CHAPTER 3

ACOUSTIC RADIATION FUNDAMENTALS

3.1 General Characterization of Noise Sources

Sound is generated in a fluid medium by any process that causes a non-steady pressure field to
occur in that medium. Physical processes that can cause unsteady pressures include the pulsation
or vibration of a boundary surface of the medium, the action of a non-steady force on the fluid,
turbulent motions in the fluid, and oscillatory temperatures.™ Each noise source can be charac-
terized according to its dominant mechanism.

Monopoles, Dipoles and Quadrupoles

Each basic physical mechanism that generates acoustic pressure fields corresponds mathe-
matically to a dominant order of multipole. Thus, volume or mass fluctuations give rise to domi-
nant simple sources, i.e., to zero-order poles called monopoles. Examples are pulsating bubbles,
pistons in baffles and cavitation. Monopoles are essentially omnidirectional, although directional
radiation patterns can be generated by forming arrays of monopoles. Fluctuating forces and
vibratory motions of unbaffled rigid bodies are associated with dipoles and have cosine directional
patterns. Turbulent fluid motions involve distortion without net volume changes or net forces and
radiate as quadrupoles. Monopoles and dipoles occur only at fluid boundaries, but it is now
recognized that quadrupoles can occur within the fluid itself, away from fluid boundaries, in
regions of free turbulence where they are associated with fluctuating turbulent shear stresses.
Figure 3.1 summarizes the basic physical characteristics of the three lowest order multipole
SOUrces.

Radiation Impedance

If a source were a perfectly efficient radiator of sound, the entire motion would be converted
into a radiating pressure field. Actual sources create a hydrodynamic non-radiating field as well as
an acoustic field. Local pressures associated with the hydrodynamic motion are 90° out of phase
with the acoustic component. These concepts are embodied in the radiation impedance

Z =R, + iX,, (3.1)

so defined that the resistance is proportional to the acoustic power and the reactance measures the
sloshing hydrodynamic motion. Usually one can find a mean velocity associated with a noise
source, in which case acoustic resistance is related to acoustic power by

*Thermal sources of sound are not generally considered when dealing with noise in liquids, although recent
experiments with laser beams in water have produced sound by this mechanism.
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46 3 RADIATION FUNDAMENTALS

Radiation reactance is related to hydrodynamic reactive power by a similar relationship.

Radiation impedance measures the reaction of the medium on a source. As such, it is generally
proportional to the impedance of the medium, p,c,. and to the area of the source, S, . The
specific radiation resistance is the non-dimensional normalized form of the radiation resistance
defined by

R W
6, = —L— = ac__ (3.3)
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and the specific radiation reactance, 0., is the corresponding non-dimensional form of the radia-
tion reactance.
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Fig. 3.1. Types of Sound Sources

Radiation Efficiency

The radiation ¢fficiency introduced in Chapter | by Eq. 1.4 is the ratio of acoustic power to
the total power involved in the acoustic and hydrodynamic fluid motions. Thus,
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Some authors prefer to call this the radiation loss factor, using the term radiation efficiency for
the non-dimensional radiation resistance defined by Eq. 3.3.

The radiation efficiency of a multipole is dependent on the order of the pole and the ratio of
the size of the radiator to a wavelength. For radiators which are small compared to the wavelength

a 2m + 1 "
~| — ~ (ka)*m *1 | (3.5)
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A

where m is the order of the pole, being zero for a monopole, one for a dipole and two for a
quadrupole. Since many sources in liquids are characterized by having ka small compared to unity,
it follows that the lower the order of the source the more efficient it is as an acoustic radiator.
When monopoles exist, they generally dominate. Lacking monopoles, dipoles are most important.
It will be shown later in this chapter that quadrupole radiation is seldom significant in liquids.

