CHAPTER 2

SOUND WAVES IN LIQUIDS

2.1 Description of Waves

A wave is an energy-carrying disturbance moving through a distributed medium. Familiar
examples include surface waves on water, waves in strings and electromagnetic (radio) waves.
Sound energy is carried by longitudinal waves, which involve alternating compressions and rare-
factions of the medium. Sound waves occur in gases. liquids and solids. Derivations of the perti-
nent equations are slightly different for the three types of media, although the basic nature of the
wave motion is the same. Discussions and derivations given in this book are specific to liquids, but
apply almost equally well to gases. The equations for sound waves in solids are more complex (see
Officer, 1958).

Figure 2.1 illustrates the simplest example of wave motion, such as that on a string. A simple
disturbance moves along the x-axis with wave speed ¢, maintaining its shape as it progresses. The
most general function describing such a motion is of the form f{x - ct), which is a solution of the
second-order differential equation
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as can readily be shown by performing the indicated partial differentiations. This equation is the
wave equation for a wave progressing in the x direction.
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Fie. 2.1. A Simple Progressing Wave
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20 2 SOUND WAVES IN LIQUIDS

Plane Waves

A general analytic expression for a plane wave in space is of the form F(r - ct), where r is
distance traveled by the wave in the direction of propagation. In cartesian coordinates

Fir - ¢t) = Finx+ % + .= o), (2.2)

where the various n's are the three direction cosines, i.e., the three coordinate projections of a unit
vector normal to a plane of constant phase. The direction cosines satisfy the relationship
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The function F satisfies the generalized wave equation for disturbances in three-dimensional space,
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which can also be expressed in terms of the Laplacian defined by Eq. 1.40,
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This general form is applicable in numerous coordinate systems.

Retarded Time

Physically, functions such.as f and F represent action at a distance retarded in time. Thus, a
disturbance at point x  at time /= 0 in Fig. 2.1 is experienced at a remote point x, at later time
1y = (x, - x,)/c. Introducing retarded time as

i — S (2.6)

wave functions such as f and F can be expressed simply as functions of retarded time, ¢". Equa-
tion 2.5 implies action at a distance retarded in time. Whenever action at all locations occurs
simultaneously, disturbances are essentially propagated with infinite speed and the second term in
Eq. 2.5 is zero. Thus, when a change occurs at a boundary, instantaneous reaction everywhere can
be described mathematically by an equation, called Laplace’s equation, in which the Laplacian is
zero. An equation of the form of Eq. 2.5, on the other hand, implies a propagating disturbance for
which action at a distance is retarded in time.

Equation 2.5 is a general wave equation applicable to many types of propagating disturbances.
Acoustic disturbances obey this wave equation when certain physical conditions are satistied. In
Chapter 5 it will be shown that bending waves in rods and plates are described by a different
differential equation.

Harmonic Representation of Waves

If amplitudes of waves are small enough so that linear relationships between stress and strain
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apply in the medium, then several waves may be superimposed, creating new waves. More impor-
tant, any arbitrary disturbance may be decomposed into a number of component periodic waves.
The simplest periodic waves are, of course, sinusoids associated with simple harmonic motion. A
sinusoid propagating in the x direction may be written

w w
flx - et) = Ay cos|\wt -~ —x |+ Ay sin|wt - — X [, (2.7)
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where w = 27/ is the angular frequency measured in radians per second. The angular frequency
divided by the speed of wave propagation is essentially a spatial frequency. It is proportional to
the number of wave cycles occurring in a unit distance, and is termed the wave number:

@ (2.8)
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Wave number plays a role in space similar to that of angular frequency in the time domain.
The sinusoid of Eq. 2.7 may be expressed by a single cosine term:

1
flx - ct) = VA% + A% cos| wt - kx - tan”! i . (2.9)
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Using the convention that the cosine is the real part of a complex exponential, as in Eq. 1.56,
Eq. 2.9 can be written

flx - ct) = RP(4 1@~ kx1) (2.10)

where the complex umplitudé. A, expresses the phase angle as well as magnitude of a rotating
complex vector. In what follows, we will represent most sinusoids as complex quantities and omit
RP, since “real part of” is always understood in physical equations.

The harmonic approach to wave phenomena is used almost universally. This is because it is
consistent with spectral analysis, and because there are cases for which the effective wave speed, c,
is a function of frequency and for which the general wave equation is therefore invalid.

Helmholtz Equation

When the solution of the wave equation is expressed by sinusoids. the equation itself takes a
somewhat modified form. Since

= (iw)*F = - k*c*F , (2.11)

Eq. 2.5 becomes
ViF + K*F =0 . (2.12)

This is the Helmholtz equation, and is a common form of the wave equation.
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Wave Vectors

The wave number defined by Eq. 2.8 as a kind of spatial frequency is a scalar quantity, i.e., it
is characterized by a number without any directional implications. However, position in space
implies direction from an origin and is a vector. It is, therefore, quite useful to detine a vector
quantity for the spatial domain representing not only the magnitude of the wave number, but also
the direction of propagation of the wave. In cartesian coordinates

—
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where the various n’s are the direction cosines of a unit vector normal to the plane of constant
phase, as previously discussed. Since the sum of the squares of the direction cosines is unity, it
follows that

5w L2 2 .2 )
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Using the wave vector, the general expression for a plane harmonic wave in space may be written:
y > >
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The significance of the wave vector can be illustrated in connection with the solution of the
wave equation by the method of separation of variables. If the function £ is expressed as the
product of three spatial functions and a time function,

Fix,y,z.w.t) = X(x,w) « Y(yw) « Z(z,w) gt (2.16)
then Eq. 2.12 becomes
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+ K2+ K2+ R2=0. (2.17)

Treating this equation as three equations of the form

d*x

+ k2 X =0, 218)
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it is clear that the components of the wave vector are the constants that separate the three-
dimensional wave equation into three separate equations.

