, is the depen-
dence of pressure magnitude on sin 8. Thus, the directivity function of a dipole is

2

Z

D(O) = sin = cos (l - 6‘) . (4.77)

The intensity at an angle 8 is

12 42
P wDo

1(8) = sin® 0, (4.78)

5 g s 3
PoCo 32T p,c,
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and the total power radiated is

7'd &
D..
W, = :m=f 1(60) cos 6 df = ——9— . (4.79)

ac
247p c3
0O = 00

Dipole radiation is of fundamental importance and will be discussed further in Section 9.1.

4.6 Near-Surface Sources

The surface of the ocean is a nearly perfect reflector of sound. As discussed in Section 2.5,
radiation from a source near a surface can be analvzed in terms of direct radiation from the source
itself and from a negative image source located above the surface. as shown in Fig. 2.3. The
strength of the image source is proportional to the specular reflection coefficient, a,, of the
surface and so is a function of its roughness (see Eq. 2.119). The complete radiation pattern is that
of two equal out-of-phase monopoles each having a source strength given by that ot the image
source. plus the field of a monopole of strength equal to their difference.

Surface Image

Figure 4.12 shows the geometrical situation for a source located at a depth /i below the ocean
surface, with a receiver at depth i ata horizontal distance r; from the source. The distances and
angles used in the analysis in Section 4 5 are also shown. The rms distance. 7, is given by

d VP
2 oY = ofr: + hE o+ Ry (4.80)
(ﬂ \fu S R

and the parameter 8, which is given by

rd hoh
“ sing = =S°R (4.81)

_ _
2r? r*

w
1]

is seen to be symmetric with respect to source and receiver depths. The direct distance, r,.
between source and receiver is given by

no=NTg ¥ (g - hg? =TT - 2B (4.82)

When the horizontal range is at least twice the source or receiver depth, then g will be less than 0.2
and Eqgs. 4.73 and 4.74 can be used to calculate the image contribution. Assuming that the surface
is a perfect reflector, the pressure amplitude at the receiver can be approxima ted bv

@)
P = o 2T - 2p+[sin (k7 + B . 5

47r,

where the first term is the pressure that would be measured at the receiver if source and receiver
were both far from a reflecting surface relative to the distance between them. The remaining terms
represent the effect of surface reflection on the received signal.
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Fig. 4.12. Source and Receiver Near Sea Surface

The effect of a free surface on the received pressure is seen (o depend on the values of § and
8kF and therefore on three dimensionless parameters, hs/hR. hp /r” and klig, of which two are
defined by the geometry and the third is dependent on frequency.

Interference Patterns

If the source depth is large compared to a wavelength, then Bkr may exceed 7 at close-in
distances. In this near field. the pressure oscillates rather wildly, between a maximum of almost
two times that in an ideal medium and a minimum given by the second term of Eq. 4.83, Le.,

2841 - 28 < Lol 08 . (4.84)
P,

An example of the resultant interference pattern is shown in Fig. 4.13 as range is increased for
fixed source and receiver depths. Similar patterns are obtuined by fixing the horizontal distance
and changing either source or receiver depths. Varying the frequency changes the number of
maxima and minima and also the distances at which they occur.

The region of oscillation is bounded by BkF equal to w/2. This occurs where the geometry is
such that

hg ) A iy
& smf = — . {4.85)

iy 4115

For angles less than this. i.e.. for shallower receiver depths or greater horizontal ranges. the relative
level decreases continuously. In the example given in Fig. 4.13 this occurs at a relative range of 20.
Beyond a relative range of 60, the level received in the presence of a surface is everywhere less than
the free-field value. the discrepancy increasing at a rate of 6 dB per double distance. Thus, when
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Fig. 4.13. Example of Image Interference

source and receiver are close to the surface, the far-tield pressure decreases at a rate of 12 dB per
double distance, twice that normally attributable to spherical spreading in an unbounded medium.

The effect at long ranges is appreciably reduced if the surface is rough and only part of the
signal is specularly reflected. It can be shown that, when the surtace is not perfectly reflecting, the
inequality of Eq. 4.84 should be supplemented by another,

<L<1+|ar[ ; (4.86)
P

I

¥

f—|a

where a, is the pressure reflection coefficient defined in Section 2.5. Thus, if the reflection
coefficient were only 0.9, the anomaly would be limited to 20 dB, and several of the minima in
Fig. 4.13 would not be so severe.

Underwater sound pressure fields are affected by surface image interference in many practical
situations. Thus, 1t is not unusual to tind interference minima and maxima out to distances of 3 to
5 km from a source. The effects are strongest in the middle frequencies of 300 to 3000 Hz. Above
these frequencies, roughness of the surface often tends to wipe out the coherence between source
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and image, and the received intensity is nearly twice that for the direct path alone. At lower
frequencies, bottom reflections can act to fill in the interference minima.

Effects on Noise Measurements

Measurements of free-field underwater source strengths are often contaminated by free-surface
image interference effects. In theory, image interference can be calculated and measured pressures
corrected to free-field values. However, as illustrated by Fig. 4.13, the effect is very sensitive to
exact values of the parameters. One seldom knows depths or distances with the precision required.
One way of avoiding this problem is to average over several cycles of the interference pattern.
either by varying the horizontal range during the measurement or by averaging readings of several
receivers at a number of depths. When the decibel average of a number of measurements randomly
scattered over several interference cycles is taken, the result is generally within * 0.5 dB of the
free-field value. When it is not possible to cover several interference cycles, another approach is to
find a maximum of the interference pattern and to estimate the free-field value by subtracting
5 dB from the measured pressure.

