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ME525 Applied Acoustics Lecture 13 Winter 2022
The Rayleigh integral, beam patterns, hydrodynamic
and geometric near and far fields

Peter H. Dahl, University of Washington

Rayleigh integral

We have now studied the Helmholtz-Kirchhoff integral , Eq.(1), to compute the sound radiation
from a surface S based on a generally variable normal velocity un(~rs) over the surface at position
~rs plus a similarly varying pressure distribution p(~rs) which can depend in complicated way on
un(~rs). (Where once again p(~r, t) = p(~r)e−iωt.)

p(~r) =

∫
S

[p(~rs)
∂g

∂n
− iωρ0un(~rs)g(~r, ~rs)]dS (1)

Solution of Eq.(1) poses difficult numerical challenges, primarily involving finding the unknown
pressure distribution p(~rs). In some problems, such as sound radiation from a spherical source of
fixed radius a, the relation between p(~rs) and un(~rs) is easily worked out and the integral solved
exactly.

If there are situations where the first integral in Eq.(1) can be ignored, the solution is greatly
simplified. Fortunately, this happens in many situations where the radiation surface S is planar (or
at least approximately so), as was first demonstrated by Rayleigh (see Junger and Feit, 1993).

To understand how this happens we introduce the concept of a baffle where there is a limited
portion of the planar surface that is vibrating and generating sound, with the remaining portion
of the surface idealized as rigid. The baffle within which the aperture (or sound radiating part) is
set (Fig. 1) theoretically extends to infinity in all directions and restricts the sound field to only one
hemisphere but otherwise does not vibrate.

The boundary condition on the aperture is such that it is impenetrable to sound, and reflects
sound completely. This means pressure on such a boundary will double (as if someone talking
very close to a hard wall- try it yourself), rather than pressure going to zero as observed from
sound below an air-water interface. The result of this reasoning is such that the first term of the
Helmoltz-Kirchhoff equation is eliminated and the second term is increased by a factor of two
(Pierce, 1989)

We now write formally the Rayleigh integral as

p(~r) = −i2ωρ0
∫
S

un(~rs)g(~r, ~rs)dS. (2)
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Figure 1: Cartesian coordinate system established at the center of radiating rectangular aperture confined by
a baffle to restrict the sound field to z > 0. The elemental source dS is distance R from the field point where
R =

√
(x− xs)2 + (y − ys)2 + z2

For the planar geometries involved in evaluating the Rayleigh integral, a Cartesian coordinate sys-
tem centered on the radiating aperture (Fig. 1) is best, where

p(~r) =
−iωρ0
2π

∫
S

un(xs, ys)
eikR

R
dxsdys (3)

with R = |~r − ~rs|.
Next we relax the definition of a baffle that extends to infinity, and even relax (somewhat) the

criterion that the aperture be perfectly flat. Figure 2 shows to planar-like radiating apertures and
associated baffles that are used on autonomous underwater vehicles. (Notice these are slightly
curved to match the hull shape of the AUV.) Furthermore knowing the characteristic length scales
of aperture, as in L and W in Fig. 2, combined with sound frequency to give kW and kL will yield
much information without having to lift a finger!

Additionally we often encounter situations that simplify the computation even further, such
as case (Fig. 3) where W < L and kW << 1, representing a line array. In these situations Eq.
(3) is effectively a 1-D integral along the y-axis using dys, and dxs can be considered a constant
representing W .

Beam patterns

We use the Rayleigh integral to study the beam pattern for radiation from a disk of diameter D
at particular frequency f and wavelength λ. A common result for this is Eq. (10) in the monograph
entitled High Frequency Underwater Sound in your resource section on the website.
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Figure 2: Two planar-like apertures. On the left an orange-colored aperture (made of acoustic transparent
material) is surrounded by a baffle (black); chalk lines identify two characteristic length scales, say L and W
of the aperture. On the right is smaller aperture surrounded by an metalic frame that serves the baffled. Both
apertures and baffle are slightly curved to fit within the side of an autonomous underwater vehicle.