Just as waves can be analyzed in terms of their spectral components in the frequency domain,
they can also be analyzed in terms of their wave-number spectra. The only difference is that the
analysis involves all three coordinate directions and resolves into three wave-number spectra.
Fourier transforms are consequently somewhat more complex.

Radar antennas and acoustic arrays that discriminate in direction can be treated as wave-vector
filters, analogous to spectral filters that respond to a band of frequencies. Wave vectors are also
quite useful when dealing with propagation between two media, since the boundary can be treated
as a wave-vector transformer. Radiation problems invariably concern two media and so are often
analyzed by means of wave vectors.
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22 Wave Equation for Sound in Fluids

There are a number of possible approaches to the derivation of the differential equation tor
propagation of acoustic disturbances in a fluid medium. The approach which is taken here treats
acoustics as small-signal, non-steady (a.c.) fluid mechanics. In this approach. differential equations
governing sound propagation are derived from equations of fluid mechanics by treating acoustic
signals as small fluctuating disturbances. Relations used are: the continuity equation. expressing
conservation of mass; the equation of motion (law of conservation of momentum), which is the
statement for fluids of Newton’s second law; and the stress-strain relationship, or equation of
state, for a fluid.

In one approach, the continuity and momentum equations are combined prior to making any
special acoustic assumptions. This approach is taken in Chapter 3 in deriving a more general
equation, from which the wave equation can be derived as a special case. In the present section,
the acoustic wave equation is derived by making a number of restrictive assumptions and applying
them to the continuity and momentum equations before their combination. This process is illumi-
nating, since the wave equation is strictly valid for sound only when all of the assumptions given
below are satisfied. and it is important to understand the roles of the assumptions.

Assumptions
The physical assumptions used in deriving the acoustic wave equation from fluid mechanics
are:
1) the fluid is isotropic. homogengous and continuous;
2y the fluid cannot withstand static shear stresses in the manner ot a solid:
3) viscous stresses are negligible:
4y there is no conduction or radiation of heat:
5) any chemical, electromagnetic or other exrernal forces experienced by the fluid are
negligible:
6) there are no local sources of sound:
7) the only steady motion of the medium is a uniform constant translation:
8) the stress-strain relationship is linear:
9) the relative compression of the medium is very small (Ap < <p,);
10) particle motions associated with sound waves are irrotational: and

11) spatial variations of the ambient pressere; density and temperature are relatively very

small. .

These assumptions are required in order to derive a simple equation. To the extent that they are

not valid, additional terms occur in the final equation. Most of these additional terms may be
treated as source terms. but some of them invalidate the wave solution.

The basic acoustic assumption is that physical quantities in fluid mechanics can be expressed as

sums of steady-state. time-independent values plus fluctuating acoustic values. Thus, the static

pressure is expressed by

pixpat) = po(.\‘,_\',:) + pixy.zt) (2.19)
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where

; T
p, = — f pdt (2.20)
r J,

is the ambient value that exists when sound is absent and p' is the acoustic component, the
long-time average of which is zero. Similar expressions apply to density and to the components of
velocity. However, the seventh assumption listed above, that of constant translational velocity,
implies that the equations can be written for a coordinate system moving with the fluid, for which

_. S
v, = 0.

Equation of State s

The equation of state of a substance is a relationship between static pressure, density and
temperature. At a fixed temperature, pressure may be expressed as a power expansion of density,
as

2
p=p, +ale-p,) + bp- Po) T, f2.21)

where the coefficients a and b, as well as p, and p,,, are functions of temperature. From the eighth
and ninth assumptions, it follows that in linear acoustics higher order terms are negligible and that
the acoustic pressure, p’, can be related to the acoustic component of the density, p', by

p'=p-p, =alp - p,) =ap, (2.22)

which is the equation of state for an acoustic disturbance. From the eleventh assumption, co-
efficient a is assumed to be constant or, if varying, to be a slowly varying function of position.

Equation of Continuity

The continuity equation of fluid mechanics expresses conservation of mass. It can be derived
by either of two approaches. In one approach, named after Lagrange, attention is focused on a
particular mass of fluid as it moves through space. Continuity simply states that this mass must be
constant:

D D
2 e fpdV =40. (2.23)
Dt Dt vV

The special type of derivative represented by D/Dt applies to a particle as it moves. It is called a
material derivative, or substantial, and has all the mathematical attributes of a total derivative with
respect to time. Since the particle moves through space, the material derivative can be expressed in
terms of particle velocity, ¥’ and local partial derivatives by

D 0. ‘ 7
0 4 % B LW 0 .Y (2.24a)
Dt at ot 0x ot 9y ot 0z
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2 2 alew) = Law (2.24b)

Dt ot ot ox.

!

Material derivatives can be applied to vector as well as scalar quanfities.

