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The Wavefront Queue 3–D (WaveQ3D) model is a research effort to create fast and accurate acoustic
transmission loss (TL) eigenrays, in littoral environments, for active sonar simulation/stimulation
systems. WaveQ3D is based on ray theory because Parabolic Equation and Normal Mode models
run prohibitively slow at active sonar frequencies above 1000 Hz, where the number of propagating
modes is large. To extend applicability to lower frequencies, WaveQ3D augments ray theory with
Gaussian beam techniques based on the Gaussian Ray Bundling (GRAB), which is certified for use
down to 150 Hz. WaveQ3D is unique among Gaussian beam models in that it solves the eikonal
equation in spherical Earth coordinates. The premise of this approach is that, when scenario geome-
tries are constantly evolving, it is more computationally efficient to perform acoustic transmission
loss (TL) in the latitude, longitude, altitude coordinates of the underlying environmental databases,
than it is to convert the 3–D environments into a series of Nx2–D Cartesian slices. This approach
also has the benefit of supporting out-of-plane, 3–D effects. ∗
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1. Introduction

Sonar simulation/stimulation systems convert the real-time evolution of complex scenarios

into acoustic signals, which are then injected into the sonar, and presented to the operator.

They are often used to teach sonar operators to recognize and react to acoustic phenomena,

in a controlled environment, at a much lower cost than at-sea exercises. Unfortunately, there

∗Preprint of an article submitted for consideration in Journal of Computational Acoustics (JCA) c©2012
copyright World Scientific Publishing Company, http://www.worldscinet.com/jca/.
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has been very little success in creating acoustic models that can compute results in real-

time, for dynamic scenarios, in littoral environments, without significant losses in accuracy.†

Most of the successes to date have involved the use of massively parallel computing systems

with high acquisition costs.

The Wavefront Queue 3–D (WaveQ3D) model is a research effort to create fast and accu-

rate acoustic transmission loss (TL) eigenrays, in littoral environments, for active sonar sim-

ulation/stimulation systems. In addition to TL, these eigenrays include the multipath travel

time, phase, and propagation direction information needed by sonar simulation/stimulation

systems. Our computation speed goal is to model one-way transmission loss for 100 targets

on a single core of an average laptop.

WaveQ3D is based on ray theory because Parabolic Equation and Normal Mode mod-

els run prohibitively slow at active sonar frequencies above 1000 Hz, where the number of

propagating modes is large. To extend applicability to lower frequencies, WaveQ3D aug-

ments ray theory with Gaussian beam techniques based on the Gaussian Ray Bundling

(GRAB),2 which is certified for use down to 150 Hz.3 WaveQ3D is unique among Gaussian

beam models4,?,6 in that it solves the eikonal equation in spherical Earth coordinates.‡ The

premise of this approach is that, when scenario geometries are constantly evolving, it is

more computationally efficient to perform acoustic transmission loss (TL) in the latitude,

longitude, altitude coordinates of the underlying environmental databases, than it is to con-

vert the 3–D environments into a series of 2-DxN Cartesian slices. This approach also has

the side benefit of supporting out-of-plane, 3–D effects.

The creation of the WaveQ3D model required the derivation of new equations for ray

tracing, reflection, eigenrays finding, and Gaussian beam propagation loss. This paper in-

troduces WaveQ3D to the research community by outlining that derivation. Future papers

will focus on the accuracy of the WaveQ3D model relative to analytic solutions and at-sea

results.

2. Ray Tracing in Spherical/Time Coordinates

Ray theory decomposes acoustic waves into surfaces of constant travel time (t) from the

source (Fig. 1). The rays are a vector field that is normal to these surfaces at each point in

space, and the route of these rays through the medium defines the direction of propagation.

