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ME525 Applied Acoustics Lecture 21, Winter 2022
Working with ray theory
Introduction to waveguides

Peter H. Dahl, University of Washington

Simple, practical ray equations based on the linear sound speed gradient

Ray fans are ”fans” of rays ”launched” from a sound source location; each ray has a different
ray launch (horizontal) angle θ0. Take the sound speed at the source location as c0, then Snell’s law
dictactes how the ray responds going forward from that point. In fact, the ratio cos θ0

c0
will forever

stick with that ray, and this value is known as the ray parameter for a given ray. Thus, were the
sound speed to be constant, then the ray continues as a straight line, maintaining the initial launch
angle θ0. If there is change in sound speed to c1 then Snell’s law determines the new angle θ1, via
cos θ0
c0

= cos θ1
c1

.
Ray fans give a useful qualitative view of how sound propagates away from a source, and show

where shadow regions (where the density or concentration of rays is low) , or convergence regions
(density of rays is high). Figure 1 depicts a fan of rays emitted from a source at depth 40 m over
a spread launch angles of ±40◦, for conditions representing a summer sound speed profile off the
coast of New England. At range ∼ 150 m, depth ∼ 45 m, there is lower density of rays, at range
200-300 m, depth ∼ 20 to 30 m, there is a higher density of rays, which influences the overall sound
intensity received at these locations.

Observe that several rays, e.g. ∼ at depth 10 m, range 200 m, have reached a horizontal angle
of 0◦ and have turned around to eventually reflect from the sea bed. Upon reflection these rays will
again reach precisely the same turn-around depth, e.g., some at about range 900 m, with process
repeated. A group of such rays, all having similar turn-around depths and ranges, forms a feature
known as a caustic, represented here as the darker curve developing at depth ∼ 25 m, between
ranges 200-500 m.
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Figure 1: A fan of rays emitted from a source at depth 40 m over a launch angle spread of±40◦, for conditions
representing a summer sound speed profile of the coast of New England. At range ∼ 150 m, depth ∼ 45 m,
there is lower density of rays, at range 200-300 m, depth∼ 20 to 30 m, there is a higher density of rays, which
influences the overall sound intensity received at these locations.

Figure 2: Multipath propagation in the East China Sea. The direct path with launch angle +1.3◦ and having
no reflections reached the receiver down range at 0.46 km, in 302 ms. The path reflecting first from the seabed
then from the sea surface with launch angle +27◦ reaches the receiver 39 ms later. This is well predicted by
ray theory as shown by the data in lower right (time axis is relative).
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Eigenrays are often used for more quantitative information, such as finding the arrival time
for a particular ray. In underwater acoustics (as with many other applications in acoustics) sound
from source reaches a receiver via multiple pathways. Figure 2 shows what is known as multipath
propagation, this example is from measurements made in East China Sea. The direct path with
launch angle +1.3◦ and having no reflections reached the receiver down range at 0.46 km, in 302
ms. The path reflecting first from the seabed then from the sea surface with launch angle +27◦

reaches the receiver 39 ms later. This is well predicted by ray theory as shown by the data in lower
right (time axis is relative).

Eigenrays are the subset of rays in the ray fan that reach a specific receiving location. Finding
eigenrays is necessarily achieved in some approximate sense, by finding a ray that reached depth
z ± ∆z and range r ± ∆r, where one experiments with ∆z,∆r until a suitable result found. The
eigenray problem is somewhat more difficult because of this optimization task, but computation of
ray fans or eigenrays is still relatively straight forward. A good starting guide is the monograph by
Hovem (2013), which you can download for free.

However, we can make considerable quick progress with ray theory assuming the sound speed
c varies in a linear manner with depth z, as in g = dc

dz
. The key property in this case is that refraction

will be manifested by rays following arcs of a circle, for which the radius of curvature goes as the
inverse of the gradient g. (This should make sense intuitively: with no variation g = 0 and radius
of curvature is infinite, representing a straight line.) Figure 3 provides a set handy equations for
ray travel time ∆T , radius of curvature Rc, change in range ∆R and change in depth ∆z for a linear
sound speed gradient g.

Example of linear sound speed approximations for ray theory applied to sound in air

An example of how one might use these linear profile ray equations comes from a problem we
paraphrase from Garrett (2017). A highway engineer is tasked with measuring road noise at range
150 from the road. Data for sound speed at 0.5 m above ground (342.8 m/s) and at 5 m (341.3 m/s),
indicates a more typical reduction in temperature with height above ground (i.e., not a temperature
inversion), and from this data we estimate the gradient |g| = 0.333 s−1.

The objective is to measure the sound emerging from cars with launch angle 0◦ as caused by tire
noise (the largest source of car noise). Given the sound speed data, the engineer knows that the 0◦

ray will refract upwards, towards the lower sound speed region. Thus how high above the ground
should the microphone be placed at range 150 m to have a good measurement of sound that was
emitted horizontally from tires?

The decreasing sound speed with height above ground means upward refracting rays will have
a constant radius of curvature that goes as the inverse of the gradient g (Fig. 4), and a shadow
zone along ground level will develop. We find Rc = |342.8/.333| = 1029 m, given the gradient
estimate for g and that the initial launch angle 0◦. The range ∆R is established to be 150 m, which
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Figure 3: Refraction of rays with radius of curvature Rc due to propagation through a linear sound speed
gradient, and handy set of equations for finding ray travel time ∆T , radius of curvature, change in range ∆R
and change in depth ∆z for a linear sound speed gradient g. Note: with g = dc

dz then g can be either negative
or positive, so use |g| in the expressions for Rc and ∆T .

