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ME525 Applied Acoustics Lecture 4, Winter 2022

Peter H. Dahl

Complex harmonic exponential notation and linearization

Recall the linearization rule: ignore products of small acoustic variables (p1, ρ1, etc.), in the
process of linearization, and also for corresponding spatial or temporal derivatives so long as the
variable is continuous (or smooth) in space and time. This is nearly always the case with sound.
Thus, both ξ and ∂ξ

∂x
, ∂ξ
∂t

, etc., are considered small, and products of such small variables are to be
ignored in the process of forming a linearized approximation.

The easiest way to see that partial derivatives are also small quantities is to assume a harmonic
time dependence in the acoustic variables. For example, take the acoustic displacement given by
ξ = ξ0e

i(kx−ωt), where ξ0 identifies displacement amplitude which can also be complex. Then u = ∂ξ
∂t

equals −iωξ. The factor −iω is just another mulitiplicative constant, and the important magnitude
information is contained in ξ, which we know is a small acoustic variable. Thus ∂ξ

∂t
is considered

”small” as well. Likewise, the spatial derivative ∂ξ
∂x

equals ikξ, and here the wavenumber k is the
constant multiplying the small acoustic acoustic variable.

Develop good habits working with complex notation: the magnitude information in−iωξ0ei(kx−ωt)

is completely defined by ω|ξ0|, as ω is just a simple real number (and never express the result as
iω|ξ0|, or |iωξ0|). The purely complex harmonic exponential ei(kx−ωt) is magnitude 1 so this need not
enter into the magnitude analysis, however there will be occasions where it is necessary to express
a reduction of sound amplitude with increasing distance from the source due to sound attenua-
tion (discussed later), for example, ei(kx−ωt)e−αx, where α represents an attenuation constant. The
magnitude of this expression equals e−αx, and progressively reduces with increasing distance x.
Solution to the wave equation: Plane waves

A plane wave is so named because the phase fronts, describing the phase of pressure (or other
acoustic variable) are in plane. This is illustrated for a 1D case (Fig. 1) showing plane wave propaga-
tion down a tube. I’ve marked a phase front for positive (red) and negative (blue) pressure (acoustic
pressure is identified here as the variable ∆P0) . A positive-to-positive (or negative-to-negative) dis-
tance is the wavelength, or λ. Take note: sound speed c, wavenumber k, sound frequency f radial
frequency ω, and sound wavelength λ are all-important, and ubiquitous in the study of acoustic
waves, with fλ = c applies to all propagation (sea surface gravity waves, radio waves, etc.). You
should memorize:

k =
2πf

c
=
ω

c
=

2π

λ
(1)
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Assuming the tube goes on forever, a simple model for sound at single frequency f 1is p1 = Aei(kx−ωt)

to representing a 1D, harmonic plane wave for pressure where A can in general be some complex
amplitude. The 1D plane wave has a propagation direction depicted by the gray arrow with two

Figure 1: Plane wave propagation down a tube illustrating the phase fronts for positive (red) and negative
(blue) pressure in the lower trace. The upper trace shows corresponding displacement (identified here with
different notation as the variable ν), and it can be seen that for a plane wave displacement is 180◦ out of
phase with pressure.

phase fronts perpendicular to this propagation direction shown. This direction, perpendicular to
the planar phase fronts, is called a ”ray”.

Consider next a somewhat idealized 3D plane wave (Fig. 2), where the red (positive) and blue
(negative) planar surfaces represent surface of high and low acoustic pressure, respectively, which
define the phase fronts. Only small sample (rectangular shape) of the surfaces are shown, as the
phase fronts might ideally be of infinite extent. But practically there is some bound representing
the finite spatial extent of the sound field, not unlike how a confined beam of light. The ray for this
plane wave is pointing is pointing towards the right slightly up.

To define the plane wave in 3D Cartesian coordinates, introduce polar angle α and azimuthal
angle θ, with components of the wavenumber k defined as follows:

kx = k sinα sin θ

ky = k cosα

kz = k sinα cos θ.

(2)

1For this model to be accurate the frequency must satisfy f < c/(1.71D) where D is the tube diameter. We’ll learn
more about this later.
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Figure 2: Right side: a plane wave depicted in a 3D sense with direction heading towards the right and
slightly upward. The phase fronts of positive and negative phase (positive and negative pressure) are seen
as planar surfaces. Left side: a coordinate system defining direction of the ray (black arrow) with polar angle
α and azimuthal angle θ.