In the high frequency limit, spreading loss occurs as the energy of the wavefront is stretched

over increasingly larger areas during propagation. Conventional ray theory uses the change

in distance between rays to model the spreading effects of wavefront propagation. The

fundamental equations of ray theory are derived18 by seeking solutions to the Helmholtz

†Discussion with Michael Vaccaro, project manager for the High Fidelity Active Sonar Training (HiFAST)
Project at the U.S. Office of Naval Research.
‡Although the Ray-Tracing Program for the Ocean (HARPO) model 7 also computes ray paths on a curved
Earth, its use of the Hamilton on an elliptical Earth introduces complexity that we do not believe will impact
training scenarios. HARPO also does not compute transmission loss and other eigenrays products at this
time.
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Fig. 1. Acoustic ray geometry.

equation (1) in the form given by Eq. (2)

∇2p+
ω2

c2(~r)
p(~r) = −δ(~r − ~r0) (1)

p(~r) = eiωt(~r)
∞∑
j=0

Aj(~r)

(iω)j
. (2)

Equating terms of like order in ω, yields the infinite sequence of equations given by

Eqs. (3), (4), and (5)

O(ω2) :
∣∣∣~∇t∣∣∣2 =

1

c2(~r)
, (3)

O(ω) : 2~∇A0 · ~∇t+ (∇2t)A0 = 0 , (4)

O(ω1−j) : 2~∇Aj · ~∇t+ (∇2t)Aj = −∇2Aj−1 for j=1,2,... (5)

where ~r is the position coordinate along a ray path; c is the speed of sound in water; A is

the wavefront amplitude; and t is the travel time along the ray path. The eikonal equation

(3) defines the relationship between the direction of propagation and the speed of sound in

water. The first transport equation (4) relates the spreading loss of the acoustic field to the

divergence in the propagation direction. The remaining transport equations (5) relate the

spreading loss of the acoustic field to diffraction effects. Eqs. (3) and (4) are an exact solution

of the wave equation in the geometric limit, that is, when the sound speed gradient along

the direction of motion changes slowly compared to the acoustic wavelength. Conventional

ray theory accuracy starts to break down at lower frequencies where diffraction becomes a

significant feature of acoustic propagation.
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The analytic solution to the eikonal equation (3) is found18 by relating ~∇t to n̂, the

direction of energy propagation along the ray paths

n̂ =
d~r

ds
= c~∇t . (6)

This transforms the eikonal equation into a second order ordinary differential equation

in terms of ~r, c, and s

d

ds

(
1

c

d~r

ds

)
= − 1

c2
~∇c . (7)

This can be reduced to a pair of simultaneous first order equations by introducing the

temporary variable ~ξ

d~ξ

ds
= − 1

c2
~∇c , (8)

d~r

ds
= c~ξ . (9)

This set of equations can be solved using a series of arc length steps given initial

conditions.8,9 Note that although the ray paths represented by Eqs. (12) and (13) are

independent of frequency, the loss along those paths will include the frequency dependent

effects of seawater absorption and interface reflection.

Equation (9) illustrates that the temporary variable ~ξ is actually the direction of prop-

agation scaled by the speed of sound, or equivalently, the wave number vector divided by

the angular frequency

~ξ =
n̂

c
=
~k

ω
, (10)

where ~k is the acoustic wave number vector; and ω is the angular frequency of the acoustic

source. This definition of ~ξ allows the system of equations represented by Eqs. (8) and (9) to

be initialized with the position and steering angle for each ray path at the acoustic source.

Note that the steering angle is defined using the depression/elevation (µ) and the azimuthal

steering (ϕ) launch angles of each ray relative to the source. Marching the simultaneous

first order equations (8) and (9) through steps in arc length then generates ray paths

throughout the water column. The spreading loss of the wavefront at any point is calculated

by measuring the spreading between adjacent rays. As adjacent rays have different travel

times in this treatment, there is an implicit assumption that propagation loss is being

calculated for a continuous ensonification at a single frequency.