Free-field source strengths cannot readily be measured when sources are within a quarter
wavelength of the surface. In such cases the surface acts to modify the radiation pattern to that of
a dipole, the strength of which is proportional to the product of the monopole strength and
distance below the surface of the source. When making low-frequency measurements of such
near-surface sources, it is not necessary to know the source depth if what is desired is the dipole
source strength. One need merely compute sin @ from

h
L (4.87)
2 2
\’ i + hp
and correct the measured pressures by this amount. However, if the monopole source strength is to
be calculated, then the effective source depth must also be ascertained. This is feasible for rela-
tively small sources but quite difficult for large, distributed sources such as surface ships. If a

source depth is assumed, then the complete measurement should specify this depth as well as the
monopole source level, since any user of the data will need to know the effective source depth in

sin@ =

order to calculate the sound field ata distance.
4.7 Linear Arrays

As an introduction to consideration of distributed sound sources such as pistons it is instruc-
tive to develop expressions for the pressure fields of linear arrays of monopoles.

Arrays of Equally-Spaced Monopoles

The expressions derived in Section 4.5 for the pressure field of two equal monopoles can be
generalized to any number of equally-spaced sources in a line either by summing the individual
contributions from all N elements of an array or by a process of extrapolation from results for a
small number of elements. The second method will be developed here.

From Eqgs. 4.62, 4.63 and 4.65, the far-field pressure for a two-element array (two-pole) can be
written



32 4. MONOPOLE SOURCES

in 2
p(2) = 29, cos ¢ = 2p) 2P, (4.88)
2sin ¢
where
/i kd
¢ = —(kdsin + ¢) = — (sinf - sinf,) . (4.89)

2 2

The pressure field for a two-pole is therefore that of a source having peak strength equal to their
sum and a directional pattern calculable from

7 2
Do) = S12® (4.90)

2sin ¢

As illustrated by Fig. 4.14, arrays of three, four and five elements can be treated as the sums of
monopoles and two-poles all of which have the same origin. Thus. the pressure field of the
three-element array of Fig. 4.14b can be expressed as the sum of a monopole and a two-pole, the
latter having separation 2d, as

sin 3 ¢
3sin ¢ .

(4.91)

p'(3) =p(1 + 2cos2¢) = pi(3 - 4sin* ¢) = 3p

A four-element array can be treated as the sum of two two-poles, one with separation d and the
other with separation 3d. The resultant pressure is

in 4
p'(4) = p (2cos¢ + 2cos3¢) + p,(8cos® ¢ - 4cosd) = 4p, L ; (4.92)
o - 4 sin ¢
(© -
~O d
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Fig. 4.14. Linear Arrays of up to Five Elements
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A similar expression can be derived for a five-element array by summing the fields of a three-
element array and a two-pole having a separation between elements of 4d, as illustrated in
Fig. 4.14d. The resultant pressure field is identical to the final form of Eq. 4.92 except that the
three 4’s are replaced by 5’s. Since all of these results are of the same form, it is reasonable to
generalize Eq. 4.92 to an N-element array, obtaining

in N
N) = Npl, S22 (4.93)

~ Nsin g

which in terms of separation, wave number and steering angle is
Nkd
2

kd
Nsin{ (sin 0 - sin Bo)}
2

The quantity Nd is the effective length, L', of the array, given by the actual length, L, plus one
separation, d. If we think of each monopole source as the kernel of a line element of length d
centered on the source, then L' is the total length of all of these line elements. The product Np, is
the pressure field that would result if all NV of the monopoles were concentrated at the origin. The
expression for the rms pressure field of an N-element array is thus

sin

(sin 8 - sin Ba)jl

;_;’(N) = NE:; (4.94)

p(N) = Np,D(8) , (4.95)

) kL'
sin |:—— (sin @ - sin 60)}
2

kd
Nsin | —(sin 8 - sin 80)
2

We will return to this expression after first considering the special case of radiation from a
continuous line.

where

(4.96)

Do) =

Continuous Line Radiators

While few actual line radiators are continuous. many arrays approximate this condition and it
is therefore useful to compute the directivity function for a continuous line. Consider the con-
tinuous line radiator sketched in Fig. 4.15. The field point P is considered to be in the far field,
i.e., r>> L. The pressure at P due to the element dy located v distance from the center of the
line, taken to be the origin, can be expressed

dp' = dp eltklr =) = By iky sin dy . (4.97)
- - L
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Fig. 4.15. A Continuous Line Radiator

The total pressure at P is the integral of this expression over the length. as given by

Lf2

I = 3
p' = pl — f piky sin a dv
- Lo<ype
kL
sin [—— sin 9
) g ; S gt g ; 2
= Py [(,!/»(L,f.?) sin @ _ e-!ML;_) sin 9] = p) _ (4.98)
kL
ik — sin 8 —sin 0
= 2
The directivity function for a continuous line array is therefore
sin sin 0
2 sind
D(e) = = e , (4.99)
kL | a
sin 0
e

where 7 represents the denominator. This same expression can be derived by treating a continuous
line radiator as an N-element array in the limit as .V becomes very large and d becomes very small.
In this limit, L' = L, sin  — ¢ and N¢ — 7. Equation 4.96 then reduces to Eq. 4.99. provided 6, is
taken to be zero.

The directivity function for a continuous line radiator is plotted in Fig. 4.16. for values of @ up
to 6. The minor peaks are called side lobes. The first side lobe, at &= 3a/2. is down 13.5 dB from
the main lobe. The second one, ata = 57/2,is down 19 dB, and all the others are more than 20 dB
below the peak of the pattern. The total width of the main beam is twice that of the side lobes.