3.2 General Equation for Sound Generation

The roles of fluctuating mass and force as source terms in acoustics were understood by Stokes
and Rayleigh in the 19th century, but it was not until the middle of the 20th century that
Lighthill (1952) recognized that turbulent shear stresses could also act as sources of sound.
Lighthill realized that sounds from jet aircraft could not be explained in terms of simple mass or
force sources and looked to the fluctuating fluid flow as the source of this sound. The derivation
of Lighthill’s differential equation is more straightforward than that given in Section 2.2 for the
usual wave equation in that some of the assumptions made in deriving the wave equation are not
needed. Lighthill’s equation can be derived simply by combining the continuity and momentum
equations without assumptions concerning linearity or steadiness or irrotationality of the fluid
flow. The resultant equation can be interpreted as a wave equation with source terms. The same
procedure can be used to derive a general equation for sound generation by volume and force as
well as shear-stress sources.

Derivation

In deriving a general differential equation for sound generation we start with the continuity
and momentum equations of fluid mechanics written for regions that include mass and force
source terms. These are then combined to form a single equation prior to making the acoustic
assumption. Upon making the acoustic assumption, and after some manipulation, a single dif-
ferential equation is obtained which has the form of a wave equation on the:left, but with a
number of terms on the right which can be interpreted as source terms. In carrying out this
derivation. it is convenient to use the double-subscript tensor notation described in Section 1.5. In
this notation, the continuity equation, Eq. 2.32, in a region containing sources is

Ef_,_—l-p(v-v’)za_-l-mg__:q. (36)

Dt ot 0x .
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where ¢ is the rate at which new mass is created per unit volume. This equation differs from
Egs. 2.27 and 2.32 only in the addition of the source term.

It is the momentum equation that takes on a different form in a region containing sources.
Eq. 2.40 for the rate-of-change of momentum may be written
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DM, D(pv.) ov; ol pv; ol pv,) v,
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(3.7)

The second and third terms can readily be combined into a single term. Equating the time-rate-of-
change of momentum to the sum of the forces, Eq. 2.43 is replaced by

o(pv;) 2 a(pvivj) _ - oz
ot Ox; ox. 0x;

] 1 1

+ f. (3.8)
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where f; represents the net force per unit volume exerted by any external mechanical forces that
may be acting on the fluid. In this form, viscous stresses are not included. Lighthill chose to
include viscous stresses, even though they are negligible in all practical calculations of fluid-
dynamic noise. He replaced the pressure, p, by a stress tensor, p7;;, which includes both the normal
stresses and the viscous shear stresses. In tensor notation, the complete momentum equation may
be written

oovy) _ Oy g, - A £, (3.9)
ar ax; ’ x, ’

where g, = -¢ gruad z.
A single second-order differential equation can now be derived by taking the partial derivative
of Eq. 3.6 with respect to time,

9 p % 3*(pv;) _ 04

(3.10)
or? dtdx; ot
and the divergence of Eq. 3.9,
a*pv) _ angU & ol pg;) N of,  pvy) . (311)
dx;0t 0x,0x ; ox; ax; dx;0x [
Subtracting
92 9° *(ec2p8s.;)
L W A (c5p;; (3.12)
ax? ax;0x; dx;0x;
from both sides of Eq. 3.10 and then combining with Eq. 3.11, one obtains
9% p o 0%p _ ﬁ ) alpg) 0 % az(pij + pvv; - c‘gpaij) (313)
: R
ot ox? ot o, dx; dx,0x;

Lighthill recognized that the last term of Eq. 3.13 represents several types of stresses. He com-
bined these stresses into a single stress tensor. writing
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T = PV + Pij ~ copﬁﬁ . (3.14)

Since the gravitational force is conservative, its divergence is zero, and

22 2p D o0 of, _ a'r,
S T Y. L. . Bt T (3.15)
ar? ox? ot ox;  Ox; dx;0x;
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Equation 3.15 applies to instantaneous values of the physical quantities, which are the sums of
the steady-state values and fluctuating components. Making the acoustic assumption for each
quantity, as in Eq. 2.19, subtracting the equation that applies when there are no fluctuating
components, and neglecting a residual gravitational term, one obtains a differential equation for
the fluctuating components:

az ' a2 r a ' afr 82 C
L B B (3.16)

ot? axf ot ax; axz.a.\-].