The plane wave can be then expressed by

p1(x, y, z, t) = Aeikxx+ikyy+ikzze−iωt (3)

You should convince yourself that Eq.(3) satisfies the wave equation developed in Lecture 3.
Plane waves and characteristic impedance of the acoustic medium ρ0c

We develop next one of the most important relations in acoustics that can only happen with
plane waves–even though ”true” plane waves are somewhat fictitious, a sound field under many
conditions becomes very close to plane wave. Using the linearized Euler’s equation [e.g. Eq.(6)
from Lecture 3), take the gradient of Eq. (3) above to find

ρ0
∂ux
∂t

= −ikxp1
ρ0

∂uy
∂t

= −ikyp1
ρ0

∂uz
∂t

= −ikzp1.
(4)

Ok, we are e−iωt people, so for example, the x−component of Eq.(4) reduces to ρ0ωux = kxp1, and
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so on for the other two components. Thus, confirm: (ρ0ω)2|~u| = k2|p1|2, and therefore

|p1|/|~u| = ρ0c (5)

which is a basic property of plane waves. The new constant connecting acoustic pressure and is
called the characteristic impedance, and is one of the most important quantities in acoustics.

Unfortunately, you will encounter a multiplicity of terms using impedance, some of which we
will discuss subsequently, such as wave impedance and radiation impedance. There appears to be
no getting around it, but at least the term characteristic impedance is used fairly consistently within
the field of acoustics to denote ρ0c. Stick with this terminology. In nearly every acoustic applica-
tion you will want to know what ρ0c is, for example, in analyzing the acoustic reflection between
two media, say muscle and bone, or sea water and the seabed, the difference between the two
characteristic impedances of the media will determine the strength of the reflection. The units of
characteristic impedance are Pa times sec/m also known as a Rayl in honor of Lord Rayleigh.

At this point we are also making a change in notation for acoustic pressure p1 having now a
good understanding that this is first order, small acoustic variable. Given acoustic pressure is by
the most important an easily observable the small acoustic variables, let us henceforth drop the
subscript and use the symbol p for acoustic pressure.
Solution to the wave equation: Spherical waves

Plane waves have been first introduced because of their inherent simplicity and that plane
waves exhibit the property of pressure divided by velocity equals ρ0c. For real sources of sound,
and particularly at ranges close to the source, plane waves are a poor approximation. However we
show subsequently that for ranges r sufficiently far from the source of sound, such that kr >> 1,
then phase fronts become locally planar and plane waves are not a bad approximation.

Let us now introduce spherical waves representing the simplest wave form in 3D that also
describes well many physical applications in an exact manner. The pulsating sphere (Fig. 3) is a
useful surrogate for sound source, such as human mouth, a loudspeaker, or an underwater acoustic
transducer. We assert that the acoustic pressure from this source can be described as follows:

p(r, t) =
A

r
eikre−iωt (6)

This expression depends on just one coordinate r equal to the radial distance from the center of
origin of the sound source (Fig. 3) to the point where sound pressure field p(r, t) is studied.

Does p(r, t) satisfy the wave equation (∇2p − 1
c2
∂2p
∂t2

= 0)? An easy way to find out is see is to
observe that for the∇2p, the Laplacian operator, in this spherically symmetric problem there is only
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r− dependence without angular dependence. The Laplacian thus reduces to

∇2p =
1

r2
∂

∂r
(r2

∂p

∂r
) (7)

(See the resource section on website for handy summary of the Laplacian operator in different
coordinate systems along with angular dependence.) Now break this out for the wave equation to
include the time derivative as follows:

prr +
2

r
pr −

1

c2
ptt = 0 (8)

where pr is short-cut notation for ∂p
∂r

, and similarly for prr and ptt. Next a define a new variable
equal to range times pressure, or rp. Using the new variable rp Eq. (8) simplifies to

(rp)rr −
1

c2
(rp)tt = 0 (9)

Equation (9) is the form of the wave equation in Cartesian coordinates which we have seen before,
and is solved by functions of the form f(r − ct). We thus find that p = f(r−ct)

r
which is an outgoing

spherical wave where evidently the acoustic pressure then goes as ∼ 1/r.

Figure 3: A spherical source of radius a placed at the center of the Cartesian coordinate system (x,y,z). Be-
cause of spherical symmetry, one spherical coordinate r describes all variation.