Figure 4: Shadow zone (colored region) for the horizontal ray caused by typical near-ground temperature
gradient, and radius of curvature for this ray.

determines θ2 as 8.4◦. Thus, following equations in Fig. 3 we estimate the microphone height ∆z

should be about 11 m to avoid being placed within the shadow zone.
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Example of linear sound speed approximations for ray theory applied to underwater sound

Figure 5 represents two typical sound speed profiles that composed of linear gradients. Of
course these are simple approximations to a measureed sound speed versus depth c(z) but they
nevertheless provide a useful guide. The high-latitude (arctic) profile starts at c(0) = 1440 m/s and
increases 80 m/s over the 5000 m depth, thus the gradient g = 0.016 s−1. You should understand
that any ray launched will be upward refracting. The less saline near-surface melt-water produces
the effect of a minimum sound speed near the sea surface.

Figure 5: Underwater sound speed for arctic or high latitude (blue) and mid-latitude waters (red)

The mid-latitude profile has c(0) = 1490 m/s, and decreases linearly to c(1000) = 1456 m/s,
thus the gradient g = 0.034 s−1, after 1000 m the c(z) continues to increase with g = 0.016 s−1.
The decrease in speed from the surface to 1000 m is due to a thermocline, the increase thereafter at
rate g = 0.016 is the result of increasing hydrostatic pressure. You should memorize: underwater,
the sound speed increases with increasing hydrostatic pressure, temperature and salinity. Because
hydrostatic pressure is a known, constant effect, and salinity tends to vary a small about its nom-
inal oceanic value, it is the temperature profile then that will often determine c(z). Expendable
bathythermographs (XBT) are often used by oceanographers and the navy for quick way to get the
ocean temperature profile and hence sound speed. The final result for sound speed c(z) requires
use of one of the many empirical equations. A simple one is (Medwin and Clay):

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.01T )(S − 35) + 0.016z (1)

In the next lecture we’ll take the profile in Fig. 5 and trace out a few rays by hand. There is also
a monograph on our website ”High Frequency Underwater Sound” which you should download
for more perspective on ray theory.
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Introduction to waveguides

By now we should have a pretty good sense that a sound source placed in environment without
any confining boundaries, will have a pressure amplitude that reduces with range R from that
source, going as 1/R. This is known as spherical spreading. For example, this is demonstrated
with the generalized model for point source at position vector ~r0, and receiver point a position
vector ~r defining R = |~r − ~r0|, such that

g =
eikR

4πR
(2)

calling g the free space Green’s function, which applied to an unbounded medium.
A waveguide is any kind of geometry, such as the confines of a stair well, or sound speed profile,

or combination of these effects, which causes the sound pressure field to decay with range at a rate
that is less than spherical spreading 1/R. For example, in an underwater acoustic waveguide where
geometry is constrained by the air water interface from above, and the seabed from below, the
acoustic pressure field can decay as 1/

√
R allowing for possibility of sound traveling considerably

farther. In Fig. 1 there is waveguide effect owing to the confining property of sea surface and
seabed boundaries, and a focusing property of the sound speed profile that tends to concentrate
rays at depths associated with the minimum sound speed.

References
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ME525 Applied Acoustics Lecture 22, Winter 2022
More on ray theory and relation to waveguides

Peter H. Dahl, University of Washington

More on practical ray equations based on the linear sound speed gradient

Let’s continue with the two typical sound speed profiles that can be described (approximately)
linear gradients (Fig. 1). The high-latitude (arctic) profile starts at c(0) = 1440 m/s and increases 80
m/s over the 5000 m depth, thus the gradient g = 0.016 s−1. The mid-latitude profile has c(0) = 1490

m/s, and decreases linearly to c(1000) = 1456 m/s, thus the gradient g = 0.034 s−1, after 1000 m
the c(z) continues to increase with g = 0.016 s−1. The decrease in speed from the surface to 1000 m
is due to a thermocline, the increase thereafter at rate g = 0.016 is the result of increasing hydrostatic
pressure.

Figure 1: Underwater sound speed for arctic or high latitude (blue) and mid-latitude waters (red)

Suppose we had sonar system at depth 500 m, and wanted to launch a ray in waters described
by the high-latitude (arctic) case, and this ray is to remain completely in the water column, i.e., does
not undergo reflection from the seabed which can result in energy loss particularly if the grazing
angle is greater than the critical angle. To cover the entire depth and also avoid reflection from the
seabed, ray must reach a vertex point at or near the seabed. In other words we want the ray to have
a reached a grazing angle of 0◦ at (or near) the seabed, where the sound speed there, call it cv equals
1520 m/s. What is the launch angle for this ray? At depth 500 m the sound speed c equals 1448
m/s; define this speed as c0. Call the launch angle,θv and find it directly from Snell’s law:

cos θv
c0

=
1

cv
(1)
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and equals 17.7◦. From this we actually now that any ray with launch angle ± 17.7◦ will stay
completely within the water column. For example, such information may serve as a design guide
for sonar array for which the vertical angle is limited to ± 18◦.

Such a ray will have a cycle distance – in this case the ray is directed towards the sea surface,
reflect, then directed down to the vertex depth (about 5000 m), and refracts back up, repeat. We
can find these distances in simple, approximate way as follows. Take the first segment from source
depth 500 m to the surface. Find the radius of curvature Rc (refer to Fig. 3 of Lecture 21) where the
applicable values are Rc = | 1448

g cos 17.7◦
|, setting Rc to about 95 km. Next find ∆R or the range from

source at 500 m to the surface, where ∆R = Rc| sin 17.7◦ − sin 18.7◦| or about 1.6 km, and the 18.7◦

surface grazing angle is always found via Snell’s law.
Next, at the surface this ray reflects and heads down to near the seabed, it will take another

1.6 km to get to the depth 500 m. After 500 m, it continues downward while continually lowering
its grazing angle until vertex is reached. The range from depth 500 m to the vertex is found as
∆R = Rc| sin 17.7◦ − sin 0◦|, or about 29 km. Now another 29 km to arrive back at the depth 500
m, giving the cycle distance for this ray as 3.2 km plus 58 km or about 61 km. A ray fan for this
profile (Fig. 2) shows the 17.7◦ ray (thick line) launched at depth 500 m with cycle distance nicely
consistent with ∼ 61 km estimate made here by considerably simpler means.