Instead of solving the ray equations in units of arc-length, WaveQ3D uses a change of

variables (Eq. (11)) to transform equations (8) and (9) into functions of time.

d

ds
=

1

c

d

dt
, (11)
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d~ξ

dt
= −1

c
~∇c , (12)

d~r

dt
= c2~ξ . (13)

Computing acoustic propagation as a function of time has several advantages for training

system implementations. First, because phase coherence between rays is preserved at each

step, discontinuities between ray paths are reduced. Second, it allows the implementation

to return propagation results to the calling program, in travel time order, before later

paths have been computed. Third, it casts the solutions into a form that is very useful for

calculating reverberation.

Fig. 2. Spherical earth coordinates.

The WaveQ3D model uses the World Geodetic System 1984 (WGS–84)19 reference ellipse

to represent zero altitude worldwide (mean sea level). A spherical polar coordinate system

is constructed within each area of operations, and its radius is set equal to the WGS–84

radius of curvature at the center of the area. This coordinate system is illustrated in Fig. 2

where χ is latitude; φ is longitude; h is altitude above mean sea level; R is radius of earth’s

curvature for the area of operations; r is distance from the center of curvature (R+h); and

θ is co-latitude (90◦ − χ).

The WaveQ3D model defines the average radius of curvature in the area of operations

using a combination of WGS–84 radii in the latitude and longitude directions7

w2 ≡ 1− e2cosχ , (14)
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Rχ =
a(1− e2)

w3
, (15)

Rφ =
a

w
, (16)

R =
√
RχRφ (17)

where e is the WGS–84 elliptic eccentricity of earth (8.1819190842622x10-2); a is the WGS–

84 equatorial radius of the earth (6378137.0 m); (Rχ,Rφ) are the radii of curvature in

the latitude and longitude directions; and R is the average radius of curvature in area of

operations.

From these definitions, all locations in the area of operations can be represented in terms

of the spherical polar properties (r,θ,φ). The transformation of Eqs. (12) and (13) into this

coordinate system uses the fact that the ray position only has radial components, while the

ray direction has components in all three dimensions.§

~r(t) = r(t)r̂(t) , (18)

~ξ(t) = α(t)r̂(t) + β(t)θ̂(t) + γ(t)φ̂(t) , (19)

d~r

dt
=
dr

dt
r̂ + r

dr̂

dt
, (20)

d~ξ

dt
=
dα

dt
r̂ + α

dr̂

dt
+
dβ

dt
θ̂ + β

dθ̂

dt
+
dγ

dt
φ̂+ γ

dφ̂

dt
(21)

where α(t), β(t), and γ(t) are the radial, co-latitude, and longitude components of the

normalized ray direction. Note that the unit vectors r̂, θ̂, and φ̂ in Eqs. (20) and (21)

change as a function of r, θ, and φ. The impact of these derivatives can be understood by

casting them into their Cartesian coordinate equivalents before applying the time derivative

r̂(t) = sinθ(t) cosφ(t) î+ sinθ(t) sinφ(t) ĵ + cosθ(t) k̂ , (22)

θ̂(t) = cosθ(t) cosφ(t) î+ cosθ(t) sinφ(t) ĵ − sinθ(t) k̂ , (23)

φ̂(t) = −sinφ(t) î+ cosφ(t) ĵ . (24)

The chain rule, when applied to Eqs. (22), (23), and (24) yields the following time

derivatives in spherical coordinates

dr̂

dt
=
dθ

dt
θ̂ + sinθ

dφ

dt
φ̂ , (25)

§This derivation uses arrows for vectors with magnitude and direction (such as ~r), carets for unit length
vectors (such as r̂), and plain text for magnitude parameters (such as r).
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dθ̂

dt
= −dθ

dt
r̂ + cosθ

dφ

dt
φ̂ , (26)

dφ̂

dt
= −sinθdφ

dt
r̂ . (27)

Applying Eqs. (25) through (27) to Eqs. (20) and (21) transforms the ray tracing equa-

tions into spherical earth coordinates

d~r

dt
=
dr

dt
r̂ + r

dθ

dt
θ̂ + rsinθ

dφ

dt
φ̂ , (28)

d~ξ

dt
=

[
dα

dt
− βdθ

dt
+ γsinθ

dφ

dt

]
r̂ +

[
dβ

dt
+ α

dθ

dt
− γcosθdφ

dt

]
θ̂

+

[
dγ

dt
+ (αsinθ + βcosθ)

dφ

dt

]
φ̂ .

