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ME525 Applied Acoustics Lecture 18, Winter 2022
The plane wave reflection coefficient and Snell’s Law

Peter H. Dahl, University of Washington

Plane waves and reflection

Plane waves are first discussed in Lecture 4 and its worth revisiting Eqs. (2-4) from that lecture.
We have been working extensively with spherical waves, e.g. radiation from a sphere of radius a
with radial velocity ur given on the boundary of this spherical source as in Eq.(1) of Lecture 5, or
the free space Green’s function g = eikR

4πR
where R = |~r − ~r0|, with ~r representing the field point and

~r0 representing the source location. With spherical waves, the specific acoustic impedance, [Eq.(2)
of Lecture 5], involved the non-dimensional parameter kr, and the region near the approximately
delineated by kr < 1 is the hydrodynamic near field where pressure and velocity are 90◦ out of
phase. See also Fig. 1 of Lecture 5, showing the difference between kinetic and potential energy for
kr < 1.

With plane waves the situation is quite different and many way simpler. The primary difference
is that the specific acoustic impedance for plane waves equals the characteristic impedance, ρ0c, and
the kinetic and potential energies are always equal, i.e., there this nothing analogous to the kr < 1

transition. However, plane waves are clearly a simplification, but at large ranges from a spherical
source, kr >> 1, spherical waves behave like plane waves [e.g. again inspect Eq.(2) of Lecture 5].

However, despite this simplicity, the reflection plane waves from planar boundaries separating
two different acoustic media provides the necessary building blocks for study of more complicated
problems. Furthermore, the important problem of transmission of sound through such boundaries
is also assessed by way of plane waves.

The problem is shown in Fig 1. A 2D plane wave is incident on the boundary between two
acoustic media at angle θ0 with respect to the horizontal. (This is traditionally called a grazing angle.
A completely equivalent description is by way of an incident angle with respect to the vertical. My
preference is grazing angle.) The two acoustic media, now identified by subscripts 0 and 1, are
described by their characteristic impedance, e.g, as in upper medium ρ0c0. Later we can include
more properties for each medium such as attenuation (or damping). (Note: obviously the need for
subscripts 0,1,2, etc., for defining acoustic media, should not be confused with the small-valued ρ1

used earlier to distinguish changes in acoustic density owing to the passage of a sound wave.)
The problem is fully described in the x− y plane, with assumption that the boundary continues

unimpeded in the z direction. Furthermore the boundary is assumed to exist from x = −∞ to
x = +∞. Obviously this is a fiction, but the requirement is readily relaxed e.g., by an incident
field consisting of a sound beam with finite extent incident on the surface, e.g. a finite-width sonar
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beam generated by a line array and studied with the Rayleigh integral. For now we stick with the
idealization and are not be bothered by it.

The incident plane wave acoustic field is

pinc(x, y) = Aeik0x cos θ0−ik0y sin θ0 (1)

where A is an amplitude, providing a dimension of pressure, but otherwise is of no importance.
The subscript 0 identifies wavenumber k0 and angle θ0 linked to the incident medium. (As before,
time dependence is assumed to be e−iωt which we leave out the problem as it plays no role. ) Figure
1 shows some phase fronts (separated by λ) representative of the incident plane wave field. After
this we’ll stop drawing the phase fronts as the key property is the ray or direction normal the phase
fronts as described by angle θ0.

Boundary conditions: continuity of acoustic pressure and normal velocity

This problem also involves a reflected and transmitted complex acoustic field, where the re-
flected field is

pref (x, y) = RAeik0x cos θ0+ik0y sin θ0 (2)

and transmitted field in the lower medium is

ptrans(x, y) = TAeik1x cos θ1−ik1y sin θ1 (3)

and where the subscript 1 identifies wavenumber k1 and angle θ1 linked to the lower medium.
Our goal is to find the reflection coefficientR and transmission coefficient T , through analysis of

two essential continuity conditions along the boundary separating the two acoustic media. These
formally specify the boundary conditions for solving such problem, and are worth memorizing.