Figure 2: Ray fan and particular ray (thick line) launched at 17.7◦ at depth 500 m for the arctic or high latitude
sound speed profile (Fig. 1). The cycle distance is ∼ 61 km.

Let’s repeat the exercise using the mid-latitude case, again with a sonar system at depth 500 m
with same goal of launching a ray that remains completely in the water column. In this case the
sound speed at depth 500 m is c0 = 1473 m/s. The vertex speed cv at depth 5000 m is also 1520
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m/s, and from Snell’s law we find θv equal to 14.3◦. Notice: this ray traversed two sound speed
gradients to get to depth 5000 m, one downward-refracting and one upward refracting. Still, one
simple Snell’s law application gave us θv.

This ray thus now refracts downward as it heads up toward the sea surface where the speed is
1490 m/s, and Snell’s puts angle there at 11.4◦. The Rc for this segment must take into account the
higher gradient (g = 0.034), with Rc = | 1473

g cos 14.3◦
| equal to about 44.7 km. The range from source

depth to surface is thus ∆R = Rc| sin 14.3◦ − sin 11.4◦| or about 2.2 km.
The ray reflects and takes another 2.2 km to get back to depth 500 m, where the grazing angle

has again reached 14.3◦. From there the ray must go another 500 m in depth after which the gradient
of sound speed profile will change at depth 1000 m. The sound speed at 1000 m is 1456 m/s, so the
ray must have reached a grazing angle of 16.7◦ (Snell’s law), and the horizontal distance for this
phase is ∆R = Rc| sin 14.3◦ − sin 16.7◦| or about 1.8 km.

From here the ray continues downward to the vertex depth of about 5000 m. The gradient has
changed back to g = 0.016 and Rc = | 1456

g cos 16.7◦
| or about 95 km. Thus the range from depth 1000 m

to 5000 m is ∆R = Rc| sin 16.7◦ − sin 0◦| or 27 km. Adding these ranges yields 4.4 km + 3.6 km + 54
km, or about 62 km. A ray fan for this profile (Fig. 3) shows the 14.3◦ ray (thick line) launched at
depth 500 m with cycle distance also consistent with our simple estimate.

Figure 3: Ray fan and particular ray (thick line) launched at 14.3◦at depth 500 m for the mid-latitude sound
speed profile (Fig. 1). The cycle distance is ∼ 62 km. Notice the existence of caustics where ray converge,
and shadow zones, where ray coverage is less.

Of course the sound speed profiles in Fig. 1 are idealized in two ways. The first being that
sound speed c(z) can change both with range and time (more on time variation below), the second
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being that water depth or bathymetry can change with range. Figure 4 illustrates this with data
taken from the Marginal Ice Zone (MIZ) . In the above two examples we have been studying RSR
paths or a ray path that is refracted-surface-reflected, and our goal was to find the deepest RSR path.
Additional , and more shallow, RSR paths are shown for the MIZ condition in Fig. 4.

Figure 4: Top: Range-dependent bathymetry and sound speed profile over 100 km path in the Marginal Ice
Zone. Figure from Dahl, Baggeroer, Mikhalevsky and Dyer, J. Acoust. Soc. Am., 1988. Not evident in the
figure is the change in sound speed over the top 50-m from from about 1440 m/s to 1460 m/s. Bottom: rays
computed for the above sound speed structure using a range-dependent ray trace program responsive to
both changing depth and sound speed with range.
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Other examples of on use of ray theory

Figure 5 (left) conveys a variation in measured sound speed versus depth and time c(z; t) over
a few hour period, with the largest variation occurring over the depth range 5 to 40 m as indicated
by the gray shaded area. A set of eigenrays (right) for two receiver depths corresponding to c(z; t)

shows the sensitivity of the eigenrays to such variation. Notice that the direct path eigenray to the
more shallow receiver shows the most variation even though a surface reflected path traversed the
same region of high sound speed variation. As a general rule, rays with lower grazing angle with
respect to the horizontal as in this direct path ray, will be more sensitive to changes in sound speed.

Figure 5: Left: Sound speed profile and typical variation over time due fluctuating oceanographic conditions.
Right: Eigenrays computed for two receiver depths for spread of sound speed profiles. The direct path for
the upper receiver is more sensitive to the fluctuating sound speed profile.

In Fig. 6, a simple demonstration of the effect of temperature inversion is shown for the case of
hillside community and sound source below it. (This time of year temperature inversions are more
frequent and you may on occasion experience more loudness from aircraft.) Ray theory provides
an easy qualitative description of the effect of increasing sound speed with altitude owing to the
inversion.

As a final example, although we generally think refraction as result of a change in sound speed
with depth or altitude and use Snell’s law to compute the change in ray angle, rays can also be
refracted horizontally owing to large changes in bathymetry in the southern ocean. Figure 7 is
from Dall’Osto (2019) showing likely propagation paths emerging from the explosion of the ARA
San Juan submarine. The explosion was recorded at two Comprehensive Nuclear-Test-Ban Treaty
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Figure 6: Top: sound rays emerging from a noise source traversing through air medium with constant sound
speed. Bottom: temperature inversion causes sound speed to increase with altitude and rays from sound
source are refracted downward; in this case the concentration of rays, hence loudness, at the hillside com-
munity has increased.

Organization (CTBTO) hydrophone listening stations, with data ultimately used to provide general
a location where a search effort ensued.

