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ME525 Applied Acoustics Lecture 9, Winter 2022
The acoustic point source (monopole)
The Green’s function
Boundary conditions and acoustic doublet

Peter H. Dahl, University of Washington

Continuing with ka << 1 and kL << 1 limit, monopole source and acoustically compact source

In previous lecture we invoked the ka << 1 limit, and with minor rearrangement the pressure
is

p(r, t) = −iω(ρ0u04πa2)
eikr

4πr
e−iωt (1)

Thus the strength of this acoustic source is defined by the time derivative of mass flow, or described
another way, it is the rate of change of mass flow introduced per unit volume.

After this we defined an effective source strength by bundling everything and putting q = −iω(ρ0u04πa2)
giving,

p(r, t) =
q

4πr
eikr−iωt (2)

where the source is at the center of the coordinate system and pressure is function only of radial
coordinate r. So, this source no longer has any length scale a. This length scale has been removed
on the assumption that ka << 1, and we can replace the sphere of radius a with effective source of
strength q.

This defines the concept of concept of a point-like source or acoustic monopole. Such a source
will generate wave motion in no preferred direction, producing a wave which spreads spherically
outward. If there no boundaries, i.e., the medium is infinite in extent, the waveform depend only
on the range r from the center of the source, and not depend on the spherical angles α, φ as shown
in Fig. 1 of Lecture 7.

Furthermore, such a source need not have originally in the form of an exact sphere. The source
may instead have some complicated shape (Fig. 1) with characteristic length scale L. We arrive an
extraordinarily useful rule: if the characteristic scale L of source is such that L << λ where λ is
the acoustic wavelength, then the source is acoustically compact, and can be viewed as a monopole
source. Once the source is deemed acoustically compact the scale L is no longer relevant. The
source can be modeling as Eq. (2), where the source strength, q is determined empirically by mea-
surement.

For example, if prms is measured at range r m from the source, then we can estimate |q| as follows

|q|
4π

1√
2

1

r
= prms (3)
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Figure 1: An acoustic source with characteristic scale L for which kL << 1 which can be modeled as an
acoustically compact or source, or monopole.

giving at least a value for |q|. Often that is all we are after as the important physics relating to sound
propagation is embodied in the factor eikr

r
.

Continuing with the Green’s function

We next further generalized to find the pressure at a field point ~r, given a source at an arbitrary
source point ~r0 that need not be at origin (Fig. 2) as follows:

p(~r, t) =
q

4π|~r − ~r0|
eik|~r−~r0|−iωt (4)

Equation (4) satisfies the inhomogeneous Helmholtz equation, for which the delta function on
the RHS represents a point source of strength q at position ~r0 such that

(∇2 + k2)p = −qδ(~r − ~r0) (5)

Further compress notation by defining R = |~r − ~r0|, such that

g =
eikR

4πR
(6)

and call g the free space Green’s function because g satisifies

(∇2 + k2)g = −δ(~r − ~r0) (7)

in an unbounded medium.
Note the physical dimension of g is 1/L. As currently constructed, g embodies all the range-

dependent and phase properties of a sound field with point source located at ~r0, but to bring a
more useful dimension of pressure, g must be multiplied by a calibration constant. The partic-
ular form of g in Eq.(6) which concentrated or ”impulse-like” in space is known as a harmonic
Green’s function. In this course we use primarily harmonic Green’s function solutions, represent-
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Figure 2: An acoustic source at the source point ~r0 producing the acoustic field at field point ~r.

ing a single-frequency, or narrow band condition, and by Fourier superposition we can combine
multiple frequencies. A Green’s function concentrated in both space and impulsive time is dis-
cussed in Pierce (1989), see also Tolstoy (1973).

The Green’s function is a model for sound propagation that is proportional to acoustic pres-
sure, differing from pressure only by some multiplicative constant that can complex. The constant
may already be known from theory, or determined empirically by measurement. In many applica-
tions the constant isn’t used as the Green’s function usually embodies most if not all the important
physics sound propagation.