The first continuity/boundary condition is continuity of pressure across the boundary. That is,
the pressure must be continuous across the boundary to preserve the immobility of the boundary,
e.g., if there existed a pressure difference then the boundary would be accelerated in one direction
or the other. This condition requires pinc(x, 0) + pref (x, 0) = ptrans(x, 0), which leads to

(1 +R)eik0x cos θ0 = Teik1x cos θ1 (4)

To make each side equal over all values of x requires a continuity of phase or

k0 cos θ0 = k1 cos θ1 (5)

This leads to one of the most important laws in acoustics and wave propagation, known as Snell’s
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Figure 1: Main figure: A 2-D plane wave encountering a boundary between two acoustic media,sea water
above the sea bed below. The incident plane wave acoustic field in the upper medium has propagation angle
θ0, as depicted by the corresponding ray. A reflected and transmitted field, with propagation angle θ1 are
also symbolized by corresponding rays. Upper left: depiction of a 3D plane wave and corresponding ray
(black arrow).

Law. For the specification of θ0, θ1 in Fig. 1, Snell’s laws is therefore expressed as

cos θ0
co

=
cos θ1
c1

(6)

It pays to memorize Snell’s law–and I like the form of Eq.(6) involving grazing angle with respect
to the horizontal and cosine, rather than incident angle and sine. Upon application of Snell’s law
we get

1 +R = T. (7)

Closer inspection of how the angles work (Fig. 1), it should be evident that upon entering a region
of differing sound speeds, a ray will bend, or refract, towards the lower speed with the change in
angle governed by Snell’s law. It pays to memorize: rays always want to bend, or refract, towards
the region of lower sound speed.

The second continuity/boundary condition is continuity of normal acoustic velocity un at the
boundary. Apply Euler’s equation to find un and get

1

iωρ0

∂pinc + pref
∂y

|y=0 =
1

iωρ1

∂ptrans
∂y

|y=0 (8)

where ρ1 is the background density for the lower medium. The frequency ω cancels, and upon
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applying Snell’s law we arrive at
sin θ0
ρ0c0

(1−R) = sin θ1
ρ1c1

T (9)

Now put Z0 =
ρ0c0
sin θ0

and Z1 =
ρ1c1
sin θ1

, and find

R(θ0) =
Z1 − Z0

Z1 + Z0

(10)

where the reflection coefficient is a function of θ0, as in R(θ0) with θ1 determined from Snell’s law.
The Z are impedance quantities and you should recognize the characteristic impedances of

the two media ρ0c0 and ρ1c1, each divided by sin of the incoming θ0 or transmitted θ1 grazing
angle. These impedances are referred to as normal specific acoustic impedance (Frisk, 1994), given
their relation to the acoustc velocity normal to the boundary.

Quick check: In the case of plane wave impinging on the air-water interface from below, expect
Z0 representing the water medium will be |Z0| >> |Z1| representing the air medium. Thus R ≈ −1;
this is close enough such that R = −1 is standard practice for representing the boundary condition
between water and air for modeling underwater sound. Similarly, sound impinging on an air-water
boundary from above, will have |Z0| << |Z1| and thus R ≈ 1. These two cases for which all the
incident acoustic energy is reflected, insofar as |R| = 1 for all angles θ0, and no acoustic energy
enters the lower medium, are known as impenetrable boundaries (Frisk, 1994). There can, in fact,
be some small degree of acoustic penetration across the boundary as you may have experienced
yourself while detecting air-borne sound while swimming underwater. We’ll discuss this problem
in more detail later.

The critical angle

Inspect now closely the relation between incident (θ0) and transmitted (θ1)angles in the reflec-
tion process (Fig. 1), as governed by Snell’s Law in Eq. (6). The reflected angle, although not
shown, also is θ0 for specular reflection (Frisk, 1994) from a flat interface. Observe from Snell’s law
that as θ0 is reduced so too is θ1. Eventually when θ0 reaches the critical angle, then θ1 equals 0◦ and
the transmitted field is propagating along the boundary. Define formally the critical angle θc as

cos θc =
c0
c1

(11)

which is a basic, combined property of the two acoustic media involved in the reflection.
For example, with the sound speeds given in Fig. 1 the critical angle θc = 20.4◦ which is a typical

critical angle for seawater to seabed reflection. Softer, mud-like sediments will have a lower speed,
and therefore a lower θc, harder rock-like sediments will have a higher sound speed and thus higher
θc. In the field of diagnostic ultrasound, one may be interested in the critical angle for transmission
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from a soft-tissue medium (c0 ≈ 1500 m/s) to bone (c1 ≈ 3000 m/s), which puts θc = 60◦.
Using the again the geometry of Fig. 1, the reflection process plotted in the form of R(θ0) is

