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Chapter 1

Introduction

This document describes the first (distribution-ready) release of TRACEO,
a ray tracing model written in Fortran 77 but tested with the GNU gfor-
tran compiler, and available under a Creative Commons license. The current
version of the model replaces the models previously known as TRACE (a
standard ray tracing model) and TRACEO (an adaptation of TRACE,
which allowed to consider the presence of a single object, located between
the acoustic source and the array of receivers). Not only the former TRACE
and TRACEO were merged into what is now TRACEO, as the original
code was carefully rewritten, in order to allow the optional inclusion of one
or more objects, to allow upper and lower boundaries with range-dependent
properties (including compressional and shear velocities and attenuations),
to allow eigenray calculations at the positions specified by array coordinates,
and to output the results (rays, arrivals, amplitudes, acoustic pressure and
particle velocity components) as Matlab MAT files1. TRACEO can handle
a particular set of analytical sound speed profiles, or general tabulated sound
speed profiles or fields. The receiver array can be horizontal, vertical, rectan-
gular, or it can have an arbitrary curvilinear shape; the hydrophones are not
required to be equidistant. Rays can be partially or totally reflected on any
boundary of the waveguide, or be completely absorbed. TRACEO was de-
veloped in order to model acoustic propagation in environments, which avail-
able models were not able to handle (like wavy surfaces, complex bathyme-
tries, depth and range variations of sound speed, etc.), and for applications in
the areas of geoacoustics, vector sensor arrays, underwater communications
and acoustic barriers.

TRACEO strongly benefited from the availability of the Bellhop ray
tracing model[1], one of the components of the Acoustic Toolbox[2]; Bellhop

1A standalone version of TRACEO not linked to the Matlab’s engine, which writes
huge ascii files, is also available by request.

4



is developed (and constantly updated) by Michael Porter from HLS research.
TRACEO borrows many methods from Bellhop, but goes beyond Bellhop’s
capabilities by allowing calculations in the following cases:

• using a set of analytical profiles;

• positioning targets between the source and the array of receivers;

• considering boundaries with range-dependent properties (which also
account for shear velocity and attenuation);

• considering boundaries, which besides being partially or totally reflec-
tive can be completely absorbent.

The present document was not written with the intention of being just
TRACEO’s manual. Ray tracing and Gaussian beams are so compelling
subjects, that the presentation of TRACEO was not considered to be com-
plete without a detailed discussion of Ray tracing and Gaussian beams in
independent chapters. Researchers with more interest in applications can
skip directly to the chapters describing the model (installation, the general
structure of the input file, etc.), and to the discussion of relevant model nu-
merical issues, particular examples and comparisons with other models. The
final chapter presents some conclusions and future directions of potential
development. An appendix contains additional topics covering ray tracing
modeling in more complex cases (accounting for ocean currents and earth’s
curvature) and within the context of the Hamiltonian formalism.

Before proceeding a final word of acknowledgement should be addressed to
those, which one way or another made possible the development of TRACEO.
First of all is Michael Porter, Bellhop’s author, whose constantly updated
code was a valuable guide to understand and test most of the methods
implemented in TRACEO. Michael Porter is also a co-author of COM-
PUTATIONAL OCEAN ACOUSTICS [3], a central reference for underwa-
ter acoustic modeling. Second in the list goes Mikhail Mikhailovich Popov,
whose excellent RAY THEORY AND GAUSSIAN BEAM METHOD FOR
GEOPHYSICISTS (available in the internet) provides an excellent discussion
of Gaussian beam theory. Finally, a word of gratitude should be addressed
to Vlastislav Cerveny, Ludek Klimes and Petr Bulant, members of the con-
sortium research project Seismic waves in complex 3-D structures (SW3D),
which maintain an online library of valuable papers, related to Gaussian
beams; the consortium provides also an extensive set of ray tracing codes,
oriented to seismic applications, which share a lot of methodologies used in
acoustic underwater ray models. To all of them I would like to present my
deepest gratitude.
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Chapter 2

Ray tracing theory

2.1 The acoustic wave equation

The starting point for the discussion of the ray tracing is given by the acoustic
wave equation, which in the case of a watercolumn with a constant density
can be written as

∇2p− 1

c2
∂2p

∂t2
= s(r0, t) , (2.1)

where p(r, t) stands for the pressure of the acoustic wave, s(r0, t) represents
the signal transmitted by the acoustic source, r0 represents the source po-
sition and ∇ represents the nabla differential operator. Applying a Fourier
transform to both sides of Eq.(2.1) one can obtain the so called Helmholtz
equation: [

∇2 +
ω2

c2

]
P (r, ω) = S(r0, ω) , (2.2)

where

P (r, ω) =

∞∫
−∞

p(r, t)e−iωtdt ,

and

S(r0, ω) =

∞∫
−∞

s(r0, t)e
−iωtdt .