This concludes our discussion of rays. If sound or acoustics is involved in your future career
path, rays will invariably enter the picture. Likely you will not be writing your own complicated
(and probably clunky) matlab program which I once did to make Figs. 2, 3 and 5 (I also produced
Fig. 4 as a grad student but that was with a program from seismology) , but some aspect of re-
fraction and rays will always be there. So, memorize Snell’s law. We go on next to the formal
underwater waveguide. Of course rays play a big part there but our focus for the remainder of the
course will be on the method of normal modes.
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Figure 7: Fig. 1 from Dall’Osto (2019), with original caption shown.
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ME525 Applied Acoustics Lecture 23, Winter 2022
Method of Normal Modes

Peter H. Dahl, University of Washington

About Normal Modes

Last time we saw how the method of images yields a ”theoretical” exact solution to the problem
of a point source within a waveguide, with upper boundary condition (at z = 0) of p(0) = 0, and
lower boundary condition (at z = H) of ∂p

∂z
(H) = 0–provided enough images are used to reach a

degree of convergence.

Figure 1: An apparent problem with the method of images once two boundaries at z = 0, H introduced.

The negative image source above the z = 0 boundary combines with true source within the
waveguide to satisfy the boundary condition at z = 0, and the positive image below the z = H

boundary combines with the true source to satisfy the boundary condition a z = H . But now,
for example, the true source plus positive image require a second negative image source to satisfy
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boundary condition at z = 0. The process of balancing out positive and negative image sources
continues on and on to infinity or until some degree of convergence is reached.

This solution is from Frisk (Eq. 4.82, p. 83). It’s relatively easy to code up–but you need to be
careful to keep track of the expanding set of sources, whether they are negative or positive sign,
and the ever changing magnitude of |~r − ~ri|. There is also some degree of likeness between rays
and images, for example take the middle plot of Fig. 1; the direct ray from source to receiver is the
black path and surface-reflected ray generated by the image is the surface-reflected path.

To reach convergence I needed about 80 images, although perhaps considerably fewer might
suffice for an approximate solution. In contrast a simpler approach was achieve using the method
of normal modes (Fig. 2). From this figure I can tell that about 2 or 3 modes were needed. What are
these modes?

Figure 2: Comparison of image method (80 images) and method of normal modes requiring 2 modes.

Before turning our attention to underwater waveguides, Fig. 3 shows the pressure distribution
within a tube for which in one case (left side) the frequency f is such that f < c

1.7d
where d is

tube diameter, and one axial mode is excited. This was alluded to in Lecture 20 for the discussion
on the single expansion chamber Muffler problem. Increasing the frequency (right side) produces
excitation of more modes within the tube the single, axial mode approximation used to study the
Muffler no longer applies.

We now focus on the underwater waveguide and an excellent experiment to understand modes
in this environment comes from the study by Frisk, Lynch and Rajan (1989). Figure 4 shows the
experimental geometry to measure mode in Nantucket sound. There are two acoustic receivers
(hydrophones) on a buoy at depth 7.1 m and 12.5 m. An acoustic source suspended from a research
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Figure 3: Left: pressure distribution within a bent tube frequency f is such that f < c
1.7d where d is tube

diameter; thus only one axial mode shown. Right: pressure distribution frequency f > c
1.7d and several

modes are excited.

vessel slowly moves away (opens in range) from these receivers, which are recording continuous
wave (cw), or narrowband, sound at center frequency 140 Hz and 220 Hz. Thus, in terms of model-
ing of the receive sound the frequency content, and time dependence t. can be described with e−iωt

where ω = 2πf and f is either 140 Hz or 220 Hz.

Figure 4: Geometry of experiment off Nantucket. Figure is Fig. 1 of Frisk, Lynch and Rajan (1989).

As the ship slowly opens in range from receivers which transmitting at these frequencies, modal
interference patterns (Fig. 5) that depend on frequency and receiver depth, will be registered. I can
tell right off that there about two modes in the interference pattern for 220 Hz shown in Fig. 5.
Increasing the frequency well beyond 220 Hz will lead to a more complicated pattern owing to
more than two modes, which decreasing the frequency substantially below 220 Hz will eventually
yield just one mode. Lowering the frequency even further, say to about 100 Hz, then no modes are
propagating: the cutoff frequency for this waveguide of depth about 15 m as been reached. This
estimate (with notation and form recast slightly) originates from (1986)

fn =
cw
2H

[
n− 1/2√
1− c2w/c2b

] (1)
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where fn is the cutoff frequency for the nth mode, H is water depth, and cw, cb are water and seabed
sound speeds, respectively. Thus my estimate of ∼ 100 Hz applies to the case of n = 1

Figure 5: Transmission loss data for frequency 220 Hz, measured at depth 12.5 m versus range from source.
Figure constitutes a portion of Fig. 3 of Frisk, Lynch and Rajan (1989). (The phase variation is not repro-
ducible on line from this 1989 publication.)

The similarity between the simple model demonstration in Fig. 2 and the real data in Fig. 5
should be clear, both representing about two modes, and both showing an interference pattern
with deep nulls, where the level of acoustic field drops precipitously then rises again. But let’s
address head on the obvious differences in notation between Figs. 2 and 5–and you need to get
used to seeing such differences. In Fig. 2, I computed some kind of Green’s function g(z, r; z0), as
function of range r, receiver depth z and source depth z0, e.g., for the image method g would have
similarities to Eq.(1) of Lecture 10, but of course now many images are needed for the result in Fig.
2. My plot is −20 log10

|g(z,r;z0)|
|g(z,r=1m;z0)| , so the value at r = 1 m equals 0 dB, and for increasing ranges

the field decays 20 log10 being increasingly negative, hence −20 log10 yields a positive result. I call
the result ”Transmission Loss” or TL and plotting this way gives the intuitive result of increasing
TL with increasing range.

The Frisk et al. results appear as ”Pressure magnitude” as in −20 log10 |p|, but also appear to be
normalized in some manner, perhaps as −20 log10

|p(12.5,r;6.1)|
|p(12.5,r=1m;6.1)| , where 12.5 and 6.1 represent the

receiver and source depths, respectively. For example, in Fig. 5 the |p| at range 500 m relative to |p|
at 1 m, appears to be about 30 to 40 dB less, which is not too different from my plot suggesting TL
is in about this range (just as a very rough comparison as frequencies).