Returning to an array of N equally-spaced monopoles, Eq. 4.96 for the directivity function can
be written in the form
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i sina ¢ | _|sim@ | |sine| DLy 00)

N sin ¢ No sin ¢ a o) Dfd. 6)

D(8) =

since @ = N¢. Thus, the directivity function of an N-element array can be calculated by dividing the
directivity function for a continuous line of length L' =L + d by that for a line of length d. As
long as ¢ is small. the pattern of the finiteelement array is very similar to that for the continuous
array. However, when ¢ exceeds about m/4, side-lobe response of the N-element array becomes
larger, and, when ¢ = = m or any multiple thereof, the response equals that of the main lobe. The
lowest frequency for which this can happen is that for which

d
6 = T (sind - sin 6,) =7 . (4.101)
A

For an array steered broadside. this occurs when the separation between the elements equals a
wavelength. If the array is steered to end fire, the second major lobe will first appear tor an
clement spacing of only half a wavelength.

D(6) \ 1
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Fig. 4.16. Radiation Pattern of a Continuous Line Array

Directivity Factor

An important measure of the directional characteristics of any radiator is the ratio of the total
power radiated to that which would have been radiated if all its strength were concentrated at the
origin. This ratio of the average intensity to the intensity at the peak of the main lobe is always
less than unity. Its reciprocal is the directivitv factor, DF. defined by



86 4. MONOPOLE SOURCES

10 dnr
pr = 10 . ” ‘ (4.102)

[ f f D%(8)dS
S

A surface element, dS, on a sphere can be expressed by

dS = 2arcos 0 rdf = 2w dlsin 0) . (4.103)

whence Eq. 4.102 for the directivity factor can be written

5

DF = - — (4.104)

i
f D?*(0) d(sin 8)

=7

The directivity factor of a continuous line array steered broadside is

3
DF = —»f
kL J,

where 7 is used as a dummy variable to represent kL/2 sin 0, as in Eq. 4.99. For values of AL <2,
the radiation is almost omnidirectional and the directivity factor is close to unity. Directionality
only becomes dominant for kL >4. For large kL, the integral in Eq. 4.105 equals 7/2 and the
directivity factor is given by

t =
\alh
|

a

- — 2 =
(S”l a ) da 5 (4.105)

kL
DF = — (kL>4) . (4.106)
T

Directivity Index
The logarithmic form of the directivity factor is called the directivity index, DI, as defined by
DI = 10 log DF . (4.107)

To a close approximation, the D/ of a continuous line array, plotted in Fig. 4.17, can be estimated
from

kL 2L
DI = 10log — = 10Ilog — . (4.108)
T A

The directional pattern of an N-element array is essentially the same as that for a continuous
line for frequencies such that the element spacing is less than a half wavelength. For these
frequencies, the DF and DI are given by Egs.4.106 and 4.108 with L' replacing L. For much
higher frequencies for which the separation is large compared to a wavelength, the directivity
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function is given by that for a continuous line of length [’ divided by that for a line of length d,

and
Rl
DF(L' ;'Vl
DF = AP = =2 (d > N . (4.109)
DF(d) kd d
™
The directivity index is then
DI = 10logN . (4.110)

Thus. the directivity index of an N-element array is similar to that for a continuous line up to the
frequency at which this equals 10 log N. For somewhat higher frequencies. the value stabilizes at
10 log N. This behavior is llustrated in Fig. 4.17 for a 20-element array.
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Fig. 4.17. Directivity Index of Line Arrays
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Arrays of Directional Sources

The expressions derived thus far apply to arrays of omnidirectional sources. In later chapters
we will deal with directive sources, which in some instances may be arranged in an array. If all of
the elements of an array of directive sources have the same directivity pattern, then the directivity
function of the array is simply the product of the directivity functions of the individual elements
and that of an array of omnidirectional sources. Thus, the pattern for an array having an even
number of elements, N, can be calculated as a two-pole consisting of directional elements each
being formed by a sub-array of N/2 elements. Multiplying Eq. 4.88, for a two-element array in
which (N/2)d replaces d, by Eq.4.94, for the directivity of a sub-array of N/2 elements, one
obtains

sin — ¢
in N 2 in N
D(LV— _ sin o} ) _ sin rf;' (4111)
=B N N N sin ¢
2sin — ¢ — Sin ¢
2 2

which is the same as the directivity function for an array of N omnidirectional monopoles. Many
practical applications follow from the fact that array calculations for omnidirectional sources can
be readily extended to arrays of directional sources.

Arrays as Spatial Filters

The principle of reciprocity applies to all linear systems for which the differential equations
are symmetric in the spatial variables. As a consequence of this principle, the directional response
pattern of a configuration of receivers to incoming plane waves is identical to the radiation pattern
of the same configuration of sources. All of the directional patterns derived thus far for radiating
monopoles, two-poles and arrays are equally applicable to receiving systems having the same
geometry, provided only that the systems are linear.

Passive arrays are used as spatial filters to discriminate against background noise coming from
many directions. When sound from a target comes in at the angle of peak response of the main
beam, the output of the receiving array will have a higher signal-to-noise ratio than that of a single,
omnidirectional receiver by an amount that is the array signal-to-noise gain, usually called the
array gain. It has been common practice to assume that the dB array gain of an array as a receiver
equals its directivity index as a radiator. However, this is not usually true. It would be the case if
the background noise were isotropic, i.e., arriving with eqﬁal intensity from all directions, but this
does not generally occur. The assumption that the passive array gain equals the active directivity
index is only valid to the extent that background noise is isotropic.

A number of writers have noted that the mathematical development of array directivity
patterns is virtually identical to that for linear filters in spectral analysis. The angular frequency,
w, of spectral theory corresponds to the component of the wave number along the array, i.e., to
k sin 6. Time is analogous to position along the array, and spectral density is analogous to the
radiation function. A continuous line array of length L is a spatial analog of a square pulse.
Discrete elements correspond to sampling. If the sampling is frequent enough, i.e., if elements are
closer than a half wavelength, then the result is virtually unchanged from continuous coverage. If
the sampling rate is not sufficient, i.e., if the elements are far apart relative to A, then extraneous
peaks occur.
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Just as sampling functions for spectral filters can be designed to achieve specific spectral
density functions, so also can linear arrays be designed to achieve desired main-lobe shaping and/or
side-lobe reduction. The amplitudes and phases of the individual elements must be controlled in
accordance with weighting functions, which functions may be derived from radiation theory or
may be taken directly from the signal processing literature. This analogy between signal processing
and array spatial filtering is developed more completely in several of the references listed at the
end of this chapter.