That sound pressure behaves in this manner is known as spherical spreading. You are experience
spherical spreading of my voice in this classroom, or even better in environments without too much
reflection such as on an outdoor sports field of grass–or even better–a field covered with snow (Fig.
4). This because there are really boundaries for sound to reflect from; sound headed up into the air
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continues on and sound headed towards the snow is absorbed and effectively removed. Only the
straight path connecting the source of sound to a receiver, as in your ears, counts.

Figure 4: Snow covered field with group people approximately 200 m from iphone recording. The group’s
casual conversation can be easily heard. Spherical spreading represents a realistic, simple model for sound
propagation from the group to the recording location.

Let’s conclude by finding a specific expression for the constant A in Eq.(6) which will depend
on what kind of boundary condition is imposed on the surface of the spherical source at r = a (Fig.
3). This condition will ultimately determine how loud the sound is. There many ways to specify
this boundary condition; here we choose to specify the acoustic velocity on the spherical surface
at r = a, as u0e−iωt, where u0 is a complex amplitude. (Note: there is no physical necessity that
this amplitude be complex, we can define it as real value e.g., 10−8m/s while oscillating at some
frequency as in 500 Hz. But leaving it complex provides many more options such as specifying the
phase of oscillation. For example, you might want two nearby sources to oscillate out of phase to
achieve a noise cancellation effect. )

First find a general relation between pressure gradient and velocity using Euler’s equation as
follows (and do remember we are not using the p in place of p1):

iωρ0ur =
∂p

∂r
(10)

where we now use ur to denote velocity in the radial direction.
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This leads us directly to

ur =
A

ρ0c

eikr

r
(1 +

i

kr
)e−iωt (11)

and using the given boundary condition ur(r = a) = u0e
−iωt, we identify the constant A as

A = ρ0c u0a(
ka

ka+ i
)e−ika (12)

Observe the role the characteristic impedance ρ0c and notice that the higher the ρ0c the smaller
the velocity amplitude necessary to achieve a given pressure amplitude. For example, think about
the sphere operating in air (smaller ρ0c) versus water (larger ρ0c) . The final expression for pressure
is

p(r, t) = aρ0c
u0
r
eik(r−a)(

ka

ka+ i
)e−iωt (13)

This looks somewhat complicated, so it pays to first ask: is it dimensionally correct? Almost by in-
spection you can see that it is, knowing now that any ratio of acoustic pressure to acoustic velocity
gives a quantity of dimension ρ0c (this ratio may not be a purely real, with imaginary part, depend-
ing on circumstances, but it will always have this physical dimension of density times speed.)

Can you compute the root mean square (rms) value of p(r, t) as function of range r? Take ad-
vantage of the complex exponential notation and simple harmonic time dependence!
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ME525 Applied Acoustics Lecture 5, Winter 2022
more on near/far field, impedances, acoustic energy quantities

Peter H. Dahl, University of Washington

Here’s the solution for sound radiation from a sphere of radius a solved in the last lecture based
on the boundary condition for radial velocity (ur), such that ur|r=a = u0e

−iωt.

p(r, t) = aρ0c
u0
r
eik(r−a)(

ka

ka+ i
)e−iωt (1)

The non-dimensional parameters kr and ka

You will find many properties of the acoustic field that depend on range r and source length
scale a; however a much better understanding of these properties will always be found upon assessing the
non-dimensional parameters kr and ka.

A good place to start is by the ratio of pressure to velocity for wave under study as function of
distance from source, either with data or with model. This is generically called the specific acoustic
impedance (Junger and Feit, p. 31; Frisk p. 26). For the spherical wave represented by Eq.(1) the
specific acoustic impedance is a function of range r

p(r)

ur(r)
=

ρ0c

1 + i/kr
(2)

where the time dependence e−iωt cancels. Since kr is non-dimensional the specific acoustic impedance
this spherical wave still has dimension ρ0c. But also observe that the specific acoustic impedance
in this case is complex and dependent on kr or a combination of range from spherical source r and
frequency via wavenumber k.

Observe now that when kr >>1 specific acoustic impedance approaches ρ0c which is the char-
acteristic impedance, representing the ratio of pressure to velocity for a plane wave. That a spherical
wave behaves as a plane wave for kr >> 1 can be understood by considering the spherically ex-
panding phase fronts becoming more like planar wave fronts for large distances away from the
source. However this transition to plane wave behavior also depends on acoustic wavelength, and
both wavelength and range are embodied by the important parameter kr.