The Method Normal Modes

The waveguide coordinate system (Fig. 6) is expressed in cylindrical coordinates (r, θ, z). There

Copyright c© 2022 P. H. Dahl. All Rights Reserved.



5

is symmetry in the θ direction, and the field is independent of θ; we need only to find the depen-
dence in the r, z plane (white, dashed box in Fig. 2). The θ independence also means the final
solution applies to any rotation about the z− axis in Fig. 6. Thus the new problem involves the
Laplacian operator in cylindrical coordinates without dependence on θ

∇2 =
1

r

∂

∂r
(r
∂

∂r
) +

∂2

∂z2
. (2)

and look for new Green’s function which satisfies the inhomogeneous Helmholtz equation for a
point source at z = zs and r = 0

(∇2 + k2)g(r, z, zs) = −2
δ(r)

r
δ(z − zs). (3)

The delta function expression on the right is different from the one we encountered previously.
Here it represents a point source at source located at z = zs and r = 0 in cylindrical coordinates
(Frisk, 1994, Kinsler et al., 1980).

Figure 6: Cylindrical coordinate system for solving the wave equation in a waveguide. A source point (red)
is located at depth z0 with r = 0, and two receiver points (black) located at r, θ, z and r, 0, z. The analysis
assumes no dependence in the θ direction.

Equation (3) is separable, meaning separate solutions for rangeRn(r) and depth Un(z) are found
and multiplied together for solution in r, z. In doing so, multiple solutions corresponding modes
will be found, where for example, Un(z) corresponds to the nth mode. These are summed for the
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final solution
g(r, z, zs) =

∑
n

Rn(r)Un(z). (4)

The key effort involves finding the solution for the depth or z-dependent part, Un(z) which
responsible for satisfying the boundary conditions at the z = 0, H

(
∂2

∂z2
+ γ2n)Un = 0. (5)

Equation (5) is a familiar 1D wave equation (Helmholtz equation) along the depth dimension z,
although here the wavenumber k first seen in the Helmholtz equation, is replaced by its vertical
component, where γ2n = k2 − k2rn. The vertical γn and radial or horizontal krn components of the
wavenumber k vary according to mode number n but always satisfy γ2n + k2rn = k2.

This is relation is depicted in Fig. 7 and one can imagine, approximately, that a high order mode
(large n) corresponds to a ray with high grazing angle (steep ray) and low order mode (small n)
corresponds to ray with shallow angle. This subtle correspondence between modes and rays that
is useful to keep in mind.

Underwater waveguide modes Un(z) are not unlike modes of vibration of a guitar string, are
functions that satisfy the boundary conditions in this case at the end points z = 0 and z = H . As in
the guitar string, there can be many modes satisfying the boundary conditions; for the guitar string
the boundary condition is that the string is clamped at both ends and therefore does not vibrate at
those points. For our waveguide case, the surface and bottom boundary conditions given above in
the introduction are solved with Un(z) = An sin(γnz) where γn = (n−1/2)π

H
, and An is a normalization

constant (we discuss later). Note: the boundary condition was expressed in the form of pressure.
The modes are not of dimension pressure per se but they are proportional pressure, or surrogate for
pressure as in the Green’s function. Thus if the Un(z) satisfy the boundary conditions, so too does
pressure.

The first three modes n = 1, 3 (Fig. 8) for the underwater waveguide with same (idealized)
boundary conditions used in Fig. 2, are shown frequency of 240 Hz and depth 10 m. One might
call these mode functions, or eigenfunctions, and by inspection observe that these functions for
modes 1,2,3 all equal 0 at z = 0, and their vertical derivative equals 0 at z = H . Another feature
is correspondence between mode number n and the number of times the mode function equals 0
over the depth span, or zero-crossings. So the modes in this case appear to be some fraction of a sin
wave, which in fact they are provided the sound speed within the water column does not change.
This is a simplifying assumption that we maintain in this course, but the assumption is also often
quite realistic.
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Figure 7: Interpretation of the wavenumber k in terms of its vertical γn and horizontal krn components.

Figure 8: Eigenfunctions, or mode functions, for the first three modes for the case of frequency 240 Hz, depth
10 m. All modes have a zero-crossing at the surface, at z = 0, which constitutes the only zero-crossing for
mode 1.

Looking ahead to the next lecture the final solution is

g(r, z, zs) =
2πi

H

∑
n

sin(γnz) sin(γnzs)H
1
0 (krnr) (6)
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where H1
0 is the zeroth-order Hankel function of the first kind, and is a member of the cylindrical

Bessel family. Note the dimension for the Green’s function g(r, z, zs) is L−1 (spherically spreading)
just as with the free-space Green’s function and method of images. However upon combining all
these modes (or combining all those images in the method of images), we get a solution for pressure
in the underwater waveguide that somewhat magically translates to pressure ∼ 1

√
(r) where r is

range from source.
References

Frisk, G. V. Ocean and Seabed Acoustics (Prentice Hall, Englewood Cliffs, NJ, 1994)
Frisk, G. V., J. Lynch and S. Rajan, ”Determination of the compressional wave speed profiles using
modal inverse techniques in a range-dependent environment in Nantucket sound,” J. Acoust. Soc.
Am. 86, Nov. 1989.
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, (John Wiley &
Sons, New York, 1980)

Copyright c© 2022 P. H. Dahl. All Rights Reserved.



1

ME525 Applied Acoustics Lecture 24, Winter 2022
Method of Normal Modes

Peter H. Dahl, University of Washington

Details on the Green’s function g derived from the Method of Modes

The goal is to find a Green’s function, g that satisfies the inhomogeneous Helmholtz equation
for a point source at z = zs and r = 0

(∇2 + k2)g(r, z, zs) = −2
δ(r)

r
δ(z − zs). (1)

The structure of the delta function in Eq. (1) looks different from that of say, Eq.(13) of Lecture 8,
because the Helmholtz equation has been recast in this cylindrical coordinate system (Fig. 1). The
equation could have been solved by repeated use of the method of images.