The expression by way Eq.(5) is common in engineering and physics, where a field quantity,
here sound pressure, is governed by a linear partial differential equation with an inhomogeneity at
location ~r0 acting as a source term. This pressure field is everywhere smooth and analytic (possesses
spatial derivatives that are not infinite), except at the source point it can only be described by a
delta function inhomogeneity. This is not unlike a wave created on water, for which the wave
field is analytic–except at the point on that surface where the rock splashed (the location of delta
function) and produced this wave. In summary: the acoustic field generated by a delta function
inhomogeniety is sometimes formally referred to as the Green’s function for the problem.

Combination of two point sources to satisfy a boundary condition: the acoustic doublet
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The Green’s function of Eq.(6) is our most basic one which does not need to contend with bound-
ary conditions such as an air-water interface. A simple but realistic boundary condition encoun-
tered in acoustics is an acoustic source below an air-water interface. This is called the Lloyd mirror
problem and the boundary condition is called ”pressure release” meaning the acoustic pressure
field must vanish on the boundary. Such boundary, again when viewed from source below, is
also referred to as an ’acoustically soft’ surface. The ’soft’ description arises from the characteristic
impedance of two acoustic media involved in the problem: water where ρc is of order 1.5 106, and
air where ρc is ∼ 400. In general, sound impinging on a boundary backed by one medium with
characteristic impedance much less than the medium supporting the incident field will also behave
approximately as a pressure release boundary, or be ’acoustically soft’ .

Note that opposite happens for airborne sound over water; in this case the upper medium is
supporting the incident field, and with characteristic impedance of the upper air medium being
much less than of the lower water medium the boundary can be considered ’acoustically hard’.
Later more general boundary conditions are addressed, as say between soft and hard tissue in med-
ical ultrasound, or between sea water and the seabed, which requires a description of the material
properties in terms of the characteristic impedance involved in each boundary material. For now,
though, so long as an ’acoustically soft’ (or ’acoustically hard’) approximate description applies,
some very combinations of Green’s functions can be applied to satisfy the boundary condition.

Figure 3: The geometry of the Lloyd Mirror problem showing a true source at depth H and image source at
height H .

The pressure release boundary condition is satisfied by combining the true source with an image
source (Fig. 3). The image is of opposite sign such that combination of two sources along the
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boundary equals zero. In this case the Green’s function take the following form

g =
eikR1

4πR1

− eikR2

4πR2

(8)

where R1 = |~r − ~r0| and R2 = |~r − ~rimage|. We can set ~r0 = [0, 0, H] and ~rimage = [0, 0,−H] in terms
of the x, y, z coordinates.

The combination of two free-space Green’s functions as in Eq. (8) is known as doublet. You
should convince yourself that this g equals 0 when evaluated at any x, y with z = 0, and remember
that g is serving as a surrogate for pressure.

Figure 4: Field in dB with arbitrary reference for acoustic doublet for H = 10 and kH = 41.9

Three situations are discussed next for doublet based on differing depths H of the source (Fig.
4-6), and we’ll see that a key parameter is kH . In such plots we are interested in how the ”strength”
of g or pressure, varies with x and z, and so |g| (proportional to pressure amplitude) or |g|2 (pro-
portional to pressure-squared) is plotted. It thus makes sense to continue using decibels, and plot
10 log10 |g|2. These three plots display azimuthal symmetry which makes it equally instructive to
just plot 20 log10 |g| in the x, z plane. Notice what is happening for when the parameter kH is getting
smaller.
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Figure 5: Field in dB with arbitrary reference for acoustic doublet for H = 1 and kH = 4.19

Figure 6: Field in dB with arbitrary reference for acoustic doublet for H = 0.1 and kH = 0.419
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ME525 Applied Acoustics Lecture 10, Winter 2022
the Green’s function
acoustic doublet and dipole

Peter H. Dahl, University of Washington

More on combination of two point sources to satisfy a boundary condition, and method of im-
ages

It pays to think about boundary conditions, e.g., between soft and hard tissue in medical ul-
trasound, or between sea water and the seabed, in terms of the characteristic impedance, ρ0c, of
the acoustic medium on each side of the boundary. This does not tell the whole story, e.g., on
one side or both sides there may be layers composed of differing sound speeds and densities, but
it gives a good starting approximation. But roughly speaking, for sound in a medium with high
ρ0c impinging on a boundary to another medium with very low ρ0c, the boundary condition will
behave approximately as a ’pressure release’ boundary, meaning the acoustic pressure must equal
zero along this boundary. In the study of underwater acoustics, this pressure-release boundary
conditions is assumed to be exact. You should examine your self the following ratio: (ρc)air

(ρc)water
using

nominal values for each.