This generalization of Lighthill’s equation includes mass flux and force sources as well as the
stresses which he originally considered.

As discussed in Chapter 1, underwater acoustics usually deals with acoustic pressures rather
than with fluctuating densities. Equation 3.16 can be transformed into a similar equation for
acoustic pressure only by making assumptions that the stress-strain relationship is linear and that
spatial variations of ambient quantities are negligible (assumptions 8 and 11 in Section 2.2). Thus,
using Eq. 2.22 to relate the acoustic pressure to the fluctuating density and assuming Va to be
negligible,

2.1 1 had] ap P azT"
vip - —p =-q + v/ - —H— (3.17)
el dx;0x;

This form is particularly useful when dealing with mass and force sources in water and is used
frequently in the present volume.

Interpretation

The wave equation, Eq. 2.52, can be derived directly from Egs. 3.16 or 3.17 by assuming that
there are no fluctuating mass inputs, that no fluctuating external forces are being experienced, and
that the unsteady stress tensor is zero. In other words, these equations reduce to the wave
equation in regions free of acoustic sources. The three terms on the right therefore represent the
dominant types of sources of acoustic radiation. The first term on the right, involving unsteady
mass flow into the fluid, acts basically as a monopole. The second term, the divergence of the
unsteady forces applied at some boundary, is of dipole nature. It was these two types of sources
which were considered by Stokes and Rayleigh. The last term, involving turbulent stresses in the
fluid itself, is the term which Lighthill derived and showed to be of quadrupole nature.

In his classic article, Lighthill (1952) noted that there are three ways in which kinetic energy
can be converted into acoustic energ

1. by forcing the mass in a fixed region of space to fluctuate, represented by ¢':

2. by forcing the momentum in a fixed region to vary, i.e., by exerting a fluctuating external

force on it, represented by div f'; or



50 3 RADIATION FUNDAMENTALS

3. by forcing the rates of momentum flux across fixed surfaces in space to vary, as by
turbulent shear stresses in space.

The first two require boundaries, but the last can occur in open regions away from boundaries.
Lighthill also recognized that the efficiencies of the terms as sources decreases with increasing
dependence on spatial derivatives. One can understand this when it is recognized that for functions
of the form f(x - ¢t), which represent waves, a derivative with respect to time is of order of
magnitude ¢ greater than a spatial derivative. It follows then that, other factors being equal, the
oscillating force term is small with respect to the mass flux term, and the shear term is the
smallest. Lighthill’s contribution was his pointing out that the lowest order source that could exist
away from boundaries is of quadrupole nature, becoming efficient when fluctuating fluid velocities
approach the speed of sound.

3.3 General Spherical Sources

Equation 3.17 indicates the nature of the common source terms found in acoustics, but its
solution for a pressure field is often quite difficult. Solutions for many common sources are
obtained by solving the source-free wave equation with appropriate symmetry and then matching
the expression for particle velocity at the boundary to the vibratory velocity of the source, under
the assumption that continuity of material requires that a fluid and its boundaries move in
synchronism.

As indicated in Chapter 2, many sources exhibit spherical symmetry. In fact, it is possible to
calculate the radiation field of any arbitrarily shaped source by superposition of the ficlds of small
sources having spherical symmetry. By small sources, we mean sources small compared to a
wavelength, i.e., sources having ka <</, where & is the wave number and a is a characteristic
dimension. Stated another way, the sound field from any arbitrary source can be calculated in
terms of a superposition of elementary multipoles, provided only that the assumption of linearity
is valid.

The basic properties of multipoles can be derived by considering the general problem of
radiation from a small sphere whose surface vibrates in an infinite number of symmetrical modes.
The general solution involves Legendre functions and spherical Bessel functions.® However, it can
be shown that provided ka << I the radiation resistance and reactance are relatively simple
functions of ka,

(ka) " * 2 (3.18)
mo om+(m+ 12 (13 (2m- 1))?

k
6. = E . (3.19)
m (2m + 1)(m + 1)

where m is the order of the multipole, starting with zero for a monopole. Since for small ka the
reactance is large compared to the resistance, it follows that the radiation efficiency, Eq. 3.4, is
given simply by

*Qee Morse (1948), Section 27, or Morse and Ingard (1968), Section 7.2.
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- o (ka).?m-f'l (3 ’)0)
S S , *
S m+ 1) 35+ (2m-1)?