However as noted last time this equation is separable into its r-dependent and z-dependent
parts, and now we find g(r, z, zs) in terms of the sum of mode functions Un(z) multiplied by the
corresponding Rn(r), as in

g(r, z, zs) =
∑
n

Rn(r)Un(z). (2)

This yields a considerably useful and flexible solution approach.

Figure 1: Cylindrical coordinate system for solving the wave equation in an underwater waveguide. A
source point (red) is located at depth z0 with r = 0, and two receiver points (black) located at r, θ, z and
r, 0, z. The analysis assumes no dependence in the θ direction.

The radial part Rn(r) has only one boundary condition known as the Sommerfeld radiation
condition (e.g., see Frisk, 1994), for which one interpretation is that at large range r the field takes on
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plane-wave behavior, with the wave impedance becoming more like the characteristic impedance.
For example, the radial dependence is not unlike ripples on water surface produced byh point
disturbancance (as in dropping a rock), with the waves becoming more planar like the greater the
range r from the source point on the surface.

It is with the vertical part where the surface and bottom boundary conditions are addressed,
and the key effort reduces to finding the solution for the depth or z-dependent part, Un(z) to

(
∂2

∂z2
+ γ2n)Un = 0. (3)

along with satisfying boundary conditions at the z = 0, H . The wavenumber k in Eq.(1) is broken
up in vertical γn and horizontal krn components that vary according to mode number n and always
satisfy γ2n + k2rn = k2.

Equation (3) should be familiar problems of vibration and simple oscillations; Un(z) takes the
form sin(γnz). We find γn via the eigenvalue equation

γn =
(n− 1/2)π

H
, (4)

such that boundary conditions are satisfied. Try it: Un = sin(γnz) thus Unz=0,
∂Un

∂z z=H = 0 for
n = 1, 2, 3.... Looking ahead, Eq.(4) represents the most elementary of eigenvalue equations that
is solvable exactly without numerical means. The situation is made more complicated when a real
seabed with sound speed cb and density ρb are added to the picture.

Orthonormality of mode functions Un

An important property of Un is that this function be orthonormal such that integral over depth
is ∫ H

0

UnUmdz = δnm (5)

where δnm is the Kronecker delta symbol which equals 1 for m = n and 0 for m 6= n. For certain
this integral equals 0 for for m 6= n, but to equal 1 m = n a normalization constant An is needed

such that Un(z) = An sin(γnz), with normalization requiring that An equal to
√

2
H

For this case the
normalization constant An is the same for all modes but in general there will be a dependence on
mode number n.

Details on the radial dependence Rn(r)

The next step represents a traditional approach for solving partial differential equations that are
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separable. First insert Eq.(2) as candidate solution to Eq. (1) yielding

∑
n

∇2Rn(r)Un(z) + k2Rn(r)Un(z) = −2
δ(r)

r
δ(z − z0) (6)

Now break up the∇2 operator into r and z dependencies. This leads to the following upon exploit-
ing Eq. (3), ∑

n

Un
1

r

∂

∂r
(r
∂Rn

∂r
) +Rnk

2
rnUn = −2δ(r)

r
δ(z − zs). (7)

Note: there was a wavenumber k in Eq.(6), now we got a krn in Eq.(7), what happened? We devised
a separation constant to split in the partial differential equation into r and z dependencies, where
k2 = k2rn + γ2n. Adapt this language for consistency with Fig. 7 of Lecture 23: k2rn is the horizontal
wavenumber for the nth mode; γ2n is the vertical wavenumber for the nth mode.

Now multiply both sides of Eq.(7) by Um and integrate over depth z from 0 to H , and invoke
the orthonormal property along with the sifting property of the delta function, to yield

1

r

∂

∂r
(r
∂Rm

∂r
) +Rmk

2
rm = −2δ(r)

r
Um(zs) (8)

The above represents a purely radial form of the Helmholtz equation with point source at origin
r = 0 (e.g. somewhat akin to ripples on the surface of a pond, the pond being of infinite extent) but
multiplied by the constant Um(zs) since the source depth zs is a fixed value. (The change from krn

to krm being of no significance, merely a result of our choosing to go with Um.)
The solution is well-known and solved by functions of the cylindrical Bessel family, in this case

the zeroth-order Hankel function of the first kind which we denote as H1
0 . The solution for index n

is
Rn(r) = iπH1

0 (krnr)Un(zs) (9)

where Un(zs) provides the dependency on source depth needed for the Green’s function.
Type ”help besselh” in Matlab to obtain more information aboutH1

0 . In Matlab evaluateH1
0 (krnr)

as besselh(0, 1, krn ∗ r), where r is vector of ranges and krn is horizontal wavenumber for the nth

mode. A useful approximation for H1
0 (krnr) valid for krnr >> 1 is

H1
0 (krnr) ≈

√
2

π
e−iπ/4

eikrnr√
krnr

(10)

The final solution is thus

g(r, z, zs) =
2πi

H

∑
n

sin(γnz) sin(γnzs)H
1
0 (krnr) (11)
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Notice that the basic dimension for the Green’s function g(r, z, zs) is L−1, owing to the 1/H depen-
dence out front, but the behavior for far ranges is ∼ 1/

√
r which can be more clearly seen in the

asymptotic expression of Eq. (10).

The number of modes and cut-off frequency

So, given the important behavior apparent in Eq. (10), eikrnr
√
krnr

, it should be clear that if krn be-
comes imaginary to any significant degree, that mode will not go very far. For example, take the
waveguide examined previously (Fig. 2) with frequency 240 Hz, H = 10 and water sound speed
1450 m/s. Run through Eq.(4) starting from n = 1 and compute the corresponding krn, get:

Table 1: Modes for waveguide of H = 10 m, frequency 240 Hz, cw = 1450 m/s, and k = 1.04 m−1

Mode number γn krn Will this mode propagate?
1 0.15713 1.0280 yes
2 0.4712 0.9271 yes
3 0.7854 0.6817 yes
4 1.0996 i 0.357 nope!