(29)

Matching terms for r̂, θ̂, and φ̂ yields a system of six first-order, scalar differential

equations

dr

dt
= c2α , (30)

r
dθ

dt
= c2β , (31)

rsinθ
dφ

dt
= c2γ , (32)

dα

dt
− βdθ

dt
− γsinθdφ

dt
= −1

c

dc

dr
, (33)

dβ

dt
+ α

dθ

dt
− γcosθdφ

dt
= − 1

cr

dc

dθ
, (34)

dγ

dt
+ (αsinθ + βcosθ)

dφ

dt
= − 1

crsinθ

dc

dφ
. (35)

When Eqs. (30) though (32) are plugged into Eqs. (33) though (35), the system is

reduced to a state where all of the coordinate derivatives appear only once

dr

dt
= c2α , (36)

dθ

dt
=
c2β

r
, (37)
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dφ

dt
=

c2γ

rsinθ
, (38)

dα

dt
= −1

c

dc

dr
+
c2

r

(
β2 + γ2

)
, (39)

dβ

dt
= − 1

cr

dc

dθ
− c2

r

(
αβ + γ2cotθ

)
. (40)

dγ

dt
= − 1

crsinθ

dc

dφ
− c2γ

r
(α+ βcotθ) , (41)

WaveQ3D uses Equations (36) through (41) to compute the time evolution for the location

and direction for any acoustic ray based on its initial conditions. These equations include the

horizontal refraction effects and follow great circle routes between as they traverse latitudes

and longitude. Environmental parameters and their derivatives are computed directly in

geographic latitude, longitude, and altitude without reducing the problem to a series of

Nx2–D Cartesian projections.

The WaveQ3D model uses an explicit, third order, Adams-Bashforth (AB3) algorithm8

to propagate Eqs. (36) through (41) numerically. The AB3 algorithm, summarized in

Eqs. (42), approximates each step in the solution using cached information from the three

time steps that came before it

~f(tn+1) = ~f(tn) + δt

[
23

12

d~f

dt
(tn)− 16

12

d~f

dt
(tn−1) +

5

12

d~f

dt
(tn−2)

]
. (42)

where ~f is a vector of the positions, directions, and their derivatives such that

~f =

[
r, θ, φ, α, β, γ,

dr

dt
,
dθ

dt
,
drφ

dt
,
dα

dt
,
dβ

dt
,
dγ

dt

]
. (43)

When the past values are cached instead of re-calculated, AB3 is much faster than other

integrators with similar accuracy. However, because AB3 is not self-starting, the WaveQ3D

model uses a third order Runge-Kutta (RK3) algorithm9 whenever the ray parameters must

be initialized, or re-initialized

During the development of WaveQ3D, we discovered that the inclusion of spherical co-

ordinate terms in Eqs. (36) through (41) had very little impact on the speed of ray trace

calculations. The types of training applications that we are targeting rely on gridded en-

vironmental data that has been derived from at-sea measurements. We found that the

interpolations needed to compute the sound speed and its derivatives from gridded data

were much more computationally expensive than algebraic or trigonometric functions be-

cause of the search operations inherent in interpolation. This difference becomes even more

pronounced if terms like sinθ and c2/r are cached at the time that they are first used
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Fig. 3. Estimating the point of reflection.

3. Boundary Reflections on a Spherical Earth

Interface reflection in WaveQ3D starts with an estimate of the point in time when the

incident ray strikes the bottom. The derivation of the equations for estimating the time of

reflection in spherical coordinates uses the symbols defined in Fig. 3 where ~I is the incident

ray path; ζ is the incident grazing angle; ŝ is the surface normal; r̂ is the unit vector in the

radial direction; h is the incident ray height above bottom; ∆t is the normal time step; and

δt is the time step needed to reach the interface. Note that, to simplify the geometry, Fig. 3

is drawn in the plane of reflection. Fig. 4 illustrates this same scenario in a 3–D perspective.