Figure 3: Cartesian coordinate system established at the center of radiating line aperture confined to a baf-
fle to restrict the sound field to z > 0. The elemental source dS is distance R from the field point where
R =

√
(y − ys)2 + x2 + z2. Because the aperture width is narrow in the sense of kW << 1 the aperture is

considered a line array.
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The problem studied is radiation from a disk of diameter 2 m, observed at a set of field points
all at range 10 m from center of disk but at different angles. A top view [Fig. 4 (a)] shows field
points in blue, all having |~r − ~rs| equal to 10 m (coordinate axis centered on disk) but differing θ

with respect to a line perpendicular to the disk center. another view is [Fig. 4 (b)] the disk looks
solid red, but it is composed of 1200 points, each with elemental area dS, the sum of all elemental
areas approximating the total area. Note: strictly speaking, a rigid baffle surrounds the radiating
disk. However the baffle is just a convenient conceptual bridge to help justify use of the Rayleigh
integral. For many applications as in this case, this feature of the problem can be effectively ignored.
The key property is the basic flatness of the aperture.

Figure 4: Problem studied: radiation from a disk of diameter 2 m, (a) observed at a set of field points (blue
dots) all at range 10 m from center of disk but at different angles θ (b) alternate view showing the red disk
and several field points at the same range but varying angle θ. Note that the set of field points align with a
line that would divide the disk evenly.

To complete the numerical integral each dS is multiplied by −iωρ0un
2π

eikR

R
, where R connects a

particular dS to the field point, and where un is normal velocity on the disk. In many problems un
is unknown, but can be assumed constant over the face of radiating aperture. Since the problem
involves studying the pressure variation with angle and not the value of pressure per se it is there-
fore not essential to know un, which can be set to unity or to some notional value. The subject of
the study, pressure variation versus angle and range, is completely embodied by the integral in Eq.
(3).
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Next define the pressure for θ = 0◦ as the on-axis pressure as it (generally) will be maximal on
the center axis where θ = 0◦. Also for this simple disk problem the circular symmetry means angu-
lar dependence (called the beam pattern) can be characterized by one angle, θ; more complicated
problems require two angles. Evaluate the computed pressure (or quantity proportional to it) from
the Rayleigh integral and express results in decibels as follows

20 log10(|p(θ)|/|p(θ = 0◦)|) (4)

where pressure is computed at fixed range but variable θ. Plotting Eq. (4) as a function of θ gives a
beam pattern. One needs to know the beam pattern for design purposes that depend on application,
e.g., a high-resolution narrow beam for detail versus broad beam.

Hydrodynamic near field versus Geometric near and far fields

In Lecture 6 the concept of a near field kr << 1 and far field kr >> 1 were discussed. An effective
boundary between these two regions occurs at kr = 1, representing a very useful guide. On the
kr < 1 side kinetic energy (KE) began to exceed potential energy (PE), with difference growing as
kr decreased further. Another hallmark of the kr < 1 region was that specific acoustic impedance
began to go as −iωρ0r where r is distance from source, such that the basic property of sound in
the form of a sound speed c, was lost. (Check out the discussion in Lecture 4.) Finally, the acoustic
field components, pressure and velocity begin to become 90◦ out of phase in this region (see Eq.(2)
of Lecture 4 to understand how this can happen.)

At this stage of game it’s best to use a more precise language and call the region kr << 1 as
the hydrodynamic near field (Fahy,2001) because here the fluid velocity properties are more similar to
hydrodynamic flows, where compression-induced potential energy (characterized by sound speed
c) is small relative to kinetic energy. The handy guide for when this happens, kr < 1 is still valid.