Obviously the vertical wavenumber continues to grow with increasing mode number, and once
it exceeds the wavenumber in the water column k then, krn becomes imaginary. Note: which imag-
inary do we take from the square root, the positive or negative? In ME 525 with e−iωt dependence,
you must take the positive square root to make Eq.(10) work properly. So, clearly the number of
modes in this example is three, or it is said there are three trapped modes in this waveguide.

Now Fig. 2 looks to me that there are about two trapped modes, given the regular interference
pattern, rather than three that we infer from Table 1. Check out Fig. 8 from Lecture 23 where I plot
the Un for these three modes. It looks like the source depth I chose–7 m–was very close to the zero
crossing of mode 2, so this mode was weakly excited.

Take the case for depth H equal to 100 m (Fig. 3), where Eq. (10) now gives exactly 33 trapped
modes before an imaginary krn emerges. Interestingly we can also reasonably approximate the so-
lution with far fewer image sources, e.g., about 8 image sources (and even the simple Lloyd mirror
solution consisting of just two image sources provides reasonable approximation up to ranges of
about 50 m). Given we were able to liken image sources to the concept of an acoustic ray, these
two examples illustrate an interesting trade off: when the acoustic field in the waveguide requires
many modes to fully describe it, then typically it can be described with much fewer rays, and vice
versa. It will no doubt pay in your research to keep this trade off in mind.

The number of modes in a waveguide of depth H depends on the sound frequency, or more
precisely the sound wavelength λ, with a simple and useful rule of thumb for this number being

nmodes ≈ 2H/λ (12)
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Figure 2: Upper: comparison of 80 image-source result with the method of normal modes. Lower: Layout for
method of images based on sources of the form eikR/R where R depends on image location. Depth H = 10
m

For this example of H = 10 m, nmodes is 3.2, for H = 100 m, there 10 times the number of modes.
Keep in mind Eq.(12) is the simplest of rules, which will need to be modified for more realistic

boundary conditions at the seabed that involve finite sound speed and density for sediment, for
example, refer to Fig. 1 of Lecture 18. We can compute the corresponding discrete horizontal angle
call it θn for each of the 33 trapped modes for the 100-m case (Fig. 4), where krn = cos θnk. These
angle get quite steep for the high mode numbers, getting to about 80◦. But, in the more realistic
case θn must be ≤ θc.
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Figure 3: Acoustic transmission loss for waveguide with same boundary conditions, source frequency, and
source/receiver depth as in Fig. 2, but with depth H = 100 m.

Figure 4: The discrete set of horizontal mode angles for the 33 trapped modes for the waveguide in Fig. 3,
but with depth H = 100 m.
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ME525 Applied Acoustics Lecture 25, Winter 2022
Normal modes in more realistic waveguides

Peter H. Dahl, University of Washington

We continue with the discussion started at the end of Lecture 24, where the corresponding
discrete horizontal angle, call it θn, for each of n-trapped modes was computed, such that krn =

cos θnk. It is thus useful to view each mode as having a dicrete propagation angle, or a ”specific
preferred direction of propagation” for that mode (Frisk, 1994). Evidently the cos of this angle
relative to horizontal equals krn/k.

The sequence of discrete angles continues to increase starting from mode-1 (see Fig. 4 of Lecture
24) until no more propagating modes are found–the point at which krn becomes imaginary. Place-
ment of such an imaginary krn into the argument of H1

0 (krnr) produces rapid, exponential decay
as a function range r– easier to see in the asymptotic expression H1

0 . Such modes are known as
evanescent modes.

Now, the simple model for boundary conditions at z = 0, H (Fig. 1, upper) is useful because
it exhibits properties of the discrete angular spectrum associated with trapped modes. However
this rigid boundary condition on the seabed does not permit a critical angle–the assumption being
that the sound speed in the seabed is infinite, and the boundary represents an infinite impedance
boundary. With presence of a critical angle, there is a more interesting transition between trapped
modes and those with higher mode numbers. We make the problem considerably more realistic
(Fig. 1, lower) without too much more effort by including the plane wave reflection coefficient R
representing reflection at the boundary between an upper (water) medium with sound speed c1

and a lower (sediment) medium with sound speed c2. From our earlier study of R we found that a
critical angle θc is defined at cos θc = c1/c2.

The critical angle provides the demarcation (Fig. 2) between discrete angular spectrum (trapped
modes) with propagation angles< θc, and the continuous angular spectrum with propagation an-
gles > θc. The discrete set of preferred propagation angles (blue rays) is within the yellow cone
defined by the critical angle, outside of which is the continuous set of propagation angles (red rays)
that can exist at a continuos range of angles all greater than θc. Rays corresponding to the continu-
ous set exist only close to the source (within about one or two water depths) because their contri-
bution is quickly attenuated due to energy loss from propagation into the seabed. An approximate
range after which the contribution is primarity from the discrete, trapped modes is Ro =

H
2 tan θc

Modes in a realistic waveguide

With inclusion of realistic sound speed and density in the seabed we have an finite impedance
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Figure 1: Upper: Idealized waveguide we have been studying with boundary conditions at z = 0, H , and so-
lution given by Eq.(2). Lower: more realistic waveguide for which the plane reflection coefficientR describes
the boundary condition at z = H .

boundary, as described by R. The new equation for solving for γn is

1 +Re2iγnH = 0 (1)

where remember that R is also a function γn. As a quick check, put R = 1 corresponding to the
infinite impedance boundary and recover the original specification for γn = (n−1/2)π

H
. However,

Eq.(3) is a transcendental equation that does not have closed-form solution. Instead numerical
approaches, such as Newton Raphson, can be used to find the zeros of Eq.(3) as function of γn.