If the bottom slope is nearly constant across the length of the incident ray, then the

ratio of the time steps is equivalent to the ratio of the distances normal to the surface

d1 ≡ −~I · ŝ = −
(
d~r

dt
· ŝ
)

∆t , (44)

d2 ≡ −hr̂ · ŝ , (45)

δt

∆t
=
d2
d1

=
h r̂ · ŝ(
d~r

dt
· ŝ

)
∆t

, (46)

δt =
h r̂ · ŝ
d~r

dt
· ŝ
. (47)

At the ocean surface, this simplifies to

δtsurface =
h
dr
dt

, (48)
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where dr
dt is the radial ray tracing component defined in Eq. (36).

Fig. 4. Reflection from a 3–D slope.

The next step in WaveQ3D reflection modeling is estimating the direction of reflection

from a 3–D slope. The derivation of the equations for estimating this direction in spherical

coordinates uses the symbols defined in Fig. 4 where Î is the incident ray path direction;

R̂ is the reflected ray path direction; and ~B is the component of the incident ray that is

perpendicular to surface normal. Since the reflected ray has the same angle to the normal

as the incident ray

R̂ = 2 ~B − Î , (49)

~B = Î − (Î · ŝ)ŝ , (50)

R̂ = Î − 2(Î · ŝ)ŝ . (51)

For ocean surface reflections, these relationships negate the sign of the radial component

while leaving the θ and φ direction components unchanged.

During development, we found that the Eq. (51) was very sensitive to the curvature of

the incident ray. Using a second second order Taylor expansion for each component of the

position, normalized direction, and sound speed, to find their precise values at the point

defined by Eq. (47), improved the overall accuracy of the reflection model.

Most bottom depth databases grid the relief of the earth’s surface into a series of geo-

graphic latitude and longitude points. WaveQ3D compute the spherical components of the

surface normal (sr, sθ, sφ) by equating the slope (σθ, σφ) to the first derivative of b, the

bottom’s radial position at the point of reflection.

Ωθ ≡ tan(σθ) =
1

b

db

dθ
, (52)
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Ωφ ≡ tan(σφ) =
1

b sinθ

db

dφ
, (53)

sθ = −sin(σθ) = − Ωθ√
1 + Ω2

θ

, (54)

sφ = −sin(σφ) = −
Ωφ√

1 + Ω2
φ

, (55)

sr =
√

1− (s2θ + s2φ) . (56)

After reflection, WaveQ3D must re-initialize the ray in a way that maintains the phase

continuity of the wavefront. The WaveQ3D model uses a third order Runge-Kutta (RK3)

algorithm to reverse propagation from the point of reflection back to the tn, tn−1, tn−2
points in time, during reinitialization.
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Fig. 5. 3-D Reflection on the Malta Escarpment.

Fig. 5 illustrates WaveQ3D out-of-plane reflection from ETOPO1 gridded bathymetry10

on the Malta Escarpment. In this figure, bottom bathymetry contours are represented as

dashed lines. A ray is launched from 35:59N 16:00E, at a depth of 10 meters, with a depres-

sion/elevation angle of -20o (down), and an azimuth of 270o. The solid black line follows

the trajectory of the ray as a function of latitude and longitude. The open circles along
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this path represent places where surface reflections occurred; the closed circles represent

bottom reflections. The speed of sound was artificially fixed at 1500 m/s, and a time step

of 100 ms was used to compute ray paths. The decrease in spacing between the shallow

water dots illustrates an increase in the ray’s depression/elevation angle as it reflects up the

slope. In addition, ray paths were reflected into a new azimuthal direction each time that

they interacted with the bottom. These out-of-plane reflections result in a down slope ray

path that is offset by more than 21.9 km from the up slope path, after 14 bounces off of the

bottom.