Let’s consider a plane wave-like approximation to the solution of Eq.(2.2)
and write that [4]

P (ω) = Ae−iωτ , (2.3)

where A represents a slowly changing wave amplitude, and ωτ stands for a
rapidly evolving phase; the surfaces with constant ωτ represent the wave-
fronts ; analogously, the surfaces with constant τ are called timefronts. By
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placing Eq.(2.3) into the homogeneous form of Eq.(2.2), considering the high
frequency approximation

∇2A

A
� k2

(where k = ω/c) and separating the real and imaginary terms of the equation,
one can obtain the Eikonal equation:

(∇τ)2 =
1

c2
(2.4)

and the transport equation:

2 (∇A ·∇τ) + A∇2τ = 0 . (2.5)

The following sections will describe the solution of Eqs.(2.4)–(2.5).

2.2 Solving the Eikonal equation

The Eq.(2.4) can be rewritten as

|∇τ | = 1

c
, (2.6)

which can be further simplified as

dτ

ds
=

1

c
, (2.7)

where ds stands for the distance traveled by the acoustic wave. Therefore, it
follows that

dτ =
ds

c
, (2.8)

stands for the travel time along ds. For a wave propagating between two
points A and B the total travel time corresponds then to

τ =

B∫
A

ds

c
. (2.9)

2.2.1 Lagrangian’s formalism and Fermat’s principle

Based on Lagrangian’s formalism one can write Eq.(2.9) as

τ =

B∫
A

L ds , (2.10)
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where L represents the system’s Lagrangian:

L =
1

c
. (2.11)

Within the context of the formalism L is supposed to be a function of coor-
dinates and generalized velocities[5]:

L(x, y, z, ẋ, ẏ, ż) =
1

c

√
ẋ2 + ẏ2 + ż2 , (2.12)

where

ẋ =
dx

ds
, ẏ =

dy

ds
, ż =

dz

ds
.

In this way, the perturbation of the travel time corresponds to

δτ =

B∫
A

{[
∂L
∂x

δx+
∂L
∂ẋ

δẋ

]
+

[
∂L
∂y
δy +

∂L
∂ẏ
δẏ

]
+

[
∂L
∂z
δz +

∂L
∂ż
δż

]}
ds =

=
∂L
∂ẋ

δx+
∂L
∂ẏ
δy +

∂L
∂ż
δz

∣∣∣∣∣
B

A︸ ︷︷ ︸
=0

+

+

B∫
A

{[
∂L
∂x
− d

ds

(
∂L
∂ẋ

)]
δx+

[
∂L
∂y
− d

ds

(
∂L
∂ẏ

)]
δy +

[
∂L
∂z
− d

ds

(
∂L
∂ż

)]
δz

}
ds .

According to Fermat’s principle

δτ = 0 ,

which implies that
d

ds

(
∂L
∂ẋ

)
− ∂L

∂x
= 0 ,

d

ds

(
∂L
∂ẏ

)
− ∂L

∂y
= 0 ,

d

ds

(
∂L
∂ż

)
− ∂L

∂z
= 0 .

(2.13)

On the other side, using Eq.(2.12) one can obtain that

∂L
∂ẋ

=
ẋ√

ẋ2 + ẏ2 + ż2
L = Lẋ =

1

c

dx

ds
,
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∂L
∂ẏ

=
ẏ√

ẋ2 + ẏ2 + ż2
L = Lẏ =

1

c

dy

ds
,

∂L
∂ż

=
ż√

ẋ2 + ẏ2 + ż2
L = Lż =

1

c

dz

ds
.