Without any numerical effort one can still get a quick visualization on where the modes are
located by plotting |1 + Re2iγnH | over a fine angular resolution (Fig. 3). Although this is not a
recommended approach to finding the zeros of an equation one can immediately see where modes
are located. In this example, water sound speed c1 = 1525 m/s, sediment sound speed c2 = 1700

m/s, water density ρ1 = 1024 kg/m3 and seabed density ρ1 = 1800 kg/m3, with quantities sufficient
to specify the plane wave reflection coefficient R. To identify specific modes we require a water
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Figure 2: Idealization depicting the discrete set of preferred propagation angles (blue rays) within the yellow
cone as defined by the critical angle, and the continuous set of propagation angles (red rays) that can exist
angle angles greater than θc.

depth depth H = 50 m, and frequency 200 Hz. The reflection coefficient (remaining fully complex)
is computed over a fine grid of grazing angles θ (Fig. 3 upper). For every such θ, a γ = k1 sin θ

is identified, i.e., a continuous range of γ as distinct from a discrete set, such as γn. A plot of
|1+Re2iγnH | (Fig. 3 lower) shows a set of minima, representing the discrete set of propagation angles
for this waveguide. These angles (shown by the circles) are: 3.9920◦, 8.0270◦, 12.1400◦, 16.3500◦,
20.668◦, and 25.0530◦, values that are likely as close as one can get with a numerical approach. Note
that the critical angle, 26.22◦ is greater than largest angle in the discrete set and effectively bounds
these angles.

To summarize, the discrete angles –”preferred propagation angles” – of the trapped modes all
must be less than critical angle. The modes are trapped, meaning they will travel far, given that the
corresponding horizontal wavenumber for such a modes krn will be primarily real-valued, and not
be purely, or even largely, imaginary, which leads severe exponential decay with increasing range.
To be complete, there can be small imaginary component in krn to account for attenuation effects
– but this is not the same as the mode being evanescent. Eventually solutions to Eq.(1) are not be
found that can be considered as ”trapped” modes– we run up against the critical angle θc. In fact
more solutions can be found, but belong to the realm of the continuous spectrum of angles, where
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Figure 3: Upper: magnitude of the reflection coefficient |R|. Lower: L |1 + Re2iγnH | over a fine angular
resolution. The six minima to the left of the critical angle at 26.22◦ are trapped modes (not counting the first
minimum), and are identified by circles.

the steep propagation angles lead to penetration into the seabed and significant energy loss with
increasing range.

Here is very handy formula for the number of trapped modes in realistic underwater waveguide

Number trapped modes = floor(
k1H

π
sin θc +

1

2
) (2)

which, upon applying the waveguide parameters discussed in Fig. 3, predicts the 6 modes.

The field in a realistic waveguide

Let’s be reminded of the solution studied thus far for the Green’s function applied to a waveg-
uide depth of H , with boundary conditions g|z=0 = 0 and ∂g

∂z
|z=H = 0, infinite impedance case for

the seabed, which is
g(r, z, zs) =

2πi

H

∑
n

sin(γnz) sin(γnzs)H
1
0 (krnr) (3)

How is this solution changed with introduction of a more realistic, finite impedance seabed?
Basically in two ways, one clearly involves a new set of discrete mode wavenumbers, be it the
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vertical γn or the equivalent horizontal krn, the other being the mode normaliazation constant that

goes from a constant An =
√

2
H

to (Frisk, Eq. (5.144))

An =
√
2[

1

ρ1
(H − sin 2γnH

2γn
) +

1

ρ2

sin2 γnH

γ2n
]−1/2. (4)

The revised Green’s function becomes

g(r, z, zs) =
πi

ρ1

∑
n

A2
n sin(γnz) sin(γnzs)H

1
0 (krnr). (5)

Continuing with the example discussed in Fig. 3, and with knowledge that there are more
superior ways to find the modes, e.g., Zang and Tindle (1993), let us nevertheless use the six discrete
angles found, θn, n = 1 − 6; now find γn = k1 sin θn, and corresponding horizontal wavenumbers
krn = k1 cos θn. Observe though that in Eq.(4) we also need a vertical wavenumber in the lower
(seabed) medium, call it γ2n, found via

sin θ2n = i

√
(
c2
c1

cos θn)2 − 1 (6)

Then γ2n equals k2 sin θ2n where it is understood that k2 = ω
c2

. But since all θn are by definition less
than the critical angle, then sin θ2n is imaginary resulting in the necessary exponential decay in the
field in the lower medium for z > H . It’s worthwhile to look back now at Lecture 19, where we
first discussed what happens in the seabed for grazing angles less than the critical angle.

Figure 4: Mode functions for the first three modes finite impedance boundary under discussion in Fig. 3 of
this lecture (black lines) compared infinite impedance case (red lines). Mode 1 for each case is plotted with
thicker line. Note that for infinite impedance case the mode functions cannot extend below the boundary at
depth 50 m.
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Examine carefully the mode functions for the first three modes associated with finite impedance
boundary case under study (Fig. 4), and compared with equivalent mode functions for the infinite
impedance case. With finite impedance case, you can see clearly the exponential decay into the
seabed for depths greater than 50 m (refer to Frisk, Eq. (5.145) for how to compute the mode
functions there). For this example it appears that modes 2 and 3 are not too different, but the mode
1 case shows a substantial difference. The Green’s function so defined by Eq. (5), with An given
by Eq.(4) is actively used in underwater acoustics research today; it describes what is known as the
Pekeris waveguide, named after the physicist C. L. Pekeris (1908-1993).
References

Frisk, G. V. Ocean and Seabed Acoustics (Prentice Hall, Englewood Cliffs, NJ, 1994)
Z. Y. Zang, and C. Tindle, ”Complex effective depth of the ocean bottom” J. Acoust. Soc. Am.
93,205-213, 1993

Copyright c© 2022 P. H. Dahl. All Rights Reserved.


	Notes_L21
	Notes_L22
	L_22 Supplement
	Notes_L23_modes
	Notes_L24_modes
	Notes_L25