X

which is of the same form as Eq. 3.5 but includes values for the constants of proportionality.

3.4 Hydrodynamic Sources

Radiation Efficiencies

Many of the important sources that govern the noises of ships, submarines and torpedoes are
hydrodynamic in nature, i.e., they are related in some way to the movement of a fluid past a
vehicle or inside a conduit. These hydrodynamic sources of sound can each be classified in
accordance with a major noise-producing mechanism: volume change (monopole), oscillating
force (dipole), vibratory motions of small bodies (dipole), or free turbulence (quadrupole). The
order of the multipole determines the Mach number dependence of the radiation process, and
hence the order of magnitude of the radiation efficiency. Equation 3.20 gives the radiation
efficiency in terms of the parameter ka. When a flow speed, U,, exists, ka can be rewritten as a
product of a dimensionless frequency and the Mach number:

e o (f_) (U) _ (1) M (321)
CO U(J C() Ur)

Using this form of Aa, the radiation efficiencies of monopoles, dipoles and quadrupoles are given
by the following:

= ka = [—\M ( le) (3.22)
By = 8= {—} monopole) 3.22
U()
1 I fwa\?
By = 7(!‘{{1!)'3 = :(———) M3 (dipole) (3.23)
2 2 \u,
and
I 1 z
i = = (ka)® = — WY V2 (quadrupole) . (3.24)
27 27 \U,

These equations show increasing dependence on Mach number as the order of the multipole
increases. The quantity in parentheses is a dimensionless frequency, which is usually of the order
of unity.

Fluctuating-Volume Acoustic Sources

In situations for which the source of sound is associated with fluctuations of the total mass of
fluid. Eq. 3.17 for acoustic pressure reduces to

pl=-q. (3.25)

Vi -

Qw0
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Since matter is not created within the fluid itself, any fluctuations of mass must occur at bound-
aries of the fluid region. Within the fluid itself there are no sources, the wave equation solution is
valid, and the term on the right simply controls the amplitude of the acoustic signal. Provided the
source is small compared to an acoustic wavelength, the solution of Eq. 3.25 is simply

g = B HE) o) (326)

47r 47r

where ' is retarded time (Eq. 2.6) and

d
Q = fqu=
dt

V

(0, V) . (3.27)

In liquids, density fluctuations are negligible, and Eq. 3.26 reduces to

P, V(')

p'lrit) = (3.28)

4ar

This is the most general form for sound radiation from a small fluctuating-volume (monopole)
noise source. The strength of such a source is proportional to the product of fluid density and
volume acceleration.

When they occur, fluctuating-volume noise sources radiate the highest levels found in hydro-
acoustics. This is because of the first-order dependence of the radiation efficiency on Mach
number. Cavitation is an important source of monopole radiation in liquids. Pistons located in the
boundaries also radiate as volume sources, as do pulsating pipe exhausts and certain tank reso-
nances. Because of their prime importance, four chapters are devoted to volume noise sources.

Fluctuating-Force Sources

Any rigid surface acted on by a non-steady force will radiate sound. The reason is that there
must be a fluctuating pressure field associated with any fluctuating force, and fluctuating pressure
fields in a compressible medium radiate sound. The differential equation for sound generated by
fluctuating forces is

1 of =
Vi - po= = Ve, (3.29)
(e x;

In the absence of electromagnetic or chemical body forces, all forces are experienced at fluid
boundaries and the solution of Eq. 3.29 for a concentrated force is

p'(rt) = - Ft), (3.30)

47r
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where F(¢') is the total fluctuating force. Relative to retarded time, the divergence of a function
and its time derivative are of the same form and differ only by the speed of sound. In terms of the
time derivative,

= A .,
- F - r F(t')
pilr el = = cos B, (3.31)
4mre, 4mre,

where @ is the angle between the force vector and the direction to the field point for which the
pressure is being calculated. The cos 0 term represents a dipole pressure pattern.