Figure 1: The geometry of the Lloyd Mirror problem showing a true source at depth H and image source at
height H .

The pressure release boundary condition is satisfied by combining the true source with an image
source (Fig. 1). The image is of opposite sign such that combination of two sources along the
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boundary equals zero. In this case the Green’s function for the Lloyd Mirror problem takes the
following form

g =
eikR1

4πR1

− eikR2

4πR2

(1)

where R1 = |~r − ~r0| and R2 = |~r − ~rimage|. We can set ~r0 = [0, 0, H] and ~rimage = [0, 0,−H] in terms
of the x, y, z coordinates. The method used to find this Green’s function is known as the method of
images (Frisk).

Figure 2: The acoustic field for the geometry in Fig. 1 is symmetric about the z-axis. Thus computing as
function of x, z with y = 0 is completely sufficient.

Figure 3: Field in dB with arbitrary reference for two cases with same frequency but differing H as parame-
terized by kH >> 1 and KH < 1 acoustic doublet left: H = 10 m and kH = 41.9, right: H = 0.1 m and kH =
0.419. Similar plots in larger scale are shown in the power point as part of Lecture 9.

Considering the symmetry of the acoustic field about the z axis (Fig. 2), we compute two cases
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with differing H as parameterized by kH >> 1 and KH < 1 (Fig. 3). Note that we can also
adjust the parameter kH by keeping H the same but adjusting the frequency which changes k. The
plots are expressed in terms of contours of 10 log10 |g|2, or 20 log10 |g|, in the x, z plane, a quantity
we might convey to someone else (your co-worker, your research adviser, whomever) in terms of
decibels (dB). But the dBs here are obviously not the same as, say, sound pressure level (SPL) in dB
reference to 20µPa (air) or 1µPa (underwater). However, considering the fact that g is proportional
to acoustic pressure, then there exists some constant-decibel offset to convert results in Fig. 3 to a
SPL in dB reference to 1µPa.

We may not be interested in that particular constant-decibel offset, as the more interesting effects
are contained in the properties of g as shown here being a function of x, z. Why plot 10 log10 |g|2

and not just |g| or |g|2? Notice the case kH >> 1 with about 14 lobes, or acoustic beams, for which
10 log10 |g|2 varies between about −20 to −30 dB within a beam to about −60 dB outside the beam–
let’s say a difference of 30 dB or about 1000-fold change in in the value of |g|2. Regions where
|g|2 ∼ −60 dB are referred to as being in a null. We get such a null region because of the interference
pattern set up by the (positive) real source and (negative) image source. Though not seen as clearly
for case kH >> 1, there is very strong null along z = 0 boundary, where |g| = 0 and any decibel
representation would give −∞, a decibel level that is of course not captured in the contour plot.
In any case, with such large variation in the field strength it pays to express it in terms of decibel
level. (By the way, it is good practice to reserve the word ’level’ when talking language involving
decibels.)

Figure 4: 3D rendition of the very broad beam which results for the acoustic doublet (Fig. 1) when kH <.

Turning now to the case kH < 1 in Fig. 3, there is also beam and null features, but now the
lobes are quite large. For example, take the large -30 dB contour shaded area, and remember this
contour swings around 360◦ about the z axis. It looks something like the rendition in Fig. 4, where
one angle with respect to the sea surface, θ, describes everything but dependence on range (an
equivalent formulation involves an angle with respect to the z axis).
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The acoustic dipole

Now look at the doublet for the case kH << 1 (i.e., not too different from Fig. 3 case kH < 1) ,
where 2H is the separation between a source and its image which as opposite sign. This is called a
dipole.