Therefore, one can conclude that the solution of the Eikonal equation requires
the solution of the following system of equations:

d

ds

(
1

c

dx

ds

)
=

∂

∂x

(
1

c

)
,

d

ds

(
1

c

dy

ds

)
=

∂

∂y

(
1

c

)
,

d

ds

(
1

c

dz

ds

)
=

∂

∂z

(
1

c

)
. (2.14)

2.2.2 Sound slowness

The reciprocal of sound speed is present sistematically in the system given
by Eq.(2.14). Such fact suggest that the system can be greatly simplified by
defining the reciprocal of sound speed as a parameter of its own, called sound
slowness σ:

σ =
1

c
. (2.15)

With this new parameter the system Eq.(2.14) becomes

d

ds

(
σ
dx

ds

)
=
∂σ

∂x
,

d

ds

(
σ
dy

ds

)
=
∂σ

∂y
,

d

ds

(
σ
dz

ds

)
=
∂σ

∂z
. (2.16)

An additional simplification can be achieved by considering sound slowness
as a vector parameter:

σ = [σx , σy , σz] . (2.17)

Following this new definition each term inside parenthesis implies that

dx

ds
=
σx
σ

,
dy

ds
=
σy
σ

,
dz

ds
=
σz
σ

, (2.18)

which transforms the system Eq.(2.16) into

dσx
ds

=
∂σ

∂x
,

dσy
ds

=
∂σ

∂y
,

dσz
ds

=
∂σ

∂z
, (2.19)

or, more compactly, in vector form:

dσ

ds
= ∇σ . (2.20)
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2.2.3 Cilindrical symmetry (two-dimensional case)

In a system with cilindrical symmetry (see Fig.2.1) the Eikonal equation
follows directly from Eq.(2.18) and Eq.(2.19), by replacing x with r and
nullifying any derivative along y:

dr

ds
=
σr
σ
,

dz

ds
=
σz
σ

; (2.21)

under this conditions the system Eq.(2.16) becomes

dσr
ds

=
∂σ

∂r
,

dσz
ds

=
∂σ

∂z
. (2.22)

In Eq.(2.22) σr(s) and σz(s) represent, respectively, the horizontal and ver-
tical components of sound slowness:

σ(s) = [σr(s) , σz(s)] .

The differential of travel time can be written as

dτ =
ds

c
= σ ds =

σ2

σr
dr .

dr

dz

ds

θ

Figure 2.1: Ray slope, θ, ray step ds and horizontal and vertical steps dr and
dz for the case of cilindrical symmetry; the parameters are related through
the following relationships:

dr = cos θ ds , dz = sin θ ds , tan θ = dz/dr , ds =
√

(dr)2 + (dz)2 .

The system of equations given by Eq.(2.21) and Eq.(2.22) can be rewritten
also in a more classical fashion as[3]

dr

ds
= c(s)σr(s) ,

dσr
ds

= − 1

c2
∂c

∂r
,

dz

ds
= c(s)σz(s) ,

dσz
ds

= − 1

c2
∂c

∂z
.

(2.23)
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or, more compactly, in vector form:

dr

ds
= c(s)σ(s) ,

dσ

ds
= − 1

c2
∇c . (2.24)

When sound speed depends on depth only the horizontal slowness is pre-
served:

dσr
ds

= 0 ;

this, in combination with flat boundaries, allows to infer the classical form
of Snell’s law along the ray:

σr(s) =
cos θ(s)

c(s)
= constant . (2.25)

The set of initial conditions required to solve the two-dimensional form of
the Eikonal equation is given by

r(0) = r0 , z(0) = z0 , σr(0) =
cos θ(0)

c(0)
, σz(0) =

sin θ(0)

c(0)
,

where θ(0) represents the launching angle, [r0, z0] stands for the source posi-
tion and c(0) is the sound speed at the source position.

2.3 Solving the transport equation

The solution of the Eikonal equation allows to calculate the Jacobian J ,
between the usual set of cartesian coordinates (x, y, z) and a particular set
of ray coordinates (s, α1, α2), where s stands for the ray arclenght and α1,2

stand for some sort of auxiliary ray angles. In general, J represents the cross
section of a ray tube propagating from the source to the receiver. Let us
define es as the unitary vector tangent to the ray:

es =

 dx/ds
dy/ds
dz/ds

 . (2.26)

Therefore, the first term in the transport equation, combined with the Eikonal
equation, can be rewritten as

∇A ·∇τ =
dA

ds
es ·

dτ

ds
es =

dA

ds
es ·

1

c
es =

1

c

dA

ds
.
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As for the second term, let us notice that the analytical properties of the
Jacobian[3] allow to write that

∇2τ = ∇ ·∇τ =
1

J

d

ds

(
J

c

)
.