Since it is virtually impossible to produce a steady force without also producing a fluctuating
component, sound having dipole characteristics is invariably generated as a by-product of a useful
force. From Eq. 3.23, the radiation efficiency of such a dipole source is proportional to the third
power of the Mach number. Of the many fluctuating-force noise sources, those associated with
~ propellers are usually dominant because the highest flow speeds occur at propeller blade-tip
sections. The local flow speed at a propeller tip is the vector sum of the forward and rotational
speed components. This tip speed is generally about three times the forward speed, resulting
through third-power dependence on Mach number in dominance of the propeller tip sections
relative to other parts of the vessel that experience only the forward speed. Fluctuating-force
noises are quite important in underwater acoustics and are discussed in more detail in Chapter 9.

Turbulence Noise
Fluctuating-volume and -force noise sources generally occur at fluid boundaries. However, the

source term in Lighthill’s equation includes a component associated with hydrodynamic motions
of the fluid itself. The non-steady stress tensor may be written

1»1’.]. & (pvl.v].)' + (p;.j - ;)'6r.].) + (p' - c;p')6,.f. . (3.32)

The first term represents fluctuating shear stresses associated with turbulent fluid motions, the
second accounts for viscous stresses, and the third represents heat conduction and/or nonlinearity.
At the Reynolds and Mach numbers of liquid flows, only the first term representing turbulence is
important. To a first order,

’ - ) ’
T = 20, Uu; (3.33)
where u’s have been used rather than v’s to indicate that all fluctuating as well as steady velocities
in the stress tensor refer to hydrodynamic quantities rather than acoustic ones.

By analogy with Egs.3.26 and 3.30, and assuming Eq. 3.33, the sound generated by turbu-
lence is given by

U 92
p'(Fr) = Po™ % fu;-(r')dV ; (3.34)
r dx;0x; %

[

where differences in retarded time must be considered unless the source region is small compared
to a wavelength. The two spatial derivatives imply a basic quadrupole nature of this sound.
The radiation efficiency of fluid turbulence can be estimated from Eq. 3.24, using hydro-
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dynamic relations for cold jets. The source radius, @, can be assumed to be equal to one half the
scale length, €, of the largest turbulent eddies; hence

I 1[I\l
Ny = —(ka)* = Sl Y o Y VLI (3.35)
27 27 \2/ \U

- o

where U, is the flow speed used in calculating the Mach number. Experiments with cold jets reveal
that wl = U, so that

1\/1\°
Mg = _»-—) 2 M5 o= 11 X 103M5 (3.36)
27/\2

Since about one sixth of the fluid mechanical powerin a wake or jet occurs as vibratory power of
the turbulence, it follows that

Mg = 2 # 1074 M° (3.37)
which result is in good agreement with measurements of the noise powers of cold subsonic jets.

Noise from Wake Turbulence

When a body is propelled through water, a significant fraction of the total power is converted
into wake turbulence. which eventually decays into heat. One might expect this turbulence to be a
major source of sound, as it is in the case of a jet aircraft. However, the noises emitted by wake
turbulence in water are entirely negligible provided there are no bubbles present.

It is clear from Eq.3.37 why turbulence noise is of such importance in air and of so little
importance in water. The difference is the Mach number. Jets in air often have Mach numbers in
the vicinity of unity or even higher. In water, a 60-knot vehicle would have a Mach number of only
0.02. Only about one part in 10'2 of its power would be radiated from the free turbulence of its
wake. It is because of the low Mach number that quadrupole sources can be considered completely
negligible in hydroacoustics. monopoles and dipoles at the boundaries always being dominant.

Sometimes noise does radiate from the wake of a vessel, but this noise is attributable to
entrained air bubbles. Crighton and Ffowcs Williams (1969) have shown that monopole radiation
resulting from the volumetric response of wake bubbles to turbulent pressure fluctuations over-
whelms the quadrupole radiation by as much as 50 dB for a 1% concentration of air.