shown two different lower media (Fig. 2). The lower media differ only in terms of sound speeds;
one a ”harder” seabed (speed 1800 m/s) and the other a ”softer” seabed (speed 1540 m/s). For
this demonstration the densities for each are the same 1800 kg/m3, but more realistically we would
expect the medium with higher sound speed to have a slightly density. However the key difference
to observe is the large change in critical angle. For grazing angles less than θc, R(θ0) is complex
with |R| equal to 1. This angular region is called total internal reflection, for which no sound energy
can be effectively transmitted into the lower medium. For θ0 > θc, R(θ0) transitions to a real-value
for with |R| < 1.

At very high grazing angles approaching 90◦, or normal incidence, the value of R(θ0) depends
on the combination and ratio of the characteristic impedances of the two media as follows

R ≈ ρ1c1 − ρ0c0
ρ1c1 + ρ0c0

. (12)

Figure 2: |R| and phase of R as function of grazing angle θ0 for water-sediment reflection. Two sediments
shown with differing sound speeds. The densities for each sediment case is 1800 m/kg3, and water density
is 1025 m/kg3.
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Figure 3 summarizes the relation involving characteristic impedances, grazing angles, Snell’s
law and R(θ0).

Figure 3: Summary of the angles and normalized specific acoustic impedances, involved in the plane wave
reflection coefficient R(θ0)

References
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ME525 Applied Acoustics Lecture 19 , Winter 2022
Snell’s law, the critical angle in plane wave reflection and the evanes-
cent field, and Bottom Loss

Peter H. Dahl, University of Washington

Snell’s law and the critical angle

Figure 1 shows a ray of angle θ0 within a medium characterized by sound speed c0, incident on
boundary below which the sound speed has changed to c1, with c1 > c0. Phase fronts separated
by λ0 in the upper medium must match those separated by λ1 in the lower medium: this gives rise
to Snell’s Law, and shows how a ray in faster medium must bend or refract towards the slower
medium, and the opposite will occur if c1 < c0. The sound frequency determines λ0 and λ1, and
projections of these wavelengths onto the boundary establishes a trace wavelength λt.

Figure 1: Illustrating the projection of a plane wave in region of sound speed c0 onto a boundary separating
region with sound speed c1, where c1 > c0. The sound frequency determines λ0 and λ1, projections of
these onto the boundary establishes a trace wavelength λt leading to Snell’s law cos θ0

c0
= cos θ1

c1
. Ultimately

frequency is not a driver in Snell’s law as wavelengths will scale accordingly.

Continuing now with Snell’s law relation between incident (θ0) and transmitted (θ1)angles in
the reflection process (Fig. 2)

cos θ0
co

=
cos θ1
c1

(1)

(Here for simplicity we aren’t showing the reflected ray as in Fig. 1 from Lecture 18.) Observe again
that as θ0 is reduced, eventually it reaches the critical angle such that θ1 equals 0◦ or the transmitted
field is propagating along the boundary, where cos θc =

c0
c1

The evanescent field, inhomogeneous plane waves
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Figure 2: Showing incident and transmitted rays and relation to angles θ0 and θ1.

For angles greater than θc, or 28◦ for the case of Fig. 2, there is a transmitted angle θ1 in the lower
medium that we easily find through Snell’s law. What happens for θ0 < θc? Notice that for θ0 < θc,
then cos θ1 =

c1
c0
cos θ0 cannot be satisfied a real-valued angle θ1, since c1

c0
cos θ0 > 1, and the angle θ1

must instead be complex. We find it this way:

sin θ1 =
√

1− cos2 θ1 = i

√
(
c1
c0

cos θ0)2 − 1 (2)

To understand this new kind of angle, consider the transmitted field in medium 1

ptrans(x, y) = TAeik1x cos θ1−ik1y sin θ1 (3)

which applies only for y < 0 and where constant A used to put the dimension to pressure, but it is
otherwise not essential. Substitute now the imaginary sin θ1 from Eq.(2) and invoke Snell’s law to
replace k1x cos θ1 (as that relation must continue to hold) and the expression for ptrans becomes

ptrans(x, y) = TAe
ik0x cos θ0+k1y

√
(
c1
c0

cos θ0)2−1 (4)

with exponential decay in the y direction (noting y < 0).
Equation (4) a new kind of plane known as an inhomogeneous plane wave (Frisk, 1994) because

there is propagation in one (x) direction and exponential decay in the other (y) direction. Another
term often used is that the acoustic field is evanescent in the y direction. For example, airborne
sound heard while one is swimming underwater but still close to the surface has likely reached
you via this evanescent wave.