The hydrodynamic near field has range r from the source as the only length scale, which is
parameterized by kr. In the current discussion involving the Rayleigh integral and beam patterns,
length scales of the radiating aperture such as length L and widthW , or diameterD, and properties
of the acoustic field will depend on both these length scales as well as the range scale r. There is
need for new definitions, defined subsequently, which will be known formally as the geometric near
field and geometric far field.

With the above introduction in mind, we continue with discussion of the problem of radiation
from a disk of diameter 2 m (Fig. 4). Results (Fig. 5) show calculation at 3 ranges defined by the
field point |~r − ~rs| equal to 4, 10 and 20 m but with varying θ. Notice that the 10 and 20 m results
are quite similar (if not effectively the same) whereas results at 4 m look different. This is because
10 m and beyond represents the Fraunhofer zone (far field) for this situation defined by acoustic
frequency (3000 Hz), medium speed (water 1500 m/s) and radiating aperture size (disk diameter 2
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m). Observe also for the case of 10 and 20 m, that the first maximum beyond the main lobe is about
17 dB less than the main lobe of the beam, which is a far field characteristic for all beam pattern
circular disk sound sources, or piston-like sources operating underwater. At range 4 m, however,
the situation is quite different, because 4 m represents is still within the geometric near field. Notice
at 4 m kr ∼ 50 at frequency 3000 Hz, and so this range is considerably beyond the range kr = 1.

Figure 5: Results from Eq.(3) calculated at 3 ranges defined by the field point |~r − ~rs| equal to 4, 10 and 20 m
but with varying θ.

Another way of looking at beam patterns is a polar plot (Fig. 6) which is same as Fig. 1 of High
Frequency Underwater Sound (which you can upload from the resource tab on the class website)
representing a 43 mm diameter disk (called a piston source) with frequency 108 kHz, operating in
water. Although the length and frequency scales are very different from the problem just described,
observe the first side lobe is also about 17 dB less than the main lobe. Important reminder: here we
are using the decibel as comparative metric. Thus we would not write ” dB ref. 20µPa (for air), or
ref. 1µPa (for water)”.

A simple formula πD2/4λ defines the critical range where geometric far field (also called the
Fraunhofer zone) behavior is expected. For any radiator of characteristic length scale L this formula
is L2/λ. For the case studied this range is ∼ 6 m, which explains why the 4 m in Fig. 5 result was in
the geometric near field and looked different.

Another handy formula is the beam width of the main lobe for disk transducer. This is the
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Figure 6: Polar plot of a beam pattern. See also Fig. 1 of High Frequency Underwater Sound.

Figure 7: Some basic rules for the distance to the far field and associated beam width of a radiating aperture
of length scale L and wavelength λ.

angular width represented by the red, dashed line in Fig. 6, as determined by the angle where the
beam pattern has fallen by 3 dB from the maximum (sometimes called the ”3 dB” width). This
width (in degrees) is 60λ/D For the example of the 2 m diameter disk the formula gives 15◦.

We can summarize these handy formulas below on party napkins (impress your friends at a
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Figure 8: Beam pattern at various ranges from a line array of length 6 m operating in water at frequency 2000
Hz.

party). We use L for characteristic scale; for a disk, substitute diameter D for L and the result is
nearly exact. Also, further simplify the geometric far field result by noting π/4 is sufficiently close
to 1.

These are valuable for their quick-estimating power–but they can also serve as a check on any
numerical study you might embark on – if the result of the study is at variance with these rules
you have reason to question the results. An example involving a line array of length L (Fig. 8)
shows the beam pattern evolving with range. For this case L2/λ is about 47 m, and observe that
between 40 and 50 m the beam pattern stabilizes to its geometric far field result. The far field result
is sin(s)/s where s = kL

2
sin(θ).