4.8 Radiation from Rigid Pistons

In the preceding section we dealt with linear arrays of monopoles. However, most radiators of
underwater sound occur as surfaces rather than lines. The treatment of surface radiators is essen-
tially the same as that for lines, except that the resultant mathematical functions are usually more
complex. In dealing with planar surfaces it is useful to replace the omnidirectional monopole used
in array calculations with an elementary piston radiator that radiates sound in only one direction.
The radiation pattern of an extended surface is then calculated by integration of the fields of these
elementary pistons.

Elementary Piston Radiator

The elementary piston radiator is closely related to the simple pulsating sphere, as can be seen
from Fig. 4.18. Since a pulsating sphere radiates sound uniformly in all directions, the placement
of a mathematical plane dividing it into two hemispheres has no effect on its field. We may then
drop one side, without altering the sound field on the other side, provided we retain the same
surface velocity. (Keeping the same flux would involve double the velocity and would produce

3
- 2 - 2
S = 4ma, So Ta,
a) Sphere b) Hemisphere in c) Piston in
a Baffle a Baffle

Fig. 4.18. Transformation from Pulsating Sphere to Piston in a Baffle
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double the pressure.) It is then a simple step to change from a hemispherical source on a baftle to
an equivalent vibrating piston. Since the area is half as great, the same surface velocity produces
only half as much oscillating mass flux and half as much sound pressure. It follows that Eq. 4.15
for the pressure ficld of a monopole can be replaced for an elementary piston by

dp'(r) = | =Lolo_pilwr = kr)ys (4.112)

2nr

In principle, the pressure from any planar source can be calculated by integrating Eq. 4.112 over
the surface of the source, taking into account any phase differsnces between elements.

Circular Piston in a Baffle

The integration of Eq.4.112 over the area of a uniformly vibrating circular piston is quite
similar to the integration carried out in Eq.4.98 for a continuous line array. Defining p as the
pressure that would be radiated by a small piston having the same mass tflux, the pressure is given
by the integral

oik(r - r')
o gf__-— Js (4.113)
S I"/I’

where 7 is the exact distance from the element to the field point and r is the nominal distance
from the center, as depicted in Fig. 4.12 for a line. The integration is carried out in a number of
texts. and the far-field result may be written

3. (ka . sin 8)
§ = 2 - . (4.114)

ka, sin f

The expression in brackets is the pressure pattern of a circular piston in a baffle. It is seen to be
similar in form to the sin x/x function that was found for linear arrays. J,(x) is the Bessel
function of the first order, defined by the series

_ | - s _Y'?
Jfx) E—fx - + - . g
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(4.115)

Setting the denominator of Eq. 4.114 equal tc z. as was done in Eq. 4.99, the directivity function
of a circular piston is

2J (ka, sin @) | _ | 2J:(@ (4.116)
ka,, sin 6 a | |

D(g) =

which function approaches unity for small @ corresponding to omnidirectional radiation in one
hemisphere. For large values of a.
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D6) ~ | 1.6 sin(@ - 0.7)
53/2

(@>3) . (4.117)

For medium values, it behaves in a manner similar to that for a line array. as shown in Fig. 4.16,
except that the first null occurs at 1.27, the second at 2.2, etc.

Many practical sound sources radiate as pistons having values of ka, < 2, tor which the
directivity function can be expressed as the first three terms of a power series. as

A in 6)* (ka sin 6)?
D) =1 - (ka, sin 02 (haysin®) ) <o) (4.118)
8 192

Half of the total power radiated is contained in a cone defined by ka, sin 0 =16.

Near Field of a Piston Radiator

The expression in Eq. 4.1 14 for the radiated pressure of a piston source was derived under the
assumption that the difference petween # and 7 is small compared to either distance. In practice,
this expression for pressure agrees well with measurements for distances that satisfy the
relationship

(kr) > (i'caa)2 . (4.119)

which inequality defines the far field. The near field is quite complicated, often involving inter-
ference minima and maxima. However, for pistons having ka,, < 7 there are no interference pat-
terns and the intensity and pressure fields are continuous.

Close to the surface of a piston sourcc. i.e., when r <a,,, the pressure on the axis is

; Ka
d R S o 2] )
p(r La b = 2P H,C sin - (4.120)
hence, the on-axis pressure ata large distance ris related to the near-field pressure by
kao L,-J'kr
pilr>a,) ) 2
— 0O = . (4.121)
'(r <a_) a
4 by (kr)sin| —%

2

For the small values of ka, that are often found when dealing with ship radiation, the sine term in
Eq. 4.121 can be replaced by its argument, and the rms pressure in the far field is then related to
its near-field value by

a()

£(r>ao) = i)_(r <a,) (ka, <1) . (4.122)

27
A practical consequence of Eq. 4.122 is that, for values of ka,, typical of many radiations from

ship hulls, pressure measurements made close 10 the hull are representative of far-field values. This
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experience is contrary to that of the transducer community, since most transducers are highly
directional devices that operate at high values of ka,, for which the near field is very complicated.