4. Finding Eigenrays using Coherent Wavefronts

In the WaveQ3D model, eigenrays are derived from each target’s geometry relative to a

Closest Point of Approach (CPA) on the wavefront. A point on the wavefront is the CPA for

a specific target if it has the smalled distance to that target relative to the wavefront points

immediately surround it. The coordinates for this distance calculation are illustrated in

Fig. 6 where ~rp is the position of the eigenray target; ~rnjk is the position of a candidate point

on the wavefront; dnjk is the distance from target to each point on wavefront; δt is the target

offset along the direction of propagation; δµ is the target offset in the depression/elevation

direction; and δϕ is the target offset in the azimuthal direction.

Fig. 6. Eigenray estimation geometry (side view: ϕk direction not shown).

WaveQ3D uses an efficient calculation for the square of the distance in spherical coor-

dinates that is derived from the Haversine formula12

d2njk = r2p + r2njk − 2~rp · ~rnjk , (57)

d2njk = r2p + r2njk − 2rprnjk [sin(χp)sin(χijk) + cos(χp)cos(χijk)cos(φp − φijk)] , (58)
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d2njk = r2p + r2njk − 2rprnjk

[
1− 2

{
sin2

(
χp − χijk

2

)
+ cos(χp)cos(χijk)sin

2

(
φp − φijk

2

)}]
, (59)

d2njk ≈ r2p + r2njk − 2rprnjk

[
1− 2

{(
χp − χijk

2

)2

+ cos(χp)cos(χijk)

(
φp − φijk

2

)2
}]

, (60)

d2njk ≈ r2p+r2njk−2rprnjk

[
1− 2

{(
θp − θijk

2

)2

+ sin(θp)sin(θijk)

(
φp − φijk

2

)2
}]

. (61)

The accuracy of this approximation improves as the distance between the target and

the wavefront decreases. Because the implementation caches values for sinθ at both the

wavefront and target locations, Eq. (61) allows d2njk to be computed without the use of any

additional transcendental functions.

WaveQ3D uses the offset of each target relative to the travel time (t), depres-

sion/elevation launch angle (µ), and the azimuthal launch angle (ϕ) coordinates of the

CPA to compute eigenrays. The WaveQ3D model calculates these offsets by expressing d2p,

the square of the distance at the target point, as a second order Taylor series, relative to

the CPA, in vector form

~ρ ≡ (ρ1, ρ2, ρ3) ≡ (δt, δµ, δϕ) , (62)

d2p ≈ ε+ ~g · ~ρ+
1

2
~ρ ·H ~ρ , (63)

ε ≡ d2
∣∣
CPA

, (64)

~g ≡ ∂d2

∂~ρ

∣∣
CPA

, (65)

H ≡ ∂2d2

∂~ρ2
∣∣
CPA

(66)

where ~ρ is the target offset from CPA in vector form; ~g is the gradient of squared distance

at CPA (3 elements), and H is the Hessian matrix of squared distance at CPA (3x3).

One way to solve this equation would be to search for a value of ~ρ for which Eq. (63)

was zero. However, since d2p is positive definite, the problem can be simplified by searching

for the minimum value, indicated by a zero in the first derivative

∂d2p
∂~ρ

= ~g + H ~ρ = 0 , (67)
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H ~ρ = −~g , (68)

~ρ = −H−1 ~g . (69)

This treatment reduces the offset estimation problem to the calculation of the gradient

of distance, the calculation of the Hessian matrix, and a matrix inversion. Note that the

inverse of a 3x3 matrix has a simple analytic solution that allows it to be solved efficiently

and without approximation.