The decay of transmitted field ptrans for three cases, defined by grazing angles less than or ap-
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Figure 3: Showing changes in exponential decay for three grazing angles cases less than or approximately
equal to the critical angle. For clarity, magnitude of the transmitted fields are plotted as normalized by
maximum value at the water-sediment boundary.

proximately equal to the critical angle is shown in Fig 3. For this example, the critical angle equals
33.55◦, representing the reflection from a plane wave incident from sea water medium (1500 m/s)
onto seabed medium (speed 1800 m/s), as discussed in the last lecture. Observe that the decay is
greatest for smallest grazing angle (5◦) below the critical angle, where as for a grazing angle very
near critical the decay rate is less.

Bottom loss

Bottom loss is defined as 20 log10 |R(θ)| where θ is the bottom grazing angle, to be associated
with ray that reflects from the bottom. We have have more details to discuss about ray theory, but
suffice to say that everything is essentially governed by Snell’s law. A program for computing rays
will ”launch” a ray at the sound source at angle θ, with respect to horizontal in my preferred con-
vention, and such a ray continues moving forward at angle θ until either a boundary is encountered
in which case it reflects and θ → −θ, or the ray enters a new sound speed regime with θ changing,
or the ray refracts, according to Snell’s law. Th

Figure 4 shows a series of ray diagrams that trace rays launched from a receiver within a spec-
ified angular width, with rays governed as just described towards a receiver at some fixed range.
This larger set of rays is known as a ray fan. A subset of the rays will reach the target location
(within some tolerance) and these are called eigenrays.

Figure 5 shows now an eigenray diagram (b) corresponding to an experiment. In this case a
short pulse is transmitted at depth 40 m in water of depth 80 m with the sound speed shown in
(a). Notice the large change in sound speed from about 30 m to the sea surface over which the
speed increases by about 40 m/s, due to the presence of a thermocline. The eigenrays can be named
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Figure 4: Ray theory travel and bottom grazing angle study for three ranges, based on source depth at 10
m, receiver depth at 17 m, and sound speed profile shown on the left. The cases at range 200 and 100 m
show rays of different angles ”launched” from the source. A few of these rays reach the target depth at the
specified range (within some tolerance). These are called eigenrays. The grazing angle for the eigenray that
reflects from the seabed once is shown for each case.

according to how they interact with the sea surface and seabed boundaries, as in S: surface path,
D: direct path, B: bottom path, BS: bottom-surface path, SB: surface-bottom path, and SBS: surface-
bottom-surface path. Panel (e) shows a time series of the received pulse (x axis is time in relative
units), plotted in dB. The different arrivals, as in D (direct), S (surface path), etc. are easily identified
in the data. For example, the B-path has a grazing angle on the bottom of about 26◦, and the data
are consistent with a bottom loss of about 2.5 dB.

Figures 6 and 7 show examples of bottom loss data from field experiments. Such data is often
subject to high degree of variation due to many factors: changing water conditions, small changes
in measurement geometry as ship moves around, etc. However we are generally able to capture a
sense of the data with simple modeling of R(θ) or 20 log10 |R(θ)| using a model like that discussed
in lecture 18, where Z0 =

ρ0c0
sin θ0

and Z1 =
ρ1c1
sin θ1

, and find

R(θ0) =
Z1 − Z0

Z1 + Z0

. (5)

However Eq.(5) represents the simplest of all models where the lower medium is described by ρ1c1
and continues forever. In other words, the lower medium is a mathematical half-space.