For the limit kr << 1 convince yourself that in this case the specific acoustic impedance goes
as ∼ −iρ0ckr, which further reduces to −iρ0ωr. Notice that in this limit, a fundamental property
of sound propagation, the sound speed c, is no longer in effect and pressure and velocity are 90◦

out of phase. (The sign of this imaginary impedance term depends on the e±iωt convention is used,
however there is no physical significance iin the sign.) The two cases, kr << 1 and kr >> 1 are
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often referred to, respectively, as measurement positions r in the near field and far field of the
source.

Next, examine the specific acoustic impedance on the surface of the sphere at r = a

p(a)

ur(a)
=

ρ0c

1 + i/ka
(3)

which Junger and Feit call a surface impedance. Note if this quantity is multiplied by the area of radi-
ating object, such as 4πa2 for the sphere, then instead of pressure over velocity we have a force over
velocity. One motivation for this is that mechanical impedances are more traditionally expressed as
a ratio of force to velocity amplitude and an impedance quantity of the same dimension is needed
to be combined with a mechanical impedance for purposes of analyzing and modeling an entire
system that involve driving mechanisms to generate sound.

Observe that for for ka >> 1 the surface impedance of Eq.(3) becomes real, meaning acoustic
pressure and radial velocity are in phase–when this happens (as we see later) there is efficient
transmission of acoustic power away from the source. Conversely, when ka << 1 as in a very small
sphere with respect to the acoustic wavelength, then acoustic pressure and radial velocity are out
of phase, and there is inefficient transmission of acoustic power away from the source.

You experience this in overhearing high-pitched sounds from someone wearing small ear pods
broadcasting music–you don’t hear the low frequency bass because ka << 1, only the ear-pod
person does, but you do hear the high frequency ”squeaky” sounds. The higher frequency and k

puts ka >> 1 and efficient transmission of sound away from the source happens. Think also of a
mosquito of characteristic dimension a flying close to your ear–now this sound source really has
ka << 1–and as soon as it gets a few cm distant from your ear the sound appears to vanish.

The near/far field, and relation to acoustic energy

Acoustic velocity multiplied or scaled by ρ0c provides the proper dimensional comparison with
corresponding acoustic pressure. Using the generic equation for a spherical wave p = A

r
ei(kr−ωt)

observe that for the kr >> 1 (or far field) ρ0cvr(t) ≈ p(t), if not exactly being equal, where as for
kr << 1 (or near field) these two acoustic quantities are out of balance in this regard. When kr >> 1

the spherical wave is behaving as plane wave, and kr = 1 represents an important transition point
in this analysis.

For sound the relevant quantity is energy per unit volume, or energy density. The time-averaged
kinetic energy per unit volume is

wkin =
1

2
ρ0u

2
rrms

, (4)

where urrms is the root-mean-square (RMS) particle velocity in the radial r direction, again assuming
a simple spherical wave.
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Similarly the time-averaged potential energy per unit volume is

wpot =
1

2

1

ρ0c2
p2rms, (5)

where prms is the RMS acoustic pressure. Verify yourself that wkin and wpot each have MKS dimen-
sion J/m3.

Observe that both urrms and prms are necessarily real-valued quantities that enter into the energy
calculations. Taking now the expression for a harmonic spherical wave, p(r, t) = A

r
eikr−iωt the real

part (say representing a measurement) pm(r, t) is

pm(r, t) =
|A|
r

cos(kr − ωt+ φA), (6)

and without any loss of generality we can set φA = 0. The mean-square of this harmonic pressure
is the time integral over one period T is

1

T

∫ T

0

p2(r, t)dt =
1

2

|A|2

r2
(7)

giving the RMS pressure as prms =
1√
2

|A|
r

. The analogous operation is performed to compute urrms .
Observe that in this analysis where the acoustic variables are purely harmonic, as in e−iωt, the RMS
pressure and particle velocity are each a function of range r but no longer a function of time t given
the time-integration over one period T–stuff that should be by now familiar. There are occasions
where it makes sense to maintain a time dependence in these energy quantities,e.g., wkin(t) and
wpot(t)), representing, for example, the passage of ship for underwater noise or airplane for airborne
noise.