The previous expressions transform the transport equation into

2

c

dA

ds
+
A

J

d

ds

(
J

c

)
= 0 , (2.27)

which can be easily integrated to provide the result

A =
A0√
J/c(s)

,

where A0 stands for a constant, which depends of the type of acoustic source.
The solution to the wave equation can then be written as

P (r, ω) = A0

√
c(s)

J
e−iωτ .

In the proximity of a point source one can identify the ray coordinates
(s, α1, α2) with the spherical coordinates (s, θ, φ), centered at the source po-
sition (see Fig.2.2); therefore, it can be written that

c(s) ≈ c(0) and J ≈ s2 cos θ(0) ,

with θ(0) standing for the launching angle. On the oher side, close to the
source, the acoustic field can be approximated as a spherical wave, which
implies that

A0

√√√√ c(0)

s2 cos θ(0)
e−iωs/c(0) =

1

4πs
e−iωs/c(0) ;

it follows from this relationship that

A0 =
1

4π

√√√√cos θ(0)

c(0)
.

The classical solution can then be written explicitely as

P (r, ω) =
1

4π

√√√√c(s)

c(0)

cos θ(0)

J
e−iωτ . (2.28)

Unfortunately, the classical solution based on the Jacobian suffers from a
serious drawback. Each time a ray tube narrows into a single point the Ja-
cobian becomes zero (the points at which J = 0 are called caustics), and the
acoustic field exhibits a singularity at such point. Removing such singulari-
ties from the solution can be achieved by substituting the classical solution
with the solution based on Gaussian beams.
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Figure 2.2: Ray coordinates in the proximity to the source.

2.4 Transmission loss

The definition of transmission loss according to [2] is

TL = −20 log

∣∣∣∣∣P (r, ω)

P0

∣∣∣∣∣ , (2.29)

where
P0 = 1/(4π) .

Bellhop however, calculates transmission loss as

TL = −20 log |P (r, ω)| . (2.30)

The same definition is adopted by TRACEO.

2.5 Particle velocity

Particle velocity calculations are becoming more and more relevant in dif-
ferent applications of underwater acoustics, in part due to the recent devel-
opment of vector sensor arrays[6]. Particle velocity can be calculated from
acoustic pressure using the relationship[7]

v = − i

ωρ
∇P , (2.31)

where ρ represents the watercolumn density, and ω stands for the frequency
of the propagating wave.
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Chapter 3

Gaussian beams

3.1 The Gaussian beam approximation

The starting point for the approximation of the acoustic field as a Gaussian
beam is given by the analytical expression

P (s,n) =
1

4π

√√√√c0(s)

c0(0)

cos θ(0)

det Q
exp

{
−iω

[
τ(s) +

1

2
(Mn · n)

]}
, (3.1)

where c0(s) stands for sound speed along a ray trajectory:

c0(s) = c(s,0)

and n represents the normal to the ray, which can be considered as two-
dimensional vector:

n =

[
n1

n2

]
,

such that n · es = 0, where es was already defined by Eq.(2.26). In what it
follows the projection of sound slowness along n will be written as σn.

While n is a real vector both matrices M and Q are complex. Therefore,
the complex part of the product Mn · n induces a Gaussian decay of ray
amplitude along the normal (see Fig.3.1), while the real part introduces phase
corrections to the travel time along n. Additionally, a proper choice of initial
conditions for Q will ensure that detQ 6= 0, which frees the Gaussian beam
approximation of singularities.

Both components of n and σn can be considered as being dependent
of a particular set of local ray parameters, let’s say, ray arclength s, plus
angles α1 and α2. At any point of the ray one can introduce a set of three
orthogonal unit vectors, known as the polarization vectors ; naturally, the
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n

Ray trajectory

Beam amplitude

Figure 3.1: Gaussian beams: amplitude decay along the normal.

first polarization vector is es; the other two polarization vectors, which are
going to be represented as e1 and e2, are within the plane perpendicular to
es (see Fig.3.2).

e
s

e1

e2

Ray trajectory

Figure 3.2: Gaussian beams: polarization vectors.
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The vectors e1 and e2 define the possible orientations of n and σn at any
coordinate s of the ray:

n = n1e1 + n2e2 and σn = σe1 + σe2 .