As a particle moves through space, its density may change. Since its mass is constant, the
volume it occupies must also change. The fransport theorem, originally derived by Euler, relates
the material derivative of an element of volume to the divergence of the velocity field:

D -
e de: fdivvdV_ (2.25)
Dt

V vV

Using this relationship, Eq. 2.23 can be expanded:

Dm D y .
—= f_f + pdivv|dV = 0. (2.26)
Dt 174 Dt

Since the volume is finite, it follows that the expression within the parentheses must be zero,
D -
2P s p(v-¥)=0. (2.27)
Dt

which is the Lagrangian form of the equation of continuity. Expanding the material derivative

of the density by Eq. 2.24b yields a second form,

d i e
—p+v'Vp+,o(V°v)=0, (2.28)
ot

which is the one used in deriving a continuity equation for acoustic disturbances.

The second method of deriving the continuity equation of fluid mechanics is named for Euler.
In this approach, attention is focused on a fixed volume and the time-rate-of-change of mass
within this volume is equated to the flux of mass into the volume through its surfaces:

0 op —
9| pav = P av=- [-as. (2.29)
ot v 174 ot

S

The surface integral can be expressed as a volume integral by invoking Gauss’ divergence theorem,

f”- s = fdiv;i’dv. (2.30)

S V
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whereupon Eq. 2.29 becomes
op e
-+ chv(pv) dv =0, (2.31)
V at

and it follows that

0 g 0 - 0 a(pv,
s + dfl’(pv )= . + Y opv= p + (pvl)
oz ot at ax,

1

=0, (2.32)

which is the Eulerian form of the continuity equation. When the divergence term is expanded, this
result is identical to that of Eq. 2.28.

The acoustic form of the equation of continuity can be derived from Eq. 2.28 by expressing
each physical variable as the sum of a time-independent average value and a fluctuating com-
ponent, and taking a coordinate system moving with the fluid:

Zp_’ L ‘V(po + p') + (po n p') (\7. '\?') =0 . (2.33)
t

The gradient of p, is negligible by the eleventh assumption, and p is negligible relative to p, in the
third term by the ninth assumption, leaving

a ' -+ ’ -
e JPE. B Fa + pa(v. v’) =0 . (2.34)
ot

The first and last terms exhibit linear dependencies on fluctuating quantities, while the middle
term is quadratic. In the limit, for very small acoustic fluctuations, this term must become
negligible relative to the other two. The final form of the linear acoustic continuity equation in a
region free of acoustic sources is

dp’ ey ap’ av;
L v (v-3)=L +p, =0, (2.35)
ot ot 0x

Equation of Motion

The equation of motion for a fluid may be formulated directly from Newton’s second law by
equating the rate-of-change of momentum of a fluid particle to the sum of the forces acting on it.
Forces which are considered in fluid mechanics include gravity. the gradient of pressure, viscous
stresses and other unspecified external forces. However, in an acoustic derivation, by the first six
assumptions, it is only necessary to consider forces associated with gravity and with the gradient of
the pressure.
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The gravitational force experienced by a particle is given by
'_-' —_ —
Fp=mg = pgdV = - pe7zdV . {2.36)
V v

where the minus sign shows that gravity is a downward force, the z-axis being positive upward.
Pressure applies force normal to surtaces of a volume,

1{) = - fp LIS F (2.37)

8

-

where the minus sign arises from the inward direction of pressure-generated forces and use of the
outward normal in defining a vector surface element. Surface integrals can be transformed to
volume integrals by use of Gauss' gradient theorem,

[A ds = f grad AdV . (2.38)
S v

and the net force caused by the gradient of the pressure becomes

F;} = - pr dV . {2.392

v

The momentum of a particle is the volume integral of the product of its density and velocity.
Taking the material derivative. expunding it by means of Eq. 2.24 and using the transport theorem,
Eq. 2.25. one obtains

pi _ D S BEY o 7= Fere Yy
—_—= — (pv)dV = + (pv) (V- v) dV
Dt~y v

Dt Dt

D-. -oD — —
fp—lr——i-v——ﬁ-}- (pv) (V- V) |dV . (2.40)
v\ Dt Dt

From the continuity equation as given by Eq. 2.27, the second and third terms are seen 10 add to
zero leaving only the first term. Equating the rate-of-change of momentum to the sum of the
forces.

DYy = F + F, = ) (eevzx Tp)dV . (2.41)
dt 14 Dt v
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it follows that

P =- pgJz - Vp. (2.42)

which is the Lagrangian form of the momentum equation in an ideal inviscid fluid. Expanding the
material derivative by Eq. 2.24 yields

a_. — -
p—v= - (pgv;: + Tp + o -7) v), (2.43)
ot

which is a form useful for acoustic derivations.

As for continuity, the acoustic form of the momentum equation is obtained by replacing each
physical variable by the sum of its steady and fluctuating components, and by taking a coordinate
system moving with the fluid, so that V; = (), When this is done, Eq. 2.43 becomes

i v’ , 7 i >, -
(o * PY = = (o + BNV 2T (0, +0) - (2 + )T YT (248
f

Making the ninth assumption and retaining only lincar terms,

oV’ ; N
P, I == (pogV: + Vp, +Vp ) - (2.45)

Since this equation is also valid in the absence of sound, the gradient of the ambient pressure
cancels the gravitational term.

Ve, = - P8V, (2.46)
leaving
v’ :
Po =- Vpr . (2.47)
ot

which is the acoustic conservation of momentum equation for an ideal fluid medium free of
external sources.

It is in the next to the last step that derivations for liquids and gases may differ. The derivation
given here is valid for all non-viscous fluids. However, when deriving the acoustic momentum
equation for gases, it is common practice to ignore gravitational forces and to assume that the
gradient of the ambient pressure is of second order. While valid for gases, this procedure is not
valid in liquids. It is also common practice to assume that pressure fluctuations are small, an
assumption that is often not valid in liquids and which is not made in the present derivation.