Radiation Impedance and Efficiency

Pressure is not constant over the surface of a piston. Values given by Eq. 4.120 apply only near
centers of pistons. To find the reaction force experienced by a piston due to its motion, one must
find the average pressure over the entire piston surface. The general expression involves two types
of Bessel functions. The resultant values for the specific radiation resistance and reactance are
plotted in Fig. 4.19. For pistons satisfying the requirement that ka, <I, the specific radiation
resistance is

A N 2 . 2
g5 [ = Jy(2ka,) 5 (ka,) ;- (ka,) , (4123)
ka, 2 5}
and the reactance is
bot (21’\. )2
o, = — (kay) |1 - =2l (4.124)
o 15

It follows that for small values of kg, the radiation efficiency is proportional to the first power of
ka

o)

. 3m i e
Mg = — ka, ka, <— | , (4.125)
16 2

as one would expect for a monopole type of radiation.

1.0 e

r,x

N
0'x el
] 1 | | |
2 3 4 5 6
ka0

Fig. 4.19. Specific Impedances of Circular Pistons
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Directivity Factor and Index

The directivity factor for a piston radiator is calculated by substituting the directivity func-
tion. D(6), given by Eq. 4.116, into Eq. 4.102 and carrying out the integration. The result is

10 ka, )? ka,)?
pr= 10 _ (kap )  _ fkap)” (4.126)
T, i) a,
2ka,

For values of ka, up to about 1, DF = 2, representing essentially omnidirectional radiation in one
hemisphere and zero radiation in the other. For ka, =2, 0, is close to unity, as shown in
Fig. 4.19, and

DF = (ka,)? (ka,=2) . (4.127)
The directivity index of a piston radiator is therefore 3 dB at low frequencies and is given by

2ma

DI = 20log ka, = 20log (4.128)

A
at high frequencies.

Pistons of Other Shapes

The above development applies only to circular pistons. Many ship radiating surfaces are more
nearly rectangular. For rectangular pistons of dimensions 2a X 2b the directivity function is the
product of two sin aja functions, one for each dimension. Molloy (1948) calculated the directivity
index and found that at high frequencies it can be estimated from

DI = 1.2 + 10logka + 10logkb . (4.129)

Stenzel (1939) has shown that for many different shapes the main beam pattern is represented
by

g
Do) =1 - —K*L, sin* 0 (4.130)

2
where L is the area moment of inertia about an axis perpendicular to the direction of the pattern.
L, equals (a/2)* for a solid circle, (a*/2) for a ring, and (a2 /3) for a square piston having sides of
length 2a. Since acoustic calculations usually need not be very precise, it follows that equations for
circular pistons can be used, provided the aspect ratio of the radiator is close to unity.

Planar Arrays

It has been demonstrated that the directivity patterns of continuous line radiators are similar
to those for linear arrays having their elements closer than a half wavelength. In the same way
planar arrays of discrete radiators have radiation patterns similar to those of pistons. Directivity
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indices of planar arrays of pistons are given by Eq. 4.129 up to a limit 3 dB higher than 10 log N,
the limit that applies for unbaffled omnidirectional sources.

Pistons in Non-Rigid Baffles

In the discussion thus far it has been assumed that the baffle is rigid. This is almost always a
good approximation in air, but not as true in water. Feit and Duncan (1968) have considered the
effect of finite baffle impedance on piston radiation impedance and found that both the resistance
and reactance are reduced for ka, <I. For ka, up to about one half, they found that Eq. 4.123
can be replaced by

ka, )? k
g, = Lf—‘?)— I - —Fy-b-—tan'l % , (4.131)
) 2 ka Y

where

Ty, = p"la” (4.132)
Hp

and ,u;J is the mass area density of the baffle. Taking / to be the baffle thickness,

a c ¢
Y - (Lol | (o \- Polo (4.133)
ka,, pph wa, wpyh
where p, is the density of the baffle material and wpbh is the baffle mass reactance per unit area.
It is apparent that for a given baffle the effect of finite baffle impedance is pronounced at low

frequencies, and that at high frequencies the baffle appears to be rigid. It is essentially a question
of the relative impedances of the medium and the baffle.

Unbaffled and Partially Baffled Pistons

The importance of the baffle to piston radiation can be appreciated by considering unbaffled
and partially baffled pistons. Morse and Ingard (1968) show that the pressure pattern at large
distances from a free-floating, vibrating disk is equal to that of a piston in a baffle multiplied by
cos 8. At high frequencies, for which ka, >> I, the extra cos 0 has little effect and the pattern
ahead of the disk is unchanged. Since radiation occurs behind the disk equal to that in front.
" though out of phase by 180°, the radiation resistance at high frequencies is double that for a
baffled piston.

At low frequencies, for ka, <1, the cos 6 term dominates the radiation pattern of the free
disk, and it radiates as a dipole. In the limit, for small ka, the radiation efficiency is given by

I
Myag = —(kay)? (4.134)

2

and unbaffled disks are seen to be much less efficient as radiators of sound than are pistons in
infinite baftles.

The question of baffle size required to achieve much of the effect of an infinite baffle was
examined by Crane (1967). He carried out calculations for circular pistons of radius a, in circular
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baffles of radius 7, and found that the radiation impedance is virtually equal to that for an
infinite baffle provided krp >, i.e., that the baffle diameter is greater than a wavelength.

Pistons on Non-Planar Baftles

In practical marine acoustics, piston-like radiating surfaces occur on finite curved bodies rather
than in plane baffles. While the general case has not been treated mathematically, examples of
pistons in rigid cylinders and spheres have been treated in the literature. The calculations involve
Legendre and Bessel functions of various orders and are quite complex.

Morse (1948) considered a piston of radiusa, = a sin ¢, in a sphere of radius a. He found that
the equivalent source strength is somewhat greater than that for a piston in a plane baffle, and that
for moderate angles, up to 60°,

Q, = —— Q. (4.135)

His calculations also show that a change from plane to spherical baffle makes a large change in the
angular distribution of the radiated sound pressure, but has relatively little effect on the average
radiation impedance load of the piston.