Besides matrices Q and M the Gaussian beam approximation involves
two more matrices, called P and C; all four matrices are related through the
following relationships:

d

ds
Q = c0P ,

d

ds
P = − 1

c20
CQ , M = PQ−1 , (3.2)

where

P =

[
p11 p12
p21 p22

]
, (3.3)

Q =

[
q11 q12
q21 q22

]
, (3.4)

and

C =

[
C11 C12

C21 C22

]
, (3.5)

where

Cij =
∂2c

∂ni∂nj
.

The components of P and Q correspond to partial derivatives of the ray
normal and normal slowness, along the auxiliary parameters α1 and α2[5]:

pij =
∂σi
∂αj

and qij =
∂ni
∂αj

.

3.2 Initial conditions on P and Q

Generally speaking, the only way to ensure that the matrices P(s) and Q(s)
are complex, being C(s) a real matrix, is by selecting a proper choice of
complex initial conditions for both matrices. As shown by the literature such
proper choice is a matter of intense debate, seemingly not yet solved. There
are however particular choices of real P(0) and Q(0), which are relevant for
the discussion of Gaussian beams. Due to such relevance those choices are
presented in this section for the case of a point source and for the case of a
linear source.
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3.2.1 Point source

For the case of a point source the conditions can be shown to be[5]:

P(0) =

[
1/c(0, 0, 0) 0

0 cos θ(0)/c(0, 0, 0)

]

and[8]

Q(0) =

[
0 0
0 0

]
,

where c(0, 0, 0) stands for sound speed at the source position.

3.2.2 Line source

For the case of a line source the conditions become[5]

P(0) =

[
0 0
0 1/c(0, 0, 0)

]

and

Q(0) =

[
1 0
0 0

]
.

3.3 Reduction to the 2.5D case

Let us consider an environment with the following set of conditions:

C =

[
cnn 0
0 0

]

(i.e., there is no dependence on the second component of n, and indexing is
being omitted by obvious reasons) and

Q(s) =

[
q(s) 0

0 q⊥(s)

]

so the matrix contains only diagonal elements, and we introduced the nota-
tion

q(s) = q11(s) , q⊥(s) = q22(s) ,

so detQ = q(s)q⊥(s). It follows from the system given by Eq.(3.2) that

p12(s) = p21(s) = 0 ,

17



and
d

ds
q = c0 p ,

d

ds
p = −cnn

c20
q ,

d

ds
q⊥ = c0 p⊥ ,

d

ds
p⊥ = 0

where p = p11 and p⊥ = p22. The solution of the last equation is trivial and
corresponds to

p⊥(s) = p⊥(0) = constant .

It follows further that

q⊥(s) = p⊥(0)Ic(s) + q⊥(0) ,

where
Ic(s) =

∫
c0(s)ds .

Recalling n as two-dimensional vector one gets that

Mn · n =
p(s)

q(s)
n2
1 +

1

Ic(s)
n2
2 . (3.6)

In the case of a point source it follows that

q⊥(s) =
cos θ(0)

c(0, 0, 0)
Ic(s) ∼ s ,

which indicates that the parameter is proportional to the ray path.

3.4 Reduction to the 2D case

The 2D case is identified here as the waveguide with cylindrical symmetry
discussed in section 2.2.3, so the coordinates r, z and θ stand for horizontal
distance, depth and ray slope related to the horizontal, respectively. The
Gaussian beam expression for this case follows readily from the expression
for the 2.5 case, by taking n2 = 0 and n = n1, which provides the expression

P (s, n) =
1

4π

√√√√c(s)

c(0)

cos θ(0)

q⊥(s)q(s)
exp

[
−iω

(
τ(s) +

1

2

p(s)

q(s)
n2

)]
; (3.7)

in this expression p(s) and q(s) are related through the so-called dynamic
equations :

dq

ds
= c(s)p(s) ,

dp

ds
= −cnn

c2
q(s) . (3.8)
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The second-order derivative along the normal can be written in terms of
derivatives along r and z as[1]

cnn =

(
dr

dn

)2

crr + 2

(
dr

dn

)(
dz

dn

)
crz +

(
dz

dn

)2

czz , (3.9)

where

crr =
∂2c

∂r2
, czz =

∂2c

∂z2
, crz =

∂2c

∂r∂z
,

and
dr

dn
= − sin θ ,

dz

dn
= cos θ .