Using the same coordinate system as in Fig. 1, recast R1 as

R1 =
√
x2 + y2 + z2 − 2zH +H2 = r

√
1− 2zH/r2 +H2/r2 (2)

then evaluate
kR1 = r

√
k2 − 2kzH/r2 + (kH)2/r2 (3)

In the limit kH << 1 the last term is ignored thus R1 ≈ r(1 − zH/r2), or put R1 = r − H sin θ.
Similarly we put R2 = r + H sin θ. Now, the source ~r0 and image ~rimage locations are out of the
picture, everything is described by r and θ as in Fig. 5 (the depth coordinate z of the field point
included in θ.)

Figure 5: Situation describing a dipole located at center of coordinate system. The acoustic field is function
of r and θ.

Now start with the Green’s function that satisfies the free-surface boundary condition (dis-
cussed previously) composed of source and image of opposite sign (or doublet).

g =
eikR1

4πR1

− eikR2

4πR2

(4)

where R1 = |~r − ~r0| and R2 = |~r − ~rimage|. Now analyze the doublet for the case kH << 1, where
2H is the separation between a source and its image. This is called a dipole.

The approximations for R1 and R2, can now be inserted into Eq.(4). In doing so, encounter
e±ikH sin θ, which can be approximated as 1 ± ikH sin θ, consistent with the original kH << 1 as-
sumption. This leads to the final result for the dipole Green’s function

g = 2H sin θ
eikr

4πr
(−ik + 1

r
) (5)
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Observe once again the dimension of this Green’s function is 1/L, as is the case for the two
monopoles (source and image) used for the Green’s function in Eq.(1). However the dipole now
has two terms–one which we be will shown to fade away as kr >> 1.
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ME525 Applied Acoustics Lecture 11, Winter 2022
Acoustic Dipole

Peter H. Dahl, University of Washington

The acoustic dipole strength |fD|

Figure 1: Situation describing a dipole located at center of coordinate system. The acoustic field is function
of r and θ.

Let’s continue our discussion on the basic dipole Green’s function derived in the last lecture.

g = 2H sin θ
eikr

4πr
(−ik + 1

r
). (1)

Recall Eq.(1) originates from the ”doublet” consisting of two free-space Green’s function sources of
opposite sign

g =
eikR1

4πR1

− eikR2

4πR2

(2)

where these sources were separated by H and brought closer together such that kH << 1. Next
incorporate a new ”source strength” q to obtain pressure

p(r, t) = (q2H) sin θ
eikr

4πr
(−ik + 1

r
) (3)

where harmonic time dependence e−iωt is assumed.
Apply now the same approach used to establish q for point source monopole, instead here allow

2H to shrink to 0 while increasing q to keep (q2H) finite. Identify |fD| as this new quantity to replace
(q2H) which is called the dipole strength. Thus, we now more formally express the pressure from
the dipole as

p(r, t) = |fD| sin θ
eikr

4πr
(−ik + 1

r
). (4)

Note the dimension of |fD|: in MKS it must be N/m, or equivalently Pa-m and the dipole unlike
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the monopole has two terms: one that dominates in the near field, 1/r, and that dominates the far
field ik.

Vector properties of the dipole

The dipole example just presented is one with the axis oriented perpendicular to the boundary
(this axis being the line connecting the real source and and image source, or z-axis as in Fig. 1).
This is a very appropriate model, for example, for low frequency ship noise where kH << 1 with
H being the depth of the noise generating mechanism such as the ship propeller, underwater noise
caused by rain drops, and by bubbles bursting near the sea surface due to the action of wave
breaking.

This dipole example also demonstrates how the boundary between air and water is satisfied
upon either placing a dipole on that boundary, or in the case of the doublet, placing a source a
distance H below the boundary and a negative image a distance H above the boundary. But more
generally we want to place a dipole anywhere in space to represent a source with properties of two
closely-space monopole sources of opposite phase (or sign), i.e. there is no requirement to have the
dipole source be associated with a boundary. The dipole can be oriented in any direction and this
direction will be the dipole axis.