Laird and Cohen (1952) were the first to solve the problem for pistons on cylinders. but did
not report any simple relation to piston radiation in planar baffles. Greenspon and Sherman
(1964) found that, for a piston set in a cylinder, the pressure distribution along the generator
agrees well with that for a plane. while around the periphery it is in excellent agreement with that
for a sphere. In all cases, the pressure distribution depends on both the ka of the piston itself and
that of the curved body, while total radiated power and average intensity are much the same as
those for a piston in a plane.

Effect of Flow on Piston Radiation

Since ships are usually in motion, it is pertinent to investigate any effects which tlow past a
piston might have on its radiation. Chetaev (1956) calculated the acoustic impedance of a square
piston in an infinite baftle radiating into a moving medium. He found negligible effects on both
the resistive and reactive components provided the product of ka, and the Mach number, M., is
small compared to unity. Thus, for speeds found in water. the effect should only be noticeable at
very high frequencies.

4.9 Radiation from Hull Openings

Usually when dealing with pistons as sound sources one thinks in terms of oscillating rigid
plates. At low frequencies, however, pulsating fluid motions in hole openings also generate sound
by the same mechanism. This can be understood by thinking of a rigid piston as a device that
causes the fluid in front of it to move back and forth, thereby radiating sound. The same oscil-
lating motion can occur in an opening due to pressure pulsations in a tank or pipe. In ship systems,
such pulsations occur in hull openings such as those connected with seawater piping systems and
tanks. as well as propulsion system exhausts.
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Radiation from Pipe Ends

The inlet and discharge lines of seawater pumps may be treated as open-ended pipes in
essentially infinite baffles. Morse (1948) has shown that the radiation from an opening in a wall is
the same as that from a massless piston set in the wall and having the same mass flux. The
expressions given in the previous section for piston radiation therefore apply unaltered to pipe
endings. The problem reduces to finding the mass flux, Q.

In the case of piping systems it is common practice to measure the rms oscillating pressure, p..
inside the pipe. If this is measured within an eighth of a wavelength of the opening, then the rms
fluctuating fluid velocity, 7, is related to it through the impedance of the opening, as

LB . B . Pi
[RT + X2 . , 2 FE TS
|Zr| R: + X; PoCoN O + oy
The components of the radiation impedance are given in Fig. 4.19 and by Eqs. 4.123 and 4.124.
The assumption of constant velocity, ir, across the mouth of the opening is valid only for low

frequencies for which the pipe diameter is small compared to a wavelength. For ka, <1/2,
Eq. 4.136 reduces to

u

(4.136)

3np.
T = ... (4.137)
8p ¢, ka
p()(I()UI (-po ¢ ¢
from which the rms radiated sound pressure is
' 3t a
p(r) = — —— p,D(6) . (4.138)
6 r

The directivity function, D(@), is the approximate expression given by Eq. 4.118. At low frequen-
cies the power radiated is

_ 1 (37 \? p2S
Woe = Ny oDilS, = —\ =5t (4.139)
- 8 poco

showing that the power for a given pipe pulsation pressure is proportional to the area of the
opening but is independent of ka,,.

Radiation from Tank Resonances

When they occur, flow-excited cavity resonances of ship and submarine tanks produce very
strong tonal components. All open-mouth cavities have resonant frequencies. The fluid in the
opening moving in and out provides the mass, while compressibility of the cavity volume acts as
the spring. In air, ie.. in Helmholtz resonators, compressibility is provided by the gas in the
resonator. In liquids, which are virtually incompressible, flexibility of the tank walls provides the
spring action. Sometimes tanks are only partially filled with liquid, in which case the gas volume is
the compressible member.

Cavity resonances can be excited in a number of ways, but by far the most important is flow
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excitation. As discussed in Chapter 9, all wake flows are unstable, shedding vortices at frequencies
controlled by flow speed and body dimensions. Such vortices occur in cavity openings when fluid
flows past the cavity mouth. When the vortex shedding frequency approaches the resonance
frequency of the cavity, the cavity begins to pulsate, strengthening the vortices and further
increasing the pulsation velocity. The amplitude builds up until it is limited by non-linear effects.
Not only does such a flow-excited resonance radiate a very strong tonal component, but also
pressures inside the tank may be sufficient to cause fatigue cracking of the tank plates.

When flow-excited tank resonances are found in marine vehicles, they are readily corrected.
Redesign of the cavity opening to change the vortex excitation frequency is one cure. Another is
addition of reinforcing beams to the tank plates to decrecase their flexibility and thereby increase
the resonance frequency. Also, flow diverters can be introduced ahead of the tank opening,
causing the flow to avoid the opening and thereby reducing both the strengths and frequencies of
the vortices.

Radiation from Exhaust Pipes

Pulsating exhaust flows from tail pipes of torpedoes and other underwater exhaust systems
also radiate as monopoles. Even though unflanged, such open-ended pipes radiate as though
baffled. with the pipe wall providing the baffle. At low frequencies sound is radiated equally in all
directions. The radiation reactance is about 30% less. and the pressure about 1.5 dB lower, than
that for an opening in a tlat surface.

Ffowes Williams (1969) and Plett and Summerfield (1974) have shown that even for jet
engines in air, monopole sources dominate at low Mach numbers. Westervelt and McQuillin (1957)
reported that at low frequencies sounds from pulse jets are controlled by volume pulsations. At
higher frequencies, dipole and quadrupole radiations are observed. Marine vehicle exhaust systems
are similar in many ways to low Mach number pulse jets; monopole radiation can therefore be
expected to dominate.