Finally, exercise some caution when using this terminology. You might come across to others
as being overly particular in using terms like geometric near and far field, when perhaps more
experienced professionals might abbreviate these terms as near and far field while discussing beam
patterns and other properties of sound radiation. One solution is to reserve the term hydrodynamic
near field for the special case of kr < and otherwise there are no length scales such as L,W or D
involved, and use near and far field when such scales are involved.
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ME525 Applied Acoustics Lecture 14, Winter 2022
The Rayleigh integral, additional numerical details and study of
near field far field ranges

Peter H. Dahl, University of Washington

Numerical implementation of the Rayleigh Integral

A typical example for the Rayleigh integral in Eq. (1) is shown in Fig. 1

p(~r) =
−iωρ0
2π

∫
S

un(xs, ys)
eikR

R
dxsdys (1)

whereR = |~r−~rs|. With few exceptions this is implemented numerically, the most common method
through a summation from each contribution originating from area dS.1 It is essential to properly
size the elemental area dS, otherwise there will numerical errors in approximating the Rayleigh
integral. From our previous notion of a monopole source of radiation area A, we anticipate a
requirement that

√
dS << λ.

Figure 1: Cartesian coordinate system established at the center of radiating rectangular aperture confined to
a baffle to restrict the sound field to z > 0. The elemental source dS is distance R from the field point where
R =

√
(x− xs)2 + (y − ys)2 + z2

It’s useful to compare numerical results with an exact solution for the beam pattern of a line
array in the geometric far field (this being sin(s)/s where s = kL

2
sin(θ)). Figure 2 shows B(θ) for

1The term for this is a Riemann summation; see Foote,( 2014).
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a line array of L = 2 m, operating at 5000 Hz in water. This is a 1D integral so here the dS is
effectively determined by dys, and the ”length scale” of an elemental source is dys.

Three attempts are made as parameterized by kdys, and it should be clear that we need to have
kdys < 1 to get acceptable results. For the case of kdys = 0.21 there is effectively no difference
between the numerical and exact result. The experiment is repeated at higher frequency 8000 Hz
(Fig. 3) giving a different set of three kdys values, showing that kdys = 0.34 is also close. Also
observe the reduced beam width for 8000 Hz, as defined by angular width of the main lobe, or
alternatively, width to the first null.

In summary the results suggest this rule: kdys < 0.2 for 1D line array study, and k
√
S ≤ 0.2 for

2D study as in Fig. 1 which is of course consistent with the original conjecture of
√
dS << λ.

Figure 2: beam pattern B(θ) as expressed by 20 log10 |p(θ)|/|pmax| computed in the far field of a line array of
length 2 m, frequency 5000 Hz in water. Dashed, red line is the result computed using the identified kdys
giving size of dys and solid, black line is theoretical result.

Range dependence and the near and far fields

The field on the acoustic axis of a rectangular array of L = 1.5 m, W = 2 m, is plotted as a
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Figure 3: Beam pattern B(θ) as expressed by 20 log10 |p(θ)|/|pmax| computed in the far field of a line array of
length 2 m, frequency 8000 Hz in water. Dashed, red line is the result computed using the identified kdys
giving size of dys and solid, black line is theoretical result.

function of range (Fig. 4), showing the complicated pattern that develops immediately in front
of the array: this is the near field. With increasing range away from the aperature the field settles
down into more smooth decay: this is the far field. Here pressure goes as ∼ 1/R–or the inverse
range spreading we would have expected all along from a compact point source.

The near field-far field transition is well predicted by the basic guide LW/λ. For nearly all
applications, this transition must be well understood. For example, in a system calibration of this
array it is desirable to place a test acoustic source (or acoustic receiver) in the far field to either
receive from or transmit signals to this array. Thus, it is essential to know, with confidence, that
this position is indeed in the far field because here the pressure field has simplified behavior, going
as ∼ 1/R (dotted line in Fig. 4), and it is straightforward to correct measurement made at different
ranges.