Those derivatives can be identified as the components of the polarization
vector e1(s), which in the 2D case correspond to:

es(s) =

[
cos θ(s)
sin θ(s)

]
and e1(s) =

[
− sin θ(s)

cos θ(s)

]

(see Fig.3.3).

r

z

e
s

e1 Ray trajectory

θ

θ

Figure 3.3: Polarization vectors for the 2D case.

The beam width and curvature, L(s) and K(s), respectively[1, 9], can be
calculated from p(s) and q(s) by comparing the following expressions:

iω
1

2

p

q
n2 =

iωK(s)

2c(s)
n2 +

1

L2
n2 ,
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which yields that

K(s) = c(s)Re

[
p(s)

q(s)

]
, (3.10)

and

L(s) =

√√√√√√
−2

ωRe

[
p(s)

q(s)

] . (3.11)

As shown by Eq.(3.11) the Gaussian beam approximation requires that p(s)/q(s) >
0. To this end it would be sufficient to select a non-zero real value for p(0),
plus the choice q(0) = iε, being ε a real number, as small as possible.
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Chapter 4

Attenuation

As shown in the previous chapters the general solution for the acoustic pres-
sure can be written as

P (r, ω) = Ae−iωτ

with

A =
1

4π

√√√√c(s)

c(0)

cos θ(0)

J

for the classical solution, and

A =
1

4π

√√√√c(s)

c(0)

cos θ(0)

Sq(s)
exp

[
−1

2
iω
p(s)

q(s)
n2

]
for the Gaussian beam approximation. Either expression does not take into
account the dissipation of energy due to material absorption, and due to
the transfer of energy every time the acoustic wave bounces on a boundary.
Such dissipation is frequency-dependent (and more relevant as frequency in-
creases), and implies using a corrected amplitude a, which corresponds to
the original amplitude, multiplied by two decaying factors φr and φV :

a = A× φr × φV
where φr and φV stand, respectively, for the decay due to boundary re-
flections, and due to volume absorption. Both factors are described in the
following sections.

4.1 Boundary reflections

The decaying factor φr is given by the expression

φr =
nr∏
i=1

Ri , (4.1)
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where nr represents the total number of boundary reflections, and Ri is the
reflection coefficient at the ith reflection. The case with no reflections (nr =
0) corresponds to φr = 1. Generally speaking, boundaries can be one of four
types:

• Absorvent: the wave energy is transmitted completely to the medium
above the boundary, so R = 0 and ray propagation is terminated at
the boundary.

• Rigid: the wave energy is reflected completely on the boundary, with
no phase change, so R = 1.

• Vacuum: the wave energy is reflected completely on the boundary, with
a phase change of π radians, so R = -1.

• Elastic: the wave energy is partially reflected, with R being a complex
value and |R| < 1.

The calculation of the reflection coefficient for an elastic medium (see Fig.4.1)
is given by the following expression[10]:

R (θ) =
D (θ) cos θ − 1

D (θ) cos θ + 1
, (4.2)

where

D (θ) = A1

A2
1− A7√
1− A2

6

+ A3
A7√

1− A5/2

 ,

A1 =
ρ2
ρ1

, A2 =
c̃p2
cp1

, A3 =
c̃s2
cp1

,

A4 = A3 sin θ , A5 = 2A2
4 , A6 = A2 sin θ , A7 = 2A5 − A2

5 ,

c̃p2 = cp2
1− iα̃cp
1 + α̃2

cp

, c̃s2 = cs2
1− iα̃cs
1 + α̃2

cs

,

α̃cp =
αcp

40π log e
, α̃cs =

αcs
40π log e

,

where the units of attenuation should be given in dB/λ.
In general the reflection coefficient is real when αcp = αcs = 0, and the

angle of incidence θ is less than the critical angle θcr, with θcr given by the
expression

θcr = arcsin

(
cp1
cp2

)
. (4.3)

Moreover, attenuation is negligible when θ < θcr, and for small θ the energy
transferred to shear waves in the elastic medium is only a small fraction of
the total energy transferred.
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Water

ρ1, cp1

Elastic medium

ρ2, cp2, cs2

αcp, αcs

θ

θ1

γ1

Figure 4.1: Ray reflection on an elastic media.