4.10 Radiation from Arbitrary Bodies

While many practical sound sources can be understood in terms of the relatively simple
configurations discussed earlier in this chapter, there are other types of radiators which are more
complicated. Numerous papers have been published dealing with one or more specific configura-
tions. The present section deals briefly with several methods that are used in calculating the sound
fields radiated by arbitrary bodies, and the next section discusses their application to hull radiation
problems.

Integral Equation Methods

Solutions of Helmholtz’s equation, Eq. 2.61, for acoustic fields radiated by arbitrary bodies
can be expressed in terms of integrals over their surfaces. The approach used parallels that orig-
inally developed for solving Laplace’s equation when presented with a set of arbitrary boundary
conditions.® The fact that acoustics formulations deal with retarded time and must retain phase
information makes acoustics problems somewhat more difficult than the usual boundary-value
problems of potential theory. Were it not for the availability of high-speed computers, this ap-
proach would have little appeal.

*Gee. for example, Kellogg (1953).
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Most integral methods start with the Helmholtz integral equation, derived by applying Green’s
theorem to acoustic potentials. In its most common form, the radiated pressure is expressed as a

sum of two integrals:
ket 9 L-ikr

p'(r) = f‘ o ds - fp'(S)-f (L ) dsS . (4.140)
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Solution of this equation requires knowledge of the pressure distribution and of its normal deriva-
tive. both evaluated just outside the surface. From Eq. 2.47, the normal pressure gradient at a
surface is related to the surface velocity, u, by

ap'
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=p — = g'wpo“ = jwa(;oku ) (4.141)
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The first integral therefore expresses the monopole field of the surface velocity distribution, while
the second can be interpreted as the dipole field of the surface pressures. If both surface velocity
and pressure distributions are given, then Eq. 4.140 can be used directly. However, usually only
one of these is known and equations must be found to relate the unknown quantity to the known
one. In solving these supplementary integral equations, difficulties in the form of indeterminacies
oceur at certain wave numbers. Chertock (1964, 1970 and 1971) has developed several practical
computational procedures for overcoming these problems. Other methods for using integral equa-
tions have been published by Copley (1967, 1968) and Schenck (1968).

The most successful applications of integral methods have been in calculating the fields of large
complex transducers and of cylindrical shells. Readers interested in further discussion of this
subject are referred to the articles and reports listed at the end of this chapter, especially
Chertock’s (1971) overview.

Spheroidal Wave Functions

Many radiators for which sound fields are desired are cigarshaped. Rather than carry out the
integrals of Eq. 4.140, it is more appropriate to express the sound fields of such bodies in terms of
known mathematical functions, of which prolate spheroidal functions are the most useful. In this
approach, the geometric outline of the body is fitted as well as possible by a prolate spheroid, and
the surface velocity distribution is expressed by a finite series of spheroidal surface functions, as
given by Morse and Feshbach (1953). The radiated field is then given by a series of spheroidal
wave functions. in much the same manner as in the treatment of a general spherical radiator
discussed in Section 3.3. Chertock (1961) developed expressions for the pressure field, radiation
impedances and directivity factors for spheroidal modes, and applied these results to consideration
of rigid-body and *“‘accordion-like™ vibrations of thin prolate spheroids. The usefulness of this
approach depends both on the degree of fit of the actual body by a spheroid and the number of
terms required to match the surface velocity distribution. It is therefore most useful when treating
bodies of revolution at low frequencies.

Slender Body Theory

A weakness of the spheroidal function method is that it assumes bow-stern symmetry. Pond
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(1966) overcame this difficulty by representing relatively thin bodies of revolution by distribu-
tions of monopoles and dipoles on the body axis. The strengths of the sources are adjusted to
produce streamlines that coincide with the hydrodynamic flow over the body. Pond found that
bow-stern assymmetries introduce a number of important terms that are not part of a symmetric
analysis. Chertock (1964) noted that at low frequencies the far-field radiation pattern is symmetric
even though the body itself is not. Thus, the longitudinal accordion mode, which radiates strongly
along the axis of the body, radiates sound almost equally in the bow and stern directions.

Chertock (1975) has developed a relatively simple method for calculating the radiation fields
of slender bodies at very low frequencies. He assumed that the acoustic wavelength is larger than
any distance along the body in which the motion changes appreciably. This implies that the fluid
can be treated as incompressible when relating the surface velocity and pressure distributions. In
fact, the local surface pressure is then simply the fluid density times the local surface acceleration.
Chertock has successfully applied this method to the calculation of low-frequency fields of a
number of ship-like structures.

Radiation from Cylinders

Slender body methods are most useful at the lowest frequencies. At somewhat higher frequen-
cies. sound radiation from marine vehicles often has characteristics that are similar to those found
when treating radiation from cylinders. In this medium frequency range, shell resonances play an
important role, and much of the literature relating to cylinders is concerned with these resonances.
The subject has offered considerable challenge to theoreticians and most of the papers are highly
mathematical. Heckl (1962) summarized the results for finite cylindrical shells in air. He noted
that while ring stiffness controls at low frequencies, the results are in good agreement with
flat-plate calculations when the circumference of the cylinder exceeds the wavelength of longi-
tudinal waves in the shell.

Junger (1975) pointed out that submergence of a structure in a liquid changes the nature of
the problem. In air, the vibration can be calculated as for a vacuum and the radiation then derived
from the vibrational pattern by any of a number of acoustic methods. In a liquid, on the other
hand, motion of the fluid must be included in dealing with the structure, i.e., one is dealing with a
coupled structural-acoustics problem. Junger (1952) has solved the coupled equations for thin,
elastic cylindrical shells, finding as much as a 50% change in some resonances. He extended this
approach in 1954 to cylinders with reinforcing rings and bulkheads. Different methods of solving
the same problems have been developed by Warburton (1961) and by Bleich and Baron (1954,
1965).