Next let us examine the 2D angular properties in the acoustic field, here using a rectangular
array of L = 1.2 m, W = 0.6 m, again operating at 5000 Hz in water (Fig. 5). These calculations are
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Figure 4: Relative magnitude of pressure field (expressed dB) on the acoustic axis of a rectangular array of
array of L = 1.5 m, W = 2 m as function of range, for frequency 5000 Hz operating in water. The near-far
field transition point is shown at range = LW/λ, after the pressure magnitude goes as ∼ 1/R

made well into the far field (i.e., range >> LW/λ), and you should by now have an intuitive feel
for the results.

With reference to Fig. 1, for one case in Fig. 5, θ sweeps across the L dimension such that θ = 0◦

aligns with z axis and θ = 90◦ aligns with y axis; for the other case θ sweeps across theW dimension
such that θ = 90◦ aligns with x axis. Since L > W we expect the beam width across L to be more
narrow than that across the W dimension, consistent with the Fourier relation between aperture
scale and angular width. Since the calculations are made well in the far field the sin(s)/s associated
with each dimension predicts the beam pattern quite well, where s is either kL

2
sin(θ)) or kW

2
sin(θ).

Figure 6 shows the beam pattern as if looking straight into the beam at some position in far field.
Because the long side L is oriented horizontally, the beam appears more narrow in this direction.

Array shading and a practical application of the Rayleigh Integral in Medical Ultrasound

A simple demonstration of aperture (or array) shading is illustrated in Fig. 7. An aperture
about 15 by 21 cm is shown on the left side. The unshaded narrow beam based on the full 15 by
21 cm dimension is shown by the red beam pattern on the right side. We can shade this aperture
in a simple way by by setting all sources, as in un(xs, ys) of Eq.(1), to 0, for source locations on the
corners of the aperture. The shaded aperture is shown by the black on left side and corresponding
beam pattern on right side. The total length of the shaded aperture is still the same but you can see
that the shaded beam pattern has broadened somewhat and side lobes have been reduced.
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Figure 5: Relative magnitude of pressure field (expressed dB) on the acoustic axis of a rectangular array of
array of L = 1.2 m, W = 0.6 m as function of angle θ, for frequency 5000 Hz operating in water. For one case
θ sweeps across the L dimension such that θ = 0◦ aligns with z axis and θ = 90◦ aligns with y axis; for the
other case θ sweeps across the W dimension such that θ = 90◦ aligns with x axis. See Fig. 1 for geometry.

There are many applications where this result is desirable and the Rayleigh integral can be
used as an exploratory tool find an optimal solution. A more sophisticated example of this is
provided by Dr. Wayne Kreider of the Applied Physics Laboratory’s Center for Industrial and
Medical Ultrasound. In this case the aperture is composed of 256 elements arranged in a spiral
(Fig. 8) which at the transmit frequency of 1.5 MHz, produces a focus point at about 120 mm
away on the acoustic axis (Fig. 9). Keep in mind that given the combination of element diameter
d of 7 mm, and the high frequency 1.5 MHz, puts kd >> 1 and thus a Riemann summation with
appropriately small dS must be applied to each of the 256 elements. More on this study can be
found in Kreider, et al. (2018).
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Figure 6: Beam pattern from example in Fig. 5 as if looking straight into the beam at some position in far
field. Red-to-blue denotes high-to-low levels of the beam pattern. The beam originates from an aperture
shown in Fig. 1. Because the long side L is oriented horizontally, the beam appears more narrow in this
direction.

Figure 7: left side: shaded aperture (black) and unshaded aperture (red + black). Right side: Beam pattern
computed in the far field for frequency 30 kHz, representing pattern for the long axis of the aperture, for
shaded aperture (black) and unshaded aperture (red).
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Figure 8: 256 element spiral array used for focused ultrasound applications in diagnostic and therapeutic
applications in medical ultrasound.

Figure 9: Field characterization near the focus points based on the Rayleigh integral (thick, gray lines) com-
pared with measurement.
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