Acoustic Wave Equation

Equations 2.35, 2.47 and 2.22 for continuity, momentum and state can be combined to derive
a second-order differential equation for acoustic quantities. Taking the partial derivative of
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Eq. 2.35 with respect to time.

a2p @ wy 020 oV
f * ——(pov : V) - ,,p + P\ — |7 0. (2ol
ar? dt or- ot

since the order of differentiation is immaterial. Taking the divergence of the momentum equation,
Eq. 2.47, yields

v v’ L,
T py—— = P\ —|T -V P (2.49)
ot ot

where a term involving grad p, has been assumed to be of second order. in accordance with the
cleventh assumption. Substituting Eq. 2.49 for the second term in Eq. 2.48.

azp, 2 | s I
- T =0 (2.50)
ar?

The equation of state can now be used to eliminate either acoustic density or pressure. The results
are similar. Thus, using Eq. 2.22 for p' and assuming that spatial derivatives of a are negligible,

9%p'
or?

- @82y =0 . (2.51)

Dividing both terms by -a yields a more common form.

A [ o' -
o LI e I (2.52)
d !:

which we recognize as 4 wave equation. since it is similar to Eq. 2.5.

Comparing Eq. 2.52 to Eq. 2.3, it is apparent that the constant g in Eq. 2.52 equals the square
of the wave speed. ¢. Since the speed of sound is a property of the medium, it is represented by ¢,.
From Eq. 2.22,¢, isa function of the compressibility of the medium,

) /
g = = = a8
p' dp

where B is the bulk modulus and expresses resistance to compression.

[t is of interest to note that as the medium becomes more and more incompressible the speed
of sound approaches infinity and the wave equation approaches Laplace’s equation. Solutions of
Laplace’s equation are uniquely determined by boundary conditions: any changes in values at a
boundary are felt immediately throughout the entire medium. In acoustics, changes at a boundary
are experienced throughout a medium at later times. Thus, the fundamental distinction between
acoustics and hydrodynamics is the delay of responses at a distance. delay being implied by the
finiteness of the second term of the wave equation. Stated another way, Laplace’s equation 1s valid
when the largest dimensions involved in a problem are small compared to an acoustic wavelength.
When physical dimensions become comparable toa wavelength, then compressibility can no longer
be ignored and the wave equation must be used.
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Velocity Potential

Wave equations of the same form as Eq. 2.52 can be derived for acoustic pressure, p’, and for
each component of particle velocity, V'. Since by the tenth assumption particle motions in sound
waves are irrotational, it is also possible to define a scalar velocity potential by

V' = - grad ¢ . (2.54)

and to relatc density and pressure fluctuations to this acoustic potential. Substituting for the
velocity term in the acoustic momentum equation, Eq. 2.47 becomes

09 y
pY\—| = ¥p . {2.55)
ot .
from which it follows that
0
g =p, ] ; (2.56)

ot

since by the very definition of a fluctuating component all constants of integration must be zero.
From the equation of state, Eq. 2.53, the acoustic density is given by

; 0
p'zi)_u:ﬁi. (2.57)
o ¢l ot

Acoustic potential also satisfies the wave equation, as can be shown by substituting Eq. 2.57
for p’ and Eq. 2.54 for V' into the continuity equation, Eq. 2.35:

] J
(L ) w0 (2.58)
ot z‘z at
Therefore,
1 . . -
Vip - —o¢ =0, (2.59)
&5

where each dot over ¢ represents a differentiation with respect to time.

Harmonic Solutions

The assumption of linearity made in deriving the acoustic wave equation makes it possible to
treat any arbitrary disturbance as the sum of sinusoidal compcnents, each of the form

$(w) = RP(p) = RP(De'®") (2.60)

where the complex amplitude, ®, is a function of position in space as well as frequency and is
found by solving the Helmholtz equation, Eq. 2.12:
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Vg + e =1, (2.61)

Once the potential is known, the acoustic pressure and density can readily be found from

E' = poq_f;_ = iwp,$ = ikpyc,® (2.62)
and
£’=£0—93_=pr°9=;1<&9. (2.63)
ez g el

However, the particle velocity, being a function of the gradient of the potential, depends upon the
particular spatial solution. Of the many possible solutions, the two most useful are for plane and
spherical waves. Since most other waves can be treated as superpositions of either of these funda-
mental types, we will limit our discussions of solutions of Eq. 2.61 to plane and spherical waves.

2.3 Plane Sound Waves

Acoustic Potential

The scalar potential describing a plane harmonic sound wave can be written

¢ = (Dez'wr = A c,z'((.er - ?—r’) = A ez'(wt = kxx = ky_v = k::) , (2.64)
which can be verified either by carrying out the indicated differentiations and substituting the
results into the Helmholtz equation or by direct comparison with the expressions given in

Eqs. 2.15 and 2.16. The amplitude A is constant as the wave progresses.

Particle Velocity

The particle velocity, E’, is related through Eq. 2.54 to the gradient of the scalar potential. In
cartesian coordinates, for a plane wave

0 0 A d
=_-T ¢ = - ’,\ii’b_+f,\__5-’h_+k__g =i('2\f(
ox oy 0z

(2.65)

which is a vector having the same direction as the wave vector and having an instantaneous value
given by the real part of ik¢. Since the direction of propagation is usually obvious from geomet-
rical considerations, it is common to deal with the acoustic particle speed and to write

v = kg . (2.66)
Comparison of this expression with Egs. 256 and 2.57 for acoustic pressure and density shows
that for a plane wave the particle speed is in phase with both pressure and density fluctuations.
This differs from hydrodynamics, for which velocity and pressure changes are often 180° out of
phase.