It is the author’s experience that most of the acoustic characteristics of radiating underwater
systems can be understood without resort to detailed analyses of cylindrical structures. Further-
more, the mathematical complexity of these analyses tends to hide some of the basic physics. For
these reasons, no details on this subject are given in the present volume. Readers who wish to
pursue this subject further may do so by reading some of the articles already mentioned, as well as
several others listed at the end of the chapter.

Finite-Element Methods

The finite-element approach to structural-acoustics problems has gained increasing favor as
industry has developed larger and faster digital computers. In this approach one divides the
structure into a large number of relatively simple sections so chosen that their independent
vibrational and radiational characteristics are known. A series of coupled equations is written and
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the resultant matrix solved on a high-power computer. The larger the number of equations, the
better the results. An application of this method to hull vibrations has been published by Green-
spon (1963). MacNeal (1962) has written on the analogy of mechanical and electrical finite
clements and the use of electric circuit theory to analyze complex structures. Before the develop-
ment of high-speed digital computers, vibration problems were often solved by means of finite
elements and their electric analogs.

4.11 Radiation from Hulls

The hulls of most marine vehicles are extremely complicated structures that can be excited
into vibration, and consequently radiate sound, over a wide range of frequencies. In later chapters
we will discuss a number of hydrodynamic and mechanical forces that cover the entire spectrum
from as low as 1 Hz to as high as 20 kHz Calculation of the resultant hull vibration and radiation
by any single method seems virtually impossible. Most of the more important characteristics of
hull vibrational response and radiation can be understood by dividing the spectrum into a few
distinctive frequency regimes, treating each regime by relatively simple physical models.

Definition of Frequency Regimes

Parameters that are most useful in dividing the spectrum into frequency regimes are ratios of
the acoustic wavelength to various hull dimensions. Pertinent dimensions are overall length,
diameter or width, lengths of compartments, frame spacings and plate thicknesses. The author has
found it useful to think in terms of the three basic frequency ranges summarized by Fig. 4.20.

> 20 kHz
Small section vibrates, extending only a few frames.

HF Ribbed flat plate.

Curvature adds stiffness at low-freq. end.

Compartments vibrate.
MF Resonances important.

Cylindrical shell in a rigid cylindrical baffle.

A=L/2
Whole hull involved.

LF Rigid-body translation and rotation.
Beam flexural vibrations (whipping).

Accordion modes.

~ 1 Hz

L = vehicle length R = effective cross-sectional radius

Fig. 4.20. Frequency Regimes for Hull Vibrations and Radiation
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Low Frequencies

The low-frequency (LF) regime extends from 1 Hz up to the frequency for which the acoustic
wavelength equals half the vehicle length. For a vehicle 150 m long, this includes all frequencies up
to about 20 Hz. In this regime, the entire hull participates in the motion and applicable models
must represent the whole body. Three distinct types of motion may occur at low frequencies, each
of which radiates sound with different characteristics. The body may experience rigid-body
motion in which it retains its exact shape and either vibrates in position in response to an external
alternating force or rotates about an axis. The second type is beam-like flexural bending vibrations,
sometimes called whipping motions. Finally, there may occur dominantly longitudinal vibrations
in which the two ends move out of phase in an accordion-like motion. Expansion and contraction,
i.e., breathing, motions of the hull sections are associated with the latter type of vibration.

Low-frequency motions of surface ships are important to naval architects because they are
sometimes strong enough to cause damage and because they can be very unpleasant to experience.
However, acoustic radiation from these motions is generally negligible. The reason is that the
ocean surface acts to reduce the sound by providing negative image sources within a half wave-
length of the hull sources, thus partially cancelling them. Thus, any near-surface oscillating-volume
source radiates as a dipole, while dipole sources radiate as quadrupoles. Also, as will be discussed in
Chapter 8, direct radiation by propeller cavitation generally dominates in this frequency region.
Low-frequency radiation is much more important for submerged vehicles, for which image cancel-
lation is much reduced and for which propeller cavitation may be absent.

Methods for calculating low-frequency sounds from submerged bodies were discussed in the
previous section. Additional material pertinent to flexural vibrations of hulls and the attendant
radiation is presented in the next chapter.

Medium Frequencies

The medium-frequency (MF) region of the spectrum applies between the LF region and the
frequency for which the acoustic wavelength equals the effective radius of the cross section. Thus,
for a circular hull 10 m in diameter, this covers frequencies up to about 300 Hz. In this regime,
response to excitation is usually limited to one compartment; the remainder of the hull acts as a
baftle.

Individual hull resonances play a major role in the response of the hull to exciting torces and
are therefore important in acoustic calculations for the MF range. Resonance frequencies can be
estimated from results for cylinders, but are best calculated by finite-element methods. In many
ways the decade of frequency covered by this regime is the most difficult part of the spectrum for
vibration and acoustics calculations. Slight alterations in the structure that change a resonance
frequency by only a few percent result in entirely different responses to specific forcing
frequencies. The role of resonances in this frequency regime is clearly indicated in hull structural
and acoustic measurements, such as those reported by Donaldson (1968).

High Frequencies

In the high-frequency (HF) region, each exciting force causes only a small area to vibrate and
the remainder of the hull is effectively an infinite baffle. Radiation in this frequency region can be
treated in terms of plate theory. This topic is covered in Chapter 0. where it is shown that ribs play
a much more important role than plate curvature. In this frequency regime, the densities of
resonances are of greater interest than are their exact frequencies. In fact, sufficient numbers of
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resonances occur to enable application of statistical energ methods. In this regime, sound radia-
tion is controlled by plate thicknesses and frame spacings, and the results are only slightly influ-
enced by the overall shape of the hull.

Excitation forces at high frequencies sometimes occur at a single point, such as at a machine
toundation. Sometimes they are distributed over wide areas, as in the case of boundary layer
turbulence. Both situations are discussed in Chapter 6.
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