Finally, it is interesting to examine the kinetic and potential energy relation versus kr. Using
the expression for spherically symmetric wave the kinetic and potential energy densities (based on
an arbitrary constant A) are plotted as function of kr (Fig. 1), and we can understand yet another
near field versus far field relation in acoustics: For kr << 1 the kinetic energy exceeds the potential
energy, for kr >> 1 they become equalized with transition point happening at the all-important
value kr ∼ 1–a very important transition range.

Additional quick note on decibel quantities

Decibels (dB) are used through out the world of acoustics. There are some specific uses, such as
SPL or Sound Pressure Level as discussed in the homework. There are many other uses which we
will define as the they come up in lectures. The primary use of decibel representation is to more
conveniently convey the large dynamic range of observations typically found in acoustics.
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Figure 1: Relation between kinetic energy density wkin and potential energy density wpot versus kr for time-
harmonic spherical wave in free-field conditions. Energy density units are arbitrary.

• Sound Pressure Level (SPL) is 20 log10
prms

pref
where pref is 20µPa in air and 1µPa in water. It is

good practice to identify the reference pressure pref when giving decibel value. For example,
write: SPL equals 60 dB re 1 20µ Pa, where the ”re” stands for the reference pressure. Upon
knowing pref it is then easy to back out the value for prms, which evidently equals 0.02 Pa.

• The reference pressure for underwater sound equals 1 µ Pa. Thus, a SPL of 120 re 1µ Pa
translates to prms equal to 1 Pa.

• Needless to say, you can’t add decibels. The decibel values first need to be taken back to
linear space; this is subtle, but not difficult. Your safest approach is to think of the decibel as
10 log10 of a squared quanity. For example, SPL (air) = 10 log10(

prms

pref
)2, and work with p2rms or

the mean-squared value. Now consider a case where the mean-squared value has doubled.
Convince yourself that the increase equals 3 dB–worth committing to memory

• Another quite standard usage is the dBV, for ”dB voltage”, formed by 20 log10
Vrms

Vref
where Vref

is 1 Volt rms. You should observe that voltage-squared is proportional to electrical power.
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• For dB, never, ever, take the log of a complex or negative value!
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ME525 Applied Acoustics Lecture 6, Winter 2022
The near and far field, Measurements by Jacobsen

Peter H. Dahl, University of Washington

Getting the specific acoustic impedance for a spherical wave

Last time we discussed the ratio of pressure to velocity for wave under study as function of
distance from source, either with data or with model, or specific acoustic impedance. For model
based on a spherical, the ratio is

p(r)

ur(r)
=

ρ0c

1 + i/kr
(1)

recalling that ~u in this case has only one radial component equal to ur.
Given p(r, t) how is the corresponding ur(r, t) found? Using Euler’s equation confirm the fol-

lowing

ur(r, t) =
1

iωρ0

∂p(r, t)

∂r
(2)

which assumes harmonic dependence e−iωt as in p(r, t) = A
r
eikr−iωt, without further need to specify

the pressure amplitude A. Now find

ur(r, t) =
1

iωρ0
p(r, t)(ik − 1

r
) (3)

which can be used in the pressure-velocity ration in Eq.(1) to yield the result for specific acoustic
impedance.

Observe that unlike pressure p(r, t), the radial velocity ur(r, t) for a spherical wave has two
terms, the second going as ∼ 1

r
which ultimately vanishes for large r, which is more properly

assessed in terms of the size of kr. Thus, in the near field (kr << 1) the first term of Eq.(3) dominates
and the far field (kr >> 1) the second term dominates.

The Jacobsen measurements

Properties of near field and far field are further understood with the aird of some interesting
measurements by Finn Jacobsen (1991). A pressure microphone and velocity probe are positioned
a distance r from a loudspeaker that was broadcasting first near frequency 250 Hz, putting kr << 1

(Fig. 1) and appproximating a near-field condition. The exact range r for experiment is available
from the Jacobsen study, but let us assume r = 0.02m or a little less than 1 inch. Is kr << 1?

Then frequency is increased to 1000 Hz, and assume now the range r is 0.02 m or about 8 inches
away. This puts kr >> 1 (Fig. 2) and a far field condition. The figures refer to an ”intensity probe”
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probably similar to the one shown in Fig. 3 of lecture 2, made by the Danish company Bruel & Kjær,
and likely Jacobsen used a finite difference approximation to Euler’s equation to first get acoustic
acceleration in the radial direction, from which he could time integrate to obtain ur (see the diagram
of Fig. 3 from lecture 2).