Things change if, for example, after some layer depth H the the sound speed takes on a change
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Figure 5: From the study by Choi, Dahl and Goff (2008) showing eigenrays between source at depth 40 m and
receiver at depth 30 m, separated by 200 m. Sound speed profile (a) is used to compute eigenrays (b) that are
coded according to S: surface path D: direct path B: bottom path BS: bottom-surface path SB: surface-bottom
path SBS: surface-bottom-surface path.
(e) A time series of the received pulse (x axis is time in relative units), plotted in dB. The different arrivals,
as in D (direct), S (surface path), etc. are identified. Ignore subplot (c), which is not shown and (d) which
applies to different discussion.

from c1 to c2, with layering producing oscillations in R(θ) not seen in the form of Eq.(5). There
are some relatively simple ways to accommodate this layering using the Impedance Translation
Theorem, to be discussed next.
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Figure 6: Measurements of bottom loss defined as 20 log10 |R(θ)| from a study by Dall’Osto, Choi and Dahl,
2017.

Figure 7: Measurements of bottom loss defined as 20 log10 |R(θ)| from a study by Dall’Osto, Dahl and Choi,
2012

References
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ME525 Applied Acoustics Lecture 20, Winter 2022
Impedance Translation Theorem

Peter H. Dahl, University of Washington

Plane wave reflection from a layered seabed

The problem of finding the plane wave reflection coefficient R from a layered boundary (Fig. 1)
is more easily solved with the impedance-translation theorem (Brekhovskikh, 1980; Pierce 1989).

Figure 1: Geometry from reflection from a layered media at arbitrary grazing angle, θ1
. A layer of thickness L extends from y = 0 to y = −L.

To get a sense of how this simplifies the problem, consider first solving the problem by invoking
standard boundary conditions of continuity of pressure, and normal (vertical) velocity at each of
the interfaces. For this take the incident field in medium 1 as

pinc(x, y) = eik1x cos θ1−ik1y sin θ1 (1)

(for simplicity set coefficient A equal to 1.) In medium 2 (the layer) we must have both up and
down going fields, and let those coefficients be, A and B, respectively. In medium 3 there is only
one field with coefficient out front equal to T .

Next apply the two boundary conditions, where θ1 is grazing angle for the incidence field. The
boundary conditions at y = 0 and y = L are that continuity of pressure requires

1 +R = A+B, y = 0

Aeik2L sin θ2 +Be−ik2L sin θ2 = Teik3L sin θ3 , y = −L
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where R and T are the reflection and transmission coefficients, and continuity of normal velocity
requires

sin θ1(1−R)/(ρc)1 = sin θ2(A−B)/(ρc)2, y = 0

sin θ2(Ae
ik2L sin θ2 −Be−ik2L sin θ2)/(ρc)2 = sin θ3Te

ik3L sin θ3/(ρc)3, y = −L

There appears four equations with four unknowns, R, T and A,B, which is solvable say by setting
up a 4 by 4 matrix to recover unknownsR and T . But let’s instead exploit the impedance-translation
theorem.

For a layer of length L characterized by medium 2, identify:

Zlayer = (ρc)2/ sin θ2

klayer = k2 sin θ2

and for medium 3 below identify:

Zload = (ρc)3/ sin θ3

We can roughly interpret Zlayer as the impedance of transmission line connecting the medium 1
and medium 3. We can interpret Zload as load or terminal impedance for this system, as once sound
get’s into medium it’s not coming back.

Next compute a new Zin as follows:

Zin = Zlayer
Zload − iZlayer tan(klayerL)
Zlayer − iZload tan(klayerL)

(2)

where the Zin stands for input impedance. Of course, care is needed in computing the angles θ1
going to θ2 and finally to θ2. Snell’s law is again used, which in this case means:
k1 cos θ1 = k2 cos θ2 = k3 cos θ3

and angles can in general be complex.
We find Zin for this problem–almost by inspection–as follows:

Zin = [(ρc)2/ sin θ2]
[(ρc)3/ sin θ3]− i[(ρc)2/ sin θ2] tan(k2 sin θ2L)
[(ρc)2/ sin θ2]− i[(ρc)3/ sin θ3] tan(k2 sin θ2L)

(3)

Having found Zin, the plane wave reflection coefficient R from layered medium at arbitrary
grazing angle is then

R =
Zin − (ρc)1/ sin θ1
Zin + (ρc)1/ sin θ1

(4)

Copyright c© 2022 P. H. Dahl. All Rights Reserved.