The ratio of the particle velocity to the sound speed of the medium is essentially the Mach
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number. M', of the acoustic particle motion. One would expect that second-order effects might
become important if this Mach number approached unity. Actually, for plane waves the expression
for acoustic Mach number is identical to that for the ratio of the fluctuating density to its
steady-state value, as given by Eq. 2.63:

(] k ’
M=E=itg¢=Et (2,

(I() 2 o 'O()

Since, by the ninth assumption, the density ratio is assumed to be very small when deriving the
wave equation, it follows that acoustic Mach numbers are also small.

Specific Acoustic Impedance

The concept of mechanical impedance is often used when dealing with mechanical systems to
express the ratio of a force to a velocity. A similar concept is used in acoustics when dealing with
forces experienced by a radiating surface. Since by Eqs. 2.62 and 2.66 the acoustic pressure and
particle speed in a wave are both proportional to acoustic potential, their ratio is a constant which
is called the specific acoustic impedance. For a plane wave,

n' fw w
é_ = POQ = Po =pcC, . (2.68)

: ik¢ k

<

The quantity p,c, is a property of the medium. It is called the characteristic impedance of the
medium and is measured in units called Rayls, named after Lord Rayleigh. The value for water is
close to 1.5 X 106 MKS Rayls, while the corresponding value for standard air is only 415. The
difference is indicative of the relative compressibilities of the two media.

Acoustic Intensity

The fact that there is both particle motion and medium compression associated with a sound
wave implies that there are both kinetic and potential energies in sound waves. However, it is
possible in a standing wave to have kinetic and potential energies without any net flow of energy
from one place to another. We are really more interested in the transfer of power by an acoustic
disturbance than in the energy per se. The quantity which measures the transfer of acoustic power
across a unit area is called the acoustic intensity, I. Intensity is the time-average power tflow per
unit area normal to the direction of travel of the wave and is given by

T

= i‘/‘p'(l*)v'(f) dt = p'(t)'(t) , (2.69)
T

|

where p'(t) and v'(t) are instantaneous values of the pressure and the particle speed.
In a progressing plane wave, pressure and particle speed are in phase with each other. The
speed can be expressed in terms of pressure by Eq. 2.68 and the intensity is given by

4

1 ) "(t) £
=t [u IO S (2.70)
T

0 pG (.0 p() CO



2.4 SPHERICAL WAVES 33

One could also use Eq. 2.68 to substitute for the acoustic pressure, deriving an expression for
intensity in terms of the rms particle speed,

T
1
/ =wfpoc=(Jv'(r) - V(t)dt = pye,V7? (2.71)
r Q

It also can be shown that the intensity of a plane wave is simply the product of the rms pressure
and rms particle speed.

In a standing wave, pressures of the two waves arc cumulative, but particle velocities cancel on
average. Hence, Eq. 2.69 yields zero intensity for an ideal plane standing wave.

2.4 Spherical Waves

Acoustic Potential

There are many instances in underwater acoustics when a source can be treated as a small
pulsating spherical surface radiating sound in all directions. For this situation, the Laplacian is
written in spherical coordinates for spherical symmetry by Eq. 1.44, and the Helmholtz equation

becomes
1 0%(r¢)
Vi + kg =— e k*¢ =0 . (2.72)
- roor?
Multiplying through by r, one finds
az
Yy oppe) =0, (2.73)
ar?. -

which is of the same form as a one-dimensional Helmholtz equation, with (rg) replacing ¢ and r
replacing x. It follows that the solution is of the form

4

¢ = =ellwr =k (2.74)

~

showing that the magnitude of the potential decreases inversely with increasing distance from a
source of spherical waves.

Since Egs. 2.56 and 2.57 for acoustic pressure and density involve only time derivatives of the
acoustic potential, these quantities bear the same relation to the potential as for plane waves, Eqgs.
2.62 and 2.63. Their amplitudes therefore vary inversely with distance, in the same manner as the
potential. Thus

1
P(r) = —P(1) . (2. 758}

r
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Particle Velocity

Equation 2.54 for particle velocity depends on spatial derivatives of the acoustic potential, and
so depends on the shape of the wave front. For spherical waves.

3
po M2 L e ). (2.76)

or r

V=-V¢=-

It follows that the particle speed can be expressed in either of two forms,

i(1 + ikr) = ik¢ (1 - A (2.77)
r kr

!
v =

from which it is clear that basically there are two distinct regimes. Close to a radiating source, in
the near field given by kr < <1, the particle speed is dominated by the term that is in phase with
the potential. Far from a source. in the far field, the particle speed is dominated by the term that
is out of phase with the potential but in phase with the acoustic density and pressure. In the near
field, particle speed varies inversely with the square of distance, since it drops off faster than the
potential. In the far field, its dependence on distance is the same as that of the potential.

Specific Acoustic Impedance

Since the particle speed has both near- and far-field terms, the specific acoustic impedance is
also a function of relative distance:

’ : (kr)* + ikr
P lwp,9  _ . (kD A+ i (2.78)

p
v ikg (1 - ([/!cf')) o I + (kr)?
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In the near field, kr < I, the impedance is dominantly reactive, while in the far field it is basically
resistive and for large Ar approaches the plane-wave value.