Flow Noise

Another way that fluid turbulence can be an important source of noise in liquids involves
interaction with a boundary. Thus, the fluctuating pressures associated with a turbulent boundary
layer excite flexural vibrations of the solid, and these vibrations then radiate sound. This flow
noise occurs whenever fluids flow over non-rigid bodies or inside pipes and tubes. It is an especially
important source of sonar self-noise.

Flexural wave radiation is a monopole process, and the efficiency of excitation of flexural
waves by the fluctuating turbulent pressures is also proportional to the first power of the Mach
number. Consequently, acoustic efficiencies for flow noise are proportional to the square of the
Mach number. This topic has received a great deal of attention in the literature during the past
20 years, and a summary is given in Section 6.6.
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Turbulence can also give rise to transducer self-noise when a receiver is placed in a turbulent
stream. Pressure fluctuations associated with turbulence velocities cause pseudo sound, which
though non-acoustic can be a dominant source of interference if the receiver is not protected from
the flow by a dome.

3.5 Sources in Motion

In the previous section, radiation efficiencies of various hydrodynamic noise sources were
related to Mach number, in the low Mach number limit. Although the noise was assumed to be a
function of the mean flow speed, the calculation of the radiation itself assumed the source to be
essentially at rest in the fluid medium. Steady motion of a source in a medium, and/or motion of
1 receiver relative to the medium, can affect received sound both as to its apparent frequency
and its magnitude and oscillatory motions of constant masses and steady forces can create addi-
tional sound sources. :

Doppler Shift
The most obvious effect of source motion relative to a receiver is a change of frequency known
as the Doppler shift. The frequency received, f,, is related to that radiated, fs. by
s
f, = 5 (3.38)
I - Mg cos b

where Mg is the convection Mach number of the source and 6 is the angle between the motion
vector and the direction toward the receiver. For small Mach numbers

f, =1, (1 + Mg cos 0) . (3.39)

which is the expression generally found in elementary texts.
If the receiver is in motion toward the source, then the apparent frequency will also be altered:

1 =f (1 + My cos 0) . (3.40)
Thus, for low Mach numbers motion of the receiver is equivalent to motion of the source.

Effect of Steady Motion on Level

Not only is the received frequency altered by steady motion of a source or receiver, but also
the received signal is altered in strength from that calculated for a stationary situation. Lowson
(1965) has shown that calculated values for both monopole and dipole type sources are modified
by (1 - M cos 8)°%, and that for quadrupoles the exponent changes from -2 to -3. Since this effect
becomes significant only when relative Mach numbers exceed about 0.1, it is generally not
included in underwater sound calculations.

Periodic Motions

The source terms in Eqs. 3.16 and 3.17 are expressed as partial derivatives and are calculated
for volume elements fixed in the chosen coordinate system, in the Eulerian sense. There are
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therefore two distinct physical ways in which acoustic source terms can arise. One of these is
fluctuations of mass, force and stress at positions fixed in a coordinate system. The other is
oscillations of non-fluctuating quantities in position. Stated another way, both time and space
changes of mass, force and stress produce acoustic disturbances. Of the two, fluctuations with time
are generally more important than oscillations of position, especially in underwater acoustics. The
reason is that motions in space must occur at speeds comparable to the speed of sound to be
effective as sound radiators. It can be shown that a constant mass experiencing oscillatory motion
radiates with the same directional pattern and Mach number dependence of radiation efficiency as
a dipole, while a constant force executing periodic motion radiates as a quadrupole. Each is one
order multipole higher than for the corresponding fluctuating quantity.

For many years, explanations of tonal radiation from rotating propellers were based on the
periodic motion of steady forces, as originally derived by Gutin (1936). Gutin’s results exhibit a
very strong Mach number dependence and predict strong tones only at high Mach numbers.
However, as discussed in Chapter 1, it is impossible to produce steady mechanical forces free of
vibratory values. It is now recognized that even in air fluctuating forces are usually dominant
sources of tonal radiation. In water, periodic motions of steady forces are never important, and
Gutin’s analysis is therefore omitted from this volume.
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