To compare velocity on the same scale as a pressure , the velocity is multiplied, or scaled, by
the characteristic impedance ρ0c, such that urρ0c and p have the same dimension. For the kr << 1

condition the scaled-velocity is quite large relative to pressure, the two signals are 90◦ out of phase,
and given the relative amplitude of velocity versus pressure, the kinetic energy density wkin will
exceed the potential energy density wpot. In contrast, for kr >> 1 the pressure and scaled velocity
are nearly equal (i.e., to the precision of these measurements), the two signals are now in phase,
and we therefore we expect wkin = wpot.

Figure 1: The Jacobsen measurements in the near field. Upper plot: ρ0c times velocity considerably exceeds
pressure, with these quantities 90◦ out of phase. Lower plot: corresponding Umov vector Sr (black), active
intensity (red) and reactive intensity (blue)

The interpretation of this near field/far field business, beyond what is clearly indicated by the
Eqs (1) and (3) evaluated for kr << 1 and kr >> 1, plus what we clearly observe in the Jacobsen
data, can still be a bit mysterious. That is, what do we exactly mean (Lecture 5) when the specific
acoustic impedance goes as −iρ0ωr for kr << 1 in the near field? Recall the specific acoustic
impedance lost its dependence on sound speed c, and we can write relation between pressure and
velocity as

p(r, t) = −irρ0ωur(r, t) = rρ0ar(r, t) (4)
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Figure 2: The Jacobsen measurements in the far field. Upper plot: ρ0c times velocity equals pressure, with
these quantities in phase. Lower plot: corresponding Umov vector Sr (black), active intensity (red) and
reactive intensity (blue)

where ar(r, t) is acoustic acceleration. Dimensionally this a equivalent to a ”force equals mass times
acceleration”, and process is the same as an accelerating parcel fluid subject to a force, hence the
term hydrodynamic near field is sometimes used. So, what does this still mean?

I will proffer this (possibly crude) interpretation: (i) the sound speaker is activated by a voltage
signal telling it to do so (e.g., music) assume for simplicity the signal is harmonic at frequency f , (ii)
the speaker vibrates and ”pushes” fluid away (air in this case) at this frequency, (iii) sound cannot
be created instantly at the face of the speaker–the process has got to ramp up a bit spatially–giving
some space such that the compressional part (involving c) can kick in. This happens at about kr ∼ 1,
or about 1

6
of acoustic wavelength λ, where λ = c

f
.

The near and far field, Umov vector, Active and Reactive Intensity

Sound intensity is a measure of the flow of acoustic energy within the sound field. More for-
mally we can say that intensity is a measure of the mean rate of energy flow in a unit area normal
to the direction of sound propagation. Intensity is closely related, but not the same, as the sound
kinetic and potential energy densities, since intensity is represented by the product of sound pres-
sure times velocity and thus intensity has the dimension of energy per unit area per unit time or
W/m2. The term energy flux density is also synonymous with intensity.

The Jacobsen data also help to illuminate the relation between pressure, velocity, and their com-
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bination giving intensity, as a function of kr. We now introduce a new quantity: the energy flux
density vector ~S(t), also called instantaneous intensity in W/m2 which is plotted (Fig. 1, lower) for
the case kr << 1. The vector ~S(t) is formed by the product of the pressure and velocity and since
the fluid velocity in this geometry has just one component, ur, means Sr(t) has only one compo-
nent in the radial direction. Important: ~S(t) is constructed by forming the product of pressure and
velocity that are both real quantities, e.g., if modeling ~S(t) using, say p(x, t) = A

r
eikr−iωt then take

the real part of this expression for the pressure contribution. The Sr(t) is represented by the black
line in the lower plot which also includes a sketch of the active (red line) and reactive (blue line)
envelopes that we discuss later.

In the parlance of most Russian authors of textbooks in acoustics (e.g, Brekhovskikh, 1960),
which also includes the usage in our research in vector acoustics, ~S is called the Umov vector.
Observe by inspecting Fig. 1 that the time average of the Umov vector, denoted 〈Sr(r, t)〉, ought
to be close to 0 if not exactly so. The interpretation is that instantaneous intensity in the form of
Sr(r, t) is flowing back and forth (or varying between positive and negative directions), rather than
flowing in one direction, outward (or positive) from the source. This is an example of a reactive
sound field, and represents another property of the acoustic near field. You hear the mosquito
buzzing close to or within your ear–but a person a few feet away cannot hear that same mosquito
because energy flux density vector ~S(r, t) associated with sound from mosquito was likely similar
to the form shown in Fig. 1, with energy flowing back and forth rather than out and away from
source.