The resistive and reactive components form a complex number which can be expressed in
exponential form,

kr kr + i
2, = gk '
CPYNTF (ke AT + (kr)?
£ .0 €08 0(cos@ + isin@) = p,c, cos geit . (2.79)
where
| T B}
0 = tan’! — = — - tanwVkr . (2.80)
kr 2

In the near field. Ar < <] and 8 approaches #/2, from which it follows that

z, = ikrp,c, (kr<<I). (2.81)

—-a
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In the far field, on the other hand, 6 approaches 0 and Eq. 2.79 reduces to Eq. 2.68 for the
impedance of a plane wave.

Acoustic Intensity

Equation 2.69 for acoustic intensity involves the product of instantaneous values of the acous-
tic pressure and particle speed. In complex notation, intensity is the time-average value of the
product of the components of pressure and particle speed that are in phase with each other.
Combining Egs. 2.62 and 2.77, the particle speed of a spherical wave is related to its acoustic
pressure by

,_ P i
¥ 5= I -
B Ly kr

(2.82)

The component in phase with the pressure is clearly the first term, which is independent of kr and
is therefore the same in the near field as in the far field. From Egs. 7 69 and 2.82. the intensity of
a spherical wave is

T s

] ' ]
| = fp'(t) . By g

— dt =
T

(0] ‘OOCO poco

(2.83)

This is the same as Eq. 2.70 for plane waves. If. instead of substituting for the particle speed, one
were to substitute for the pressure, then from Eq. 2.79

[ i
pl=v—2l——|Il +— = vip,c, cos? 0\ +— | (2.84)
1 + (kr)? kr kr

1
[ = — V(1) « v'(t)p,c, cos® B.dt = pe, e st 8 (2.

Lo
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0

which differs from the plane-wave gxpression by cos? 6.

Because of the general validity of Eq. 2.83, pressure-sensitive instruments are better indicators
of acoustic intensity than are velocity-sensitive ones. In water, because of the high impedance of
the medium, almost all measurements are made with pressure-sensitive transducers and Eq. 2.83 is
used to estimate the intensity. This procedure is valid when there is only one source and sound
waves are progressing in only one direction. If waves emanate from more than one source, the
particle velocities will have different directions and may even cancel. For example, a standing wave
is formed when two equal waves are progressing in opposite directions. Such a wave carries no
energy and has zero intensity, even though the rms pressure is finite.

Ideal Transmission Loss

Since the intensity of a spherical wave is proportional to the square of the pressure, and
pressure according to Eq. 2.75 is inversely proportional to distance, it follows that the intensity
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from a simple source decays as the square of the distance. For this reason, ideal spherical sound
propagation is often called inverse-square spreading.

As discussed in Chapter 1, a logarithmic quantity, transmission loss, is often used to express
changes of acoustic intensity and pressure with distance. Substituting Eq. 2.75 into Eq. 1.20,
which defines transmission loss, it follows that in an ideal, lossless medium transmission loss is
given simply by

(1
11, = 2010g P = 201087 . (2.86)

plr)

and that in such an ideal medium sound pressure levels decrease by 6 dB for every doubling of
distance.

Equation 2.86 for the transmission loss for spherical waves in an ideal medium is a direct
consequence of the wave equation and of the assumptions made in deriving it. To the extent that
these assumptions are not met, actual transmission loss will differ from ideal spherical spreading.
Transmission anomaly, TA, is defined as the difference of the actual transmission loss from that
predicted by spherical spreading:

TA=TL - TL; =TL - 20logr . (2.87)
Anomaly is thus the dB measure of the cumulative effects of all of the ways in which the actual
medium differs from the ideal medium assumed in the derivation of the wave equation. It is
positive when the measured transmission loss exceeds the ideal value.

Acoustic Power

The total power radiated by a source can be obtained by integrating the intensity over a

spherical surface:
p"?
W = 1dS = dS . (2.88)

S S PoCo

In the most general case, radiation does not occur uniformly and both [ and p" are functions of
angle as well as distance. In the case of an omnidirectional source,

2 n'(1)?
W = - - 4qr? = 47r—-*—1 i
pOCO pUCO

(2.89)

showing that a consequence of the inverse-square law is constancy of acoustic power as a function
of distance from a source.

It is because of the dependence of the acoustic power on p,¢, indicated by Eq. 2.88 that the
acoustic power for a given acoustic pressure is sO much lower in water than in air. Since the
product of the density and speed of sound of water is approximately 3600 times as great as that of
air. the same acoustic power produces acoustic pressure 60 times larger in water than in air.
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Damped Sound Waves

The wave equation was derived under the assumption that viscosity, heat conduction and other
dissipative phenomena are negligible. In actual sound transmission in the ocean these effects, while
very small, are not Zero. They may be taken into account by a perturbation approach in which the
wave speed is treated as a complex quantity for which the dissipative out-of-phase component is
very small compared to the real part:

¢c=col +in) n<<I. (2.90)
The wave number is then also complex, and the expression for a spherical wave becomes

B _ A k) o A ke giter = k) (291)

r r

This expression represents a spherical wave whose amplitude decays ata slightly greater rate than
inversely with distance.

The effect of the real exponential term in Eq. 2.91 is to increase the transmission loss relative
to the ideal value given by Eq. 2.86. Thus

ek !
TL = 20 log — = 20logr + 20log &M (2.92)
c)

since kn << 1. The dissipative transmission anomaly is therefore
TAy;, = 20loge®W = (20)(0.4343)knr = 8.636knr . (2.93)
It is usual to write TA = or whére
o = 8686kn (2.94)
is the absorption coefficient in dB/m. The transmission loss in a slightly dissipative medium is thus
TL=TL, + TAz; = 20logr + ar . (2.95)

For this perturbation approach to the damping of sound waves to be valid, it is necessary that
n be a very small quantity indeed. Measurements in sea water show that n increases with fre-
quency, and that for frequencies under one megahertz it is smaller than 2 X 107S. Equation 2.91 is
thus an excellent approximation for the effect of damping on spherical waves in water over the
entire frequency range generally exploited by underwater sound devices and systems.