4.2 Volume attenuation

Volume attenuation in the ocean has a chemical nature, and it is induced by
relaxation processes of salt constituents like MgSO4, B(OH)3 and MgCO3.

The factor φV is given by the decaying exponential

φV = exp (−αT s) , (4.4)

where s is the ray arclength and αT is the Thorpe (frequency dependent)
attenuation coefficient in dB/m, given by[2]

αT =
40f 2

4100 + f 2
+

0.1f 2

1 + f 2
, (4.5)

with the frequency given in kHz.
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Chapter 5

Numerical issues

5.1 Geometric beams

As shown by numerical calculations the solution of the dynamic equations
(see Eq.(3.8)) with complex values induces the formation of weird artifacts,
which reveal themselves as patterns of self-interference after the ray is re-
flected on a boundary. In some cases such interference is unrealistically in-
tense despite the expected exponential decay in amplitude along the normal
direction. To erradicate such artifacts TRACEO uses the approximation
of geometric beams[11, 12], which relies on the following expression for the
calculation of the acoustic field:

P (s, n) = φ(s, n)ae−i[ωτ(s,n)−φc] ; (5.1)

in the above expression φ(s, n) is a hat window (see Fig.5.1), defined as

φ(s, n) =


W (s)− n(s)

W (s)
when n(s) ≤ W (s)

0 otherwise

, (5.2)

with W (s) representing the beam width:

W (s) =

∣∣∣∣∣ q(s)∆θ

c(0) cos θ(s)

∣∣∣∣∣ ; (5.3)

in this expression ∆θ stands for the angle step. Moreover, the dynamic
equations are integrated using the initial conditions:

p(0) = 1 and q(0) = 0 ,
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n

φ(s, n)

−W (s) W (s)

Figure 5.1: Geometric beams: the hat function.

which provide the following expression for the amplitude:

a(s) =

√√√√c(0) cos θ(0)

q(s)

c(s)

Ic(s)
φr(s)φV (s) . (5.4)

By using real values of p(s) and q(s) it becomes necessary to compensate the
travel time along the normal direction; such compensation can be written as

τ(s, n) = τ(s) + δτ(s, n) (5.5)

where τ(s) is the classical travel time (see Eq.(2.9)); the additional term
corresponds to

δτ(s, n) = (∆r · es)
dτ

ds
, (5.6)

where

∆r = rh − r(s) =

[
rh − r(s)
zh − z(s)

]
with rh and r(s) representing, respectively, the position of the hydrophone
and the position of the given point along the ray. The total acoustic field is
then calculated as a superposition of all ray influences.

A drawback of the geometric beams is that they are affected by caustics,
as the classical solution, because of the changes in sign of q(s) as the inte-
gration proceeds along the ray arclength. As discussed in [11] the general
behaviour of the solution can still be accurate by introducing an amplitude
correction φc into Eq.(5.1), which can be written as

φc = (−i)m(s) , (5.7)

where i represents the imaginary unit, and m(s) corresponds to the number
of times that q(s) vanishes in the interval [0, s] (this function is also known
as the KMAH index).
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5.2 Updating p and q after reflections

Modeling of the propagating wave would be incomplete without properly
updating the values of p(s) and q(s) after each boundary reflection. Following
Bellhop the method used to update the values is given by:

p′ = p+ qrn , q′ = q , (5.8)

where p and q stand for the values before reflection, and p′ and q′ stand for
the values after. The correction rn is given by the expression

rn = rm
4Cn − 2rmCs

c
(5.9)

where c stands for the value of sound speed at the boundary,

rm = Tg/Th

and

Tg = (σ · τ b) , Th = (σ · nb) , Cn = (∇c · σn) , Cs = (∇c · σ) ;

τ b corresponds to the boundary tangent, nb is the boundary normal and ∇c
is the sound speed gradient; additionally, σ and σn stand for the slowness
and normal slowness, which can be written as

σ =
1

c

[
cos θ
sin θ

]
, σn =

1

c

[
− sin θ

cos θ

]
;

all parameters should be calculated at the reflection point.