For the far field case with kr >> 1 (Fig. 2) the Umov vector no longer oscillates between
positive and negative, and its time average is clearly non-zero, indicating that acoustic energy is
flowing away from the source, and this is an example of a active sound field, representing another
property of the acoustic far field.

This time-average property of the Umov vector is given in the red lines of the lower plots for
the near and far cases (Fig. 2), which we can think of as a kind of running time average. The time
average of instantaneous intensity Sr,r(t) is called active intensity. For the situation with kr << 1

(Fig. 1) active intensity in nearly 0, but for kr >> 1 (Fig. 2) active intensity is non-zero, and sound
energy is flowing away from the source. (There is a modulation, as if perhaps Jacobsen is changing
the speaker volume, but observe that this is over very short time scale, so it more likely random
variation.)

For the Jacobsen data we should think of active intensity as having one direction which is flow-
ing outward and away from the source. In general, active intensity can have components in the
x, y, z directions. An example is the data from an underwater explosive source, first shown as Fig.
4 in Lecture 1. The complete data including the Umov vector (Fig. 3) shows that Sx(t) and Sy(t)

will have non-zero time averages, with Sy(t) being larger because the bearing of this particular
explosive source was in closer alignment with y− axis of the sensor (IVAR system). (These vector
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components being measured at a specific location only depend on time.) The vertical component
Sz(t) oscillates more about 0, which is typical of the vertical component of underwater sound.

Returning now to the Jacobsen data, observe next a blue line that tends to follow the envelope
of the oscillatory Sr(r, t) for the case kr << 1 (Fig. 1). The is called reactive intensity which might
also think of as a running average of the amount of intensity that is flowing back and forth. For
this kr << 1 situation that is nearly 100% of the instantaneous intensity which is confirmed by
observing that the active intensity is ∼ 0. In contrast reactive intensity is nearly 0 for the far field
case kr << 1 (Fig. 2), and this is consistent with Sr(r, t) being none-oscillatory and generally going
in one direction outward.

Figure 3: Acoustic pressure (top) and three components of acoustic velocity (middle) and Umov vector
(bottom) of the underwater sound from an explosive source (31 g of TNT), made at range 10 km from the
source in waters 75 m deep. Figure from Dahl and Dall’Osto (2019)

Let’s drill down on this behavior more closely. First, note that ~S(t) = p(t)~u(t) where these are
real-valued quantities, say as recorded by Jacobsen. However, for analytic expressions, or models,
of pressure and velocity that can be complex, we take the real-part of pressure and velocity as
follows

~S(r, t) = Re{p(r, t)}Re{~u(r, t)} (5)

For example, take simple generic expression for sound radiation from a sphere of radius a driven
harmonically with time dependence e−iωt,

p(r, t) =
A

r
eikr−iωt (6)
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For the following we don’t need exact details A other than to assume it can be in general complex.
So, write as A = |A|eiφA where φA is the phase angle for this complex variable A. Use Eq.(3) for the
necessary expression for radial velocity ur(r, t)

Take real parts of each and multiply them to yield

Sr(r, t) =
|A|2

r2ρ0c
{cos2(kr − ωt+ φA)−

cos(kr − ωt+ φA) sin(kr − ωt+ φA)

kr
} (7)

With this expression we understand some key features of the Jacobsen data, specifically at
kr >> 1 the first term dominates and cos2 behavior is expected as roughly shown by the data
(although there is amplitude modulation in the Jacobsen data which we would need to incorporate
in the form of |A(t)|2). Similarly, at kr << 1 the second term dominates and the behavior is charac-
terized by energy flow goes back and forth as described by the cos times a sin, although again with
amplitude modulation in the data. While both terms are equal in magnitude at kr = 1, representing
a transition point, between the near and far field–which is a good rule of thumb.

Another key feature of Eq.(7) is that for kr >> 1, where the first term then dominates, then the
radial time-varying intensity Sr(r, t) for this spherical wave goes as 1

r2
. Recall that for a spherical

wave, the pressure amplitude goes as 1
r
. Thus 1

r
dependence for pressure and 1

r2
dependence for

intensity, are very important characteristics of spherical waves. Exceptions to this, e.g., underwater
sound where the sound can be trapped between the sea surface and seabed and sound propagates
in a waveguide, will be discussed later.
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