Spherical Waves from Plane Waves

In most problems spherical symmetry, with its inverse radial dependence of pressure and
density, is easy to handle analytically. However, for some cases, such as the interaction of spherical
waves with plane surfaces, spherical symmetry is a handicap. For such problems, it is useful to
treat spherical waves as the superposition of an infinite number of plane waves. Brekhovskikh
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(1960) has shown that
L,ikr

i ® dlx + kg k,z)
. - dk dk, . (2.96)
r 2w S k. ’

where the integration is in wave-vector space. With this transformation spherical waves can be
replaced with plane waves when that is desirable.

2.5 Transmission at Media Interfaces

Snell’'s Law

In many instances sound waves created in one fluid medium are received in, or retlected by, a
second medium. Problems involving planar boundaries are best treated by considering plane waves.
As we have just noted. spherical waves can be decomposed into plane waves. If the second medium
is a fluid, then the boundary is incapable of sustaining a stress. and the components of wave
velocity parallel to the boundary must be the same in both media. It follows that the components
of the wave vector parallel to a boundury surface are unchanged in crossing between the two
media. This recognition of the constancy of the components of the wave vectors parallel to a
boundary between two fluids leads directly to a derivation of Suell's Law.

Figure 2.2 represents the geometric picture of incident, reflected and transmitted rays at a

INCIDENT REFLECTED

REGION 1.

Pqc1ig
b 4
61
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| Po €g ko
I
z TRANSMITTED

Fig. 2.2. Transmission at ¢ Boundary between Two Fluid Media
boundary between two fluids. The parallel components of the three wave vectors are

k, = kycost; . (2.97)
X
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o
|

=k, cos@, (2.98)

and

-
|

= kycos 8, . (2.99)

where k, = w/c, and ky = wlc,. and angles are measured relative to the plane rather than to a
normal as is more common in airborne acoustics. Since all three parallel components are equal, it
follows that

6 =86, (2.100)

and

Cs
cos @, = —— COs 9, - (2.101)
¢y
This last relationship is Snell’s law. It can be generalized to cases where sound speed is continuous.
leading to the general statement that for any ray in a refractive medium the component of the
wave vector parallel to the isovelocity surface is constant.

Reflection from a Plane Boundary

Equations 2.100 and 7101 relate the angles of reflected and transmitted rays to the incident
ray angle. Relationships between the amplitudes can be derived by recognizing that both the
pressure and normal particle velocity must be continuous. Continuity of pressure requires that

P+ P =P, (2.102)

where the various P’s are amplitudes of the respective acoustic pressures. Continuity of the normal
particle velocity leads to

Py - P = BF, . (2.103)
where
_ hG sin 6, _ ﬂ_ mn{‘}r (> 104)
psCa  sin 8 p, tan 8,

Simultaneous solution of Egs. 2.102 and 7,103 leads to a relation for the ratio of reflected
pressure to incident pressure,

o =L = i (2.105)
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which is valid if sin 6, exists. When Eq. 101 is solved for sin 6, it is found that

2

sing, = |1 —(C’* ) cos® 0, . (2.106)
Cy

and that energy is transmitted into a medium with higher speed of sound only if the incident angle
is greater than a eritical angle defined by

0. = cos™ (C—l) . (2.107)
(,’2

When grazing angles of incidence are less than the critical angle, all of the energy is reflected.

Transmission through a Plane Boundary

Simultaneous solution of Eqs. 2.102 and 2.103 for P, gives

P 2
@ =L =" (2.108)
P, 1 +8

provided, of course, that 8, is greater than 6. However, this equation for the pressure transmission
ratio does not tell the whole story. Because the specific acoustic impedances of the two media
differ, the relative sound power transmitted is not simply the square of the transmitted pressure
ratio. Transmitted power can be calculated by subtracting reflected power from incident power,
from which it follows that

W W 4
TP TR S N (2.109)

W. W. "1+ pn

In treating transmission loss between two media, distinction needs to be made between pres-
sure and power transmission losses. From Eq. 2.108 the pressure transmission loss is

P, I + 8
TL = 20 log—+ = 20 log ———— , (2.110)
P 2
t
while the power loss is
W, (1 + B)?
PTL = [0log —L = 10 log w£—= TL - 101logp . (2.111)
W 48

t

Transmission from Air to Water

Sometimes when calculating noise in water it is necessary to estimate contributions of sources
in air. For example, one may wish to calculate the sound in water caused by aircraft flying
overhead. The speed of sound in water is 4.35 times that of air. From Eq. 2.107, it follows that
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sound is transmitted from air into water only if the incident angle exceeds about 75°. The ratio of
the specific acoustic impedances of the two media is 3600, from which

B =28 X 10%sinb, . (2.112)
The most efficient transmission of sound from air into water occurs near normal incidence, for
which
2
g = e D (2.113)
I + 8
and
W 4
=t = ———E~J—£I.I X 193 . (2.114)

W, (1 + )P

The pressure level underneath the water surface is thus about 6 dB higher than its value in the air
above the surface. However, the corresponding intensity and power levels are about 29.5 dB lower.
It follows that, while airborne sources transmit very little acoustic power into water, they may be
as detectable by pressure-sensitive transducers as by microphones.