3

Note: compare this equation with Eq.(10) of Lecture 15 representing plane wave reflection from
two halfspaces, characterized by upper medium 0 (Z0), and lower medium 1 (Z1). Be mindful that
I have now changed to three indices to represent upper, layer and lower media as follows: 1 for the
medium through which the wave initially travels, 2 for the layer, and 3 for the medium into which
the wave is transmitted.

As an example, put:
medium 1 ρ = 1025 kg/m3, c = 1500 m/s
medium 2 ρ = 1400 kg/m3, c = 1600 m/s
medium 3 ρ = 2000 kg/m3, c = 1900 m/s

and set layer L equal to 50 and 5 m. The result (Fig. 2) for |R| as a function of grazing angle
shows a strong dependence on layer thickness L, which translates to a frequency dependence. The
black,dashed line forms kind of envelope of |R| and is based on the reflection from a halfspace of
medium 3, i.e, setting L = 0.

Figure 2: Magnitude of the plane reflection coefficient |R| from a layered seabed as function of grazing angle.

With the L = 50 m case there is strong interference pattern set up by waves trapped within the
layer. Using the wavenumber for the layer k2 = 2π200

1600
, then k2L ∼ 39. With the L = 5 m case,

k2L ∼ 3.9; we anticipate that the influence of the layer diminishes as k2L is reduced to a value of
∼ 1 or less. I experimented just a bit and when k2L ∼ 0.5, the effect of the layer is nearly gone and
reflection is as if it is from the halfspace.

The idea of identifying an input impedance Zin, such as for the layer and halfspace in the region
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x > 0, is a very powerful one, and the procedure is easily extended for multiple layers. For example,
for the case of two layers L1 and L2 a new load impedance Zload is constructed for based on the
combination of the lowest layer impedance and the terminal impedance. This becomes the load
impedance for the layer directly above, and so on. More discussion on the extension to n layers can
be found in Brekhovskikh (1980).

The single expansion chamber muffler

The impedance translation theorem is not limited to problems on reflections from layered me-
dia, but finds all manner of applications in linear system theory. The following is example involving
sound propagation within a confined tube of varying cross section (Fig. 3), representing a a single
expansion chamber muffler with many applications in terms of noise control.

Figure 3: Single expansion chamber muffler with input area S1, expanding to area S2 for length L, then
returning to area S1.

The geometry and acoustic fields for the problem are shown in Fig. 4, where we assume a plane
wave is incident at x = 0. Revisit Fig. 1 of Lecture 4 that shows such a plane wave propagating
down a tube. The plane wave direction, or ray, is confined to be parallel with the tube. As such,
the plane wave must have a frequency satisfying f < c

1.7d
, where d is the largest diameter of the

muffler. Next week, as we begin the study of waveguides, you will gain a better understanding
as to why this must be the case. If f < c

1.7d
is satisfied, it said that the muffler supports a a single

axial mode as described by plane with ”ray” pointing straight down the tube. (Does the sketch in
Fig. 1 of Lecture 4 satisfy this? Check it out yourself. My conclusion is that the figure is roughly
physically correct.)

The pressure and velocity boundary conditions are analogous to those that we’ve encountered
in the context of reflection from layered media. However with the change in area at x = 0 and x = L

we now require continuity of volume velocity, or area times velocity (Pierce, 1989). Continuity of
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Figure 4: The geometry and acoustic fields for the problem for single expansion chamber muffler with input
area S1, expanding to area S2 for length L, then returning to area S1.

pressure requires

1 +R = A+B, x = 0

AeikL +Be−ikL = TeikL, x = L

where R and T are the reflection and transmission coefficients, while continuity of volume velocity
requires

S1(1−R)/(ρc) = S2(A−B)/(ρc), x = 0

S2(AeikL −Be−ikL)/(ρc) = S1TeikL/(ρc), x = L

These are summarize in the matrix equation involving matrix

M =


1 0 −1 −1
−S1 0 −S2 S2

0 −eikL eikL e−ikL

0 −S1eikL S2eikL −S2e−ikL

 (5)

C =


−1
−S1
0

0

 (6)
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P =


R

T

A

B

 (7)

Find the unknown vector P = M−1C, with reflection coefficient R = P (1) and transmission coeffi-
cient T = P (2). Go ahead, try it.