Some eigenray products can be computed directly from this offset vector solution

tp = tn + δt , (70)

µp = µj + δµ , (71)

ϕp = ϕk + δϕ (72)

where tp is the travel time from the source; µp is the depression/elevation launch angle at

source; and ϕp is the azimuthal launch angle at source. WaveQ3D computes the direction

at the target by forward solving a 2nd order Taylor series for ~ξ in the neighborhood of the

CPA. The calculation of the eigenray is completed by the calculation of propagation loss,

which is discussed in the next section.

Note that this eigenray detection process is less much efficient than an equivalent calcu-

lation in Cartesian coordinates. The impact of this difference is minimized when the number

of targets is small compared to the number ray tracing points; a good assumption for real-

time, sonar simulation/stimulation systems. Unfortunately, this assumption may make the

WaveQ3D model inefficient for tactical decision aids, because the number of target points

is large in ”what-if” applications.

5. Computing Propagation Loss using 3–D Gaussian beams

In conventional ray theory, the spreading of acoustic propagation loss is estimated by mea-

suring the changes in ensonified area between ray paths. The intensity across the wavefront

is inversely proportional to the change in a surface area segment compared to its area at

the source. The Gaussian beam approach uses dynamic ray equations to compute the diver-

gence of the acoustic field normal to the path of propagation. The GRAB model assumes

that this divergence can be estimated from the wavefront shape directly, and this reduces

the computational cost of transmission loss calculations.

In 2–D Gaussian beam models, the intensity at the target location is a summation

of contributions from rays above and below the eigenray target. To extend this to three

dimensions, WaveQ3D assumes that the wavefront spreading is independent in the µ and

ϕ directions. This assumption decomposes the Gaussian ray contributions to a series of
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Fig. 7. Gaussian ray nearest neighbors (front view: tn direction not shown).

nearest neighbor lines in the µ and ϕ directions, as illustrated in Fig. 7.

G(~rp) =

 j+J∑
j′=j−J

gj′(~rp)

( k+K∑
k′=k−K

gk′(~rp)

)
, (73)

where G(~rp) is the total Gaussian beam intensity at the eigenray target; (j, k) are the index

numbers of the cell containing the eigenray target; gj′ are the Gaussian beam contributions

along depression/elevation direction; gk′ are the Gaussian beam contributions along the

azimuthal direction; 2J + 1 are the number of significant beams in the depression/elevation

direction; and 2K + 1 are the number of significant beams in the azimuthal direction.

The intensity of each Gaussian beam contribution is a function of the width of the beam

and the distance along the wavefront to the eigenray target, normalized to the surface area

of each beam at the source

gj′(~rp) =

(
µj′+1 − µj′

)√
2πw2

j′

exp

(
−
d2j′

2w2
j′

)
, (74)

gk′(~rp) =

(
sin(µj′+1)− sin(µj′)

)
(ϕk′+1 − ϕk′)√

2πw2
k′

exp

(
−
d2k′

2w2
k′

)
, (75)

where wj′ and wk′ are the half-widths of the Gaussian beam (from the cell center to one

edge) in the µ and ϕ directions; and d2j′ and d2k′ are the distance in the µ and ϕ directions

from the Gaussian beam center to the eigenray target. The WaveQ3D model aligns the ray
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paths with the edges of the Gaussian beam (full-width at half maximum). Distance terms

in the µ direction are calculated using the following pattern

L = 2 wj
δµ

∆µj
, (76)

dj = L− wj , (77)

dj−1 = L− wj−1 , (78)

dj−2 = L+ 2wj−1 + wj−2 , (79)

dj+1 = L− 2wj − wj+1 , (80)

dj+2 = L− 2wj − wj+1 − wj+2 (81)

where δµ is the eigenray offset in depression/elevation angle; ∆µ is the depression/elevation

width of this beam at the source; wj is the width of beam j; and all widths have been

interpolated to the time tn + δt. More distant cells can be supported by adding additional

2w terms to Eqs. (79) and (81). The pattern in the azimuthal direction is similar.