Young (1973) has demonstrated that the entire sound field in water attributable to a source in
air can be calculated with reasonable accuracy by locating a virtual source of strength 7 dB less
than the actual source directly under the actual source at one-fifth its elevation, and assuming a
dipole (cosine) radiation pattern with its maximum directly under the source.

’

Transmission from Water into Air

Detection of sources in water by instruments in air is a different matter. Again considering
near-normal incidence,

3600
227 > 3600 (2.115)

sin 8;
and the power transmission ratio is

W 48 4

W. (1 + B)? i

1

< 11 X 10% . (2.116)

Thus the loss is at least 29.5 dB, the same as for transmission from air to water. However, the
relative pressure level is much lower since, from Eq. 2.108, the pressure rafio is

2 2
B e A L =55 X 107, (2.117)
1+ 3601

and it tollows that the pressure transmission loss is at least 65 dB. Most noise sources in water are
therefore virtually undetectable in air: only large high-power sources such as active sonars and
explosions produce significant signals in the atmosphere.
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To calculate the pressure field in air from a source in water, Young (1973) placed a virtual
source at five times the actual source depth, of strength 52 dB less than the actual source level, and
assumed a cosine-squared directional pattern. This calculation confirms the low levels in air indi-
cated by Eq. 2.117.

Reflection of Underwater Sound by Ocean Surfaces

The air-water interface at the ocean surface is an excellent reflector of underwater sound.
From Eq. 2.105,

. 2
_ B L o2 s - 09995 . (2.118)

g+ 1 8

=]
~
]

showing that reflection occurs virtually without loss of amplitude and with a phase shift of 180°.
Since the angle of reflection equals the angle of incidence, the effect of a free surface can be
treated by considering negative image sources above the surface, as illustrated in Fig. 2.3. Often
the geometrical situation is such that a receiver receives sound by both direct and reflected paths,
resulting in complicated interference patterns. This subject is considered in more detail in
Section 4.6.

The result given by Eq. 2.118 has been derived for a smooth plane surface. The actual ocean
surface is of course quite rough, causing scattering of incident sound. Scattering may be thought to
cause the image to dance around, or it may be considered to cause reflection loss and thus to
reduce the amplitude of a fixed image. In any case, the effect increases with frequency, wave
height and angle of incidence. A surface can be considered to be acoustically smooth and scat-
tering loss to be negligible provided

' (2.119)

where /1 is wave height. Thus, at 1 kHz, for which A =1.5m, at an angle of 10° the ocean is
acoustically smooth for wave heights up to at least 2 m.

E
DIRECT PATH RECEIVER
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EFLECTED PATH
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IMAGE O/

Fig. 2.3. Image Source for Reflection by Air-Water Interface
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2.6 Finite-Amplitude Effects

In all of the discussions of sound waves in the present chapter, linearity has been assumed.
Resolution of waves into independent harmonic components depends on this property. The deriva-
tion of the wave equation assumes linearity. Most phenomena in underwater acoustics can be
completely understood in terms of linear acoustics. However, there are occasions when non-linear,
finite-amplitude effects must be considered. The present brief exposition is intended merely to call
attention to this aspect of acoustics and to present criteria which can be used to assess the possible
significance of non-linear effects.

In linear acoustics, a fundamental assumption is that the particle velocity is small compared to
the speed of sound. It follows that all parts of a wave travel at the same speed. Actually, this is not
strictly true. The actual speed is a superposition of the local sound speed and the local particle
velocity, both of which may vary with place in the wave. Thus, locally,

dx ; de \ , .
——=c'+v=co+puco——v+v_ (2.120)

dt dp

The occurrence of non-linear effects is thus primarily attributable to the finite amplitude of the
particle speed relative to that of sound, and secondarily to the fact that the speed of sound is itself
not a constant. Beyer (1960) showed that the degree of non-linearity is controlled by the
parameter

1| ax dc
N —a={1+ e, —|\M = LM (2.121)

(.() {[[ max 'p

where M’ is the acoustic Mach number of the wave at its peak. For a gas, L can be shown to be
related to the ratio of the specific heats, and to be equal to about 1.2 in air. For water, the value is
about 3.5. Based on the larger value of L, one might expect greater non-linear effects in water than
in air. However, the acoustic Mach number is invariably much less in water than in air.

Non-linear effects are also strongly frequency dependent, since the effects cumulate as the
wave travels a number of wavelengths. A parameter governing non-linearity is the stretched range
variable, o, defined by

p
o = LM'kr,In — , (2.122)

o

where 7, is a reference distance, usually about one meter. Expressing the acoustic Mach number in
terms of the peak acoustic pressure,

P -
w——(fﬂl—i W — . (2.123)

3
Po Co r{)
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Distortion of the wave is negligible as long as ¢ is less than about 0.15. It follows that non-linear
effects can be completely ignored in sea water provided that the product of source pressure level
and frequency do not exceed 30 kilohertz-atmospheres.
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The only sources which approach non-linearity in normal sea water are large active sonars and
explosions. However, if the medium contains quantities of bubbles, as in a zone of cavitation, L
may be significantly higher than normal and ¢, significantly lower, resulting in non-linear effects
at much lower sound pressures. Thus. harmonic distortion, intermodulation products and in-
creased absorption can all be expected to occur when the compressibility of a liquid is sienificantly
increased due to the presence of bubbles.
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