To do this, make the strength |fD| represent the magnitude of a vector ~fD called the dipole moment
vector, where ~fD is aligned with the dipole axis, and by convention points towards the positive side
of the dipole. Thus ~fD points downward in Fig. 1, or in the case just described where the dipole
represents a source very close (in the sense of kH << 1) to the air-water interface. To use ~fD in a
more general orientation we need to restore a full vector description ~r for the field point, with the
angle α (Fig. 2) given by

cosα =
~fD · ~r
|~fD||~r|

(5)

Figure 2: Showing orientation of the dipole moment vector (orange arrow), with positive source ⊕ under-
water and negative source 	 above. The field point to the fish is now described with vector ~r
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The dipole moment vector in arbitrary orientation is shown in Fig. 3, and the pressure at the
field point (with time dependence e−iωt) is given by

p(FP ) =
1

4π

~fD · (~r − ~r0)
|~r − ~r0|

eik|~r−~r0|

|~r − ~r0|
(−ik + 1

|~r − ~r0|
) (6)

Figure 3: Showing orientation of the dipole moment vector (orange arrow), the dipole source location ~r0 and
field point ~r with arbitrary orientation within a coordinate system

Return now to the free space Green’s function with harmonic time dependence

g =
1

4π

eik|~r−~r0|

|~r − ~r0|
(7)

where a pressure at some field point (FP ) is

p(FP ) = qg (8)

Note that gradient of g is∇g is given by (e.g, see Pierce)

∇g = 1

4π

(~r − ~r0)
r

(ik − 1

r
)
eikr

r
(9)

where r = |~r − ~r0|. Thus evidently Eq. (6) can also be written in the highly compacted form

p(FP ) = −~fD · ∇g (10)

with Eq.(7) and Eq.(9) now representing our two fundamental source types, with monopole related
to g and dipole related to∇g.

Directivity
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Dan Russell and colleagues performed a simple, illustrative experiment to demonstrate the con-
cept of directivity from monopoles, dipoles and quadrapoles (a combination of two dipoles). His
experiment (Fig. 4) is as follows: four speakers are on turntable and continuous (harmonic or sin-
gle frequency) sound is broadcast at fixed frequency = 250 Hz. The RMS pressure is measured by
a sound level meter (SLM) as the turntable rotates. Speakers (the square boxes) are arranged to be
spatially packed together, separated by distance H , say.

The frequency and H are such that kH << 1 for this experimental configuration. Therefore,
four speakers when broadcasting with the same phase (the black dots) can be considered a single
monopole–see (a) top of Fig. 5. Next, take two of the speakers and reverse the wires (polarity) such
that the phase is ”negative”, as in (b) top of Fig. 5. This can be considered a single dipole.

The lower part of Fig. 5 shows some results from the Russell et al. study. Directively for the
monopole is what we intuitively expect: regardless of the position of the turntable, the SLM gives
the same result, and this result, rms pressure plotted in terms of dB, forms a circle. In contrast, the
dipole directivity exhibits a deep null in the acoustic response as the turntable passes through 90
and 270◦. The two halves of the dipole (in this case the two positive and two negative speakers) ex-
hibit an exact phase cancellation and the acoustic pressure resulting from the coherent sum of four
sources should vanish. The Russell et al. work also measures the acoustic field from a quadrapole
(see (d) in upper part of Fig. 5). This will exhibit a kind of clover-leaf directivity pattern.

Figure 4: Apparatus for measuring directivity of monopoles, dipoles, and quadrapoles. This is Fig. 5 from
Russell et al., ”Monopoles, Dipoles and Quadrapoles: An experiment revisited”, Am. Journal of Physics,
1999.
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Figure 5: Measurements of directivity pattern for (a) monopole and (b) dipole. This is portion of Fig. 8 from
Russell et al., ”Monopoles, Dipoles and Quadrapoles: An experiment revisited”, Am. Journal of Physics,
1999.

Arrangement of 4 speakers, separated by H and driven by a frequency such that kH << 1

amounts to an idealized directivity problem where measurement well predicted by simple theory.
More often for realistic noise emission problems, an empirical measurement is required as in the
case of directivity of jet noise measured on the ground (Fig. 6).

Figure 6: Notional directively of jet noise emission over broad range of frequencies as function of angle.
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