GRAB2 models the frequency dependent component of the beamwidth by giving each

beam a minimum width

w′j(f) = max (wj , 2πλ) , (82)

where λ is the wavelength of the signal being modeled; wj is the cell width of beam j,

and w′j(f) is the adjusted width of beam j. The λ term acts as the minimum amount of

spreading that GRAB expects beams to project into neighboring areas. In GRAB, Gaussian

beams are overlapped by 50% to reduce fluctuations in the vicinity of the mid-point between

rays.13 The number of Gaussian profiles is effectively twice the number of ray paths.

The WaveQ3D model treats beam width broadening as a convolution between a fre-

quency dependent Gaussian propagation spread and a second Gaussian that represents the

spatial spreading created by the sampling of the wavefront.

(w′j(f))2 = (2wj)
2 + (2πλ)2 . (83)

which avoids the sudden transitions inherent in taking a maximum value. WaveQ3D man-

ages the 50% overlap by multiplying the cell width term by two. Treating the two spreading

terms in this way reduces the number of Gaussian beam calculations by two, Normaliz-

ing Eq. (74) by the combined effect of both spreading sources conserves energy across the

wavefront.
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During development, we evaluated the impact of these changes on propagation into a

shadow zone using the downward refracting n2 linear environment used in the development

of GRAB’s minimum beamwidth.

c(z) =
c0√

1 +
2g0z

c0

, (84)

where c(z) is speed of sound as a function of depth; z is depth (positive is down); c0 is the

speed of sound at the ocean surface (=1550.0 m/s); and g0 is the sound speed gradient at

the ocean surface (=1.2 s-1).

Because analytic results for this scenario did not include the effects of a round Earth, an

Earth flattening correction needed to be applied to the sound speed profile before WaveQ3D

could generate equivalent results. The Earth flattening term is the inversion of the term

used by GRAB to incorporate Earth curvature into its calculations.15 This correction is

given by

c(r) =
r

R
c(z) , (85)

where r is the radial distance from the center of curvature; R is the radius of earth’s

curvature in this area of operations; c(z) is the original sound speed; and c(r) is the modified

sound speed.
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Fig. 8. Model comparisons at edge of shadow zone.
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Fig. 8 compares the results of WaveQ3D, GRAB, and a full field calculation using the

Fast Field Program (FFP) wavenumber integration model.16,17 It plots the coherent prop-

agation loss, as a function of range, for a continuous ensonification at 2000 Hz, with the

source and receiver both at a depth of 75 meters. Note that, at all ranges, the FFP result

is consistent with an ideal wave equation solution except for the presence of some minor

implementation jitter in the ranges above 880 m. Prior to the shadow zone, all three models

produce similar results. In the region beyond 840 m, the WaveQ3D and GRAB transmission

loss values are similar to each other, but slightly higher than FFP. This result, in combi-

nation with other tests that we have performend, suggests that our 3–D implementation of

GRAB’s 2–D Gaussian beam appears to produce equivalent results.

6. Execution Speed Comparisons

Work in Progress - In this section, we need to compare WaveQ3D execution speeds to an

equivalent calculation using GRAB. Demonstrates ”fast”.

7. 3–D Wedge TL Comparisons

Work in Progress - In this section, we need to compare WaveQ3D propagation loss results

to Deane and Buckingham’s analytic model for the 3-D wedge. Demonstrates ”accurate”.

8. Availability

WaveQ3D is freely available to the research community as an open-source product.

It is distributed as part of the Under Sea Modeling Library (USML), a C++ pack-

age that provides the computational framewwork in which is WaveQ3D implemented.

Formal releases and test results are distributed through the Ocean Modeling Li-

brary, a web site (http://oalib.hlsresearch.com) that is supported by the U.S. Office

of Naval Research as a means of publishing software of general use to the interna-

tional ocean acoustics community. Software developers can also participate directly in the

WaveQ3D development process through the UnderSeaModelingLibrary project on GitHub

(https://github.com/campreilly/UnderSeaModelingLibrary). Documentation on the appli-

cation programmer’s interface (API) for this software and additional test results are also

available from both sources.
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