Or, why not try instead the impedance translation theorem? Ok, so let’s find the input impedance
Zin of the single expansion chamber muffler system. Identify:

Zlayer = ρc/S2

klayer = k

Zload = ρc/S1

Following the prescription of Eq.(2) then find Zin as follows:

Zin =
ρc

S2
[
ρc
S1
− i ρc

S2
tan(kL)

ρc
S2
− i ρc

S1
tan(kL)

] (8)

and immediately arrive at expression for the reflection coefficient

R =
Zin − Z0

Zin + Z0

(9)

where Z0 = ρc/S1.
To study the noise reduction performance of this muffler, there are two key approaches, one is

called insertion loss requiring finding the sound pressure level (in dB) before insertion of the device,
then find the drop in this level after insertion of the muffler (Pierce, 2008). Insertion loss is easy to
measure.

The other is called transmission loss, or TL representing the ratio of incident to transmitted acous-
tic power and is usually expressed in decibels; this is easy calculate but hard to measure properly
(Ingard, 2010).

We can formally compute TL in this context as follows: Take the incident time-averaged power
as equal to 1

2ρc
S1, where the numerator represents the squared-pressure of the incident plane wave

of unit amplitude. To find transmitted power, the transmitted pressure amplitude is T , and trans-
mitted acoustic velocity is u equals T

ρc
.

Next recall the intensity, 1
2
pu? or pressure times the conjugate of velocity, which in this case

equals |T |
2

2ρc
; upon multiplying by S1 gives the transmitted power. Express the ratio incident to
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transmitted power in decibels as follows

TL = 10 log10
1

|T |2
(10)

where to make TL positive to represent more sound reduction, we the inverse ratio is in effect
taken.

Now, T can be found directly through above matrix manipulation, or much easier, find R

through the impedance translation theorem and then T via the relation

|T |2 = 1− |R|2 (11)

which applies to this problem. Note that Eq. (11) is clearly different from the relation 1 + R = T

which applied to the case of the plane wave reflection coefficient. The key is understanding this
difference is that there is no energy loss in this muffler system of Fig. 4. For example the muffler
isn’t stuffed inside with woolly material that absorbs sound energy. This means that the transmitted
sound power must equal the incident minus the reflected power.

Equation (10) becomes the formal working definition for computing the performance of the
muffler system (take the negative of it to make noise reduction a positive quantity). Fortunately,
the muffler performance can be measured in a much simpler way as follows:

TLmeasured = −20 log10
pout
pin

(12)

where pout and pin are measure pressure quantities, expressed as RMS. Ideally one might get pout
with and without the expansion piece, to account for small losses within a tube of constant diame-
ter.

A calculation (Fig. 5) of transmission loss for case of S1 = π0.0162 m2, expansion diameter
S2 = π0.12 m2 and L = 0.5 m is compared with observations made by Kim and Kong (1993), and
suggest very large sound reduction (high TL) near 170 Hz and no reduction near 340 Hz, with the
pattern continuing. Notice that for frequencies greater than about 2000 Hz (2 kHz) the theory based
on Eq. (10) fails because the assumption f < c

1.7d
no longer holds.
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Figure 5: Experimental measurements (black line) by Kim and Kong (1993) for single chamber of L =500
mm, chamber diameter D =200 mm, and input and output diameters d1 = d2 =32 mm, compared with TL
based on R as computed with Eq. (11) (blue, dotted line)

The human vocal tract

Figure 6: left: the human vocal tract (Fig. 1 of Anderson and Sommerfeldt, 2021). Right: model cross sections
for human vocal tract for different vowel phonemes (Fig. 4 of of Anderson and Sommerfeldt, 2021)

The Acoustics Research Group at BYU is also known for innovative approaches in graduate
acoustics education. At the recent Seattle meeting of the Acoustical Society of America where they
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demonstrated a really neat problem solved with the impedance translation theorem: the human
vocal tract (Fig. 6).

A few models for the vocal tract segmented into short, constant-diameter segments, are shown
on the left of Fig. 6, representing different vowel phonemes, or distinct units of sound in English.
I’m tempted to try this myself but you can imagine that the simple muffler geometry of Fig. 4 might
represent one portion of this model vocal tract.
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