5.3 Solving the Eikonal equations

The Eikonal equations (see Eq.(2.23)) are integrated by TRACEO using
a method of the Runge-Kutta type, known as the Runge-Kutta-Fehlberg
method (hereafter called RKF). As with other Runge-Kutta methods the
RKF method starts by rewriting the original system of equations, as a linear
differential vector equation

dy

ds
= f ,

where

y =


r
z
σr
σz

 and f =


σr/σ
σz/σ
∂σ/∂r
∂σ/∂z

 ;
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at each step of integration the method proceeds through a set of intermedi-
ate steps. After each integration the RKF method provides not one, but two
different solutions. If the solutions differe in more than a particular given
threshold the ray step ds can be halved, and the integration repeated, pro-
viding a mean to control the accuracy of the solution. In order to prevent an
infinite loop TRACEO stops the halving (and interrupts the calculations)
if the sucessive comparisons of solutions fail to converge.

5.4 Solving the dynamic equations

Instead of integrating the dynamic equations simultaneously with the Eikonal
equations TRACEO relies on the accuracy of ray coordinates, and uses a
simple Euler method to integrate the dynamic equations. It had been noticed
that the adoption of such strategy greatly simplifies the flow of calculations
and the debugging of the code, without compromising accuracy.

5.5 Calculation of derivatives

Calculating the derivatives of sound speed is one (among many) of the most
important tasks for an accurate calculation of ray coordinates, and further
calculations of ray influence at a given point of the array. To this end
TRACEO relies on three different types of piecewise interpolation:

• Linear interpolation: the method is trivial and does not require ex-
planation; it is applied every time the interpolation point is located
between the first or last pair of tabulated coordinates; being linear, no
second derivative is calculated.

• Parabolic interpolation: the method implemented is called barycentric
parabolic interpolation; it is applied every time the interpolating point
is located between the first or last three tabulated coordinates. The
method can be described as follows: let us consider a set of three points
x1, x2 and x3, and the corresponding function values f(x1), f(x2) and
f(x3). At a given point x (see Fig.5.2) the interpolant can be written
as

f(x) = f(x1) + a2 (x− x1) (x− x3) + a3 (x− x1) (x− x2) . (5.10)

It follows from this expression that

a2 =
f(x2)− f(x1)

(x2 − x1) (x2 − x3)
e a3 =

f(x3)− f(x1)

(x3 − x1) (x3 − x2)
.
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The approximations to the derivatives become

df

dx
= a2 (2x− x1 − x3) + a3 (2x− x1 − x2)

and
d2f

dx2
= 2 (a2 + a3) .

x1 x2 x3

x

bc bc bcbc X

Figure 5.2: 1D Barycentric parabolic interpolation.

• Cubic interpolation: the method of interpolation (not surprisingly called
barycentric cubic interpolation) is analogous to the previous one, but
using four points instead of three. Cubic interpolation is applied when
the interpolation point is surrounded by four points (two points back
and two points forward).

One of the advantages of the barycentric interpolators is that they can be
easily extended to handle different numbers of points, or to handle interpo-
lation and calculation of derivatives at higher dimensions. For instance, the
explicit form ot the 2D barycentric parabolic interpolator corresponds to

f(x, y) = a11 (x− x2) (x− x3) (y − y2) (y − y3) +
+ a12 (x− x1) (x− x3) (y − y2) (y − y3) +
+ a13 (x− x1) (x− x2) (y − y2) (y − y3) +
+ a21 (x− x2) (x− x3) (y − y1) (y − y3) +
+ a22 (x− x1) (x− x3) (y − y1) (y − y3) +
+ a23 (x− x1) (x− x2) (y − y1) (y − y3) +
+ a31 (x− x2) (x− x3) (y − y1) (y − y2) +
+ a32 (x− x1) (x− x3) (y − y1) (y − y2) +
+ a33 (x− x1) (x− x2) (y − y1) (y − y2) ,

(5.11)

(see Fig.5.3) where the coefficients can be calculated as:

a11 =
f(x1, y1)

(x1 − x2) (x1 − x3) (y1 − y2) (y1 − y3)
,

a12 =
f(x2, y1)

(x2 − x1) (x2 − x3) (y1 − y2) (y1 − y3)
,
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Figure 5.3: 2D Barycentric parabolic interpolation.

. . .

Using the notation

pi(x) =
3∏

j=1,j 6=i
dj(x) , di(x) = (x− xi) and Si(x) = 2x−

3∑
j=1,j 6=i

xj (5.12)

one can write the 2D interpolator compactly as

f(x, y) =
3∑
i=1

3∑
j=1

aij pj(x) pi(y) , (5.13)

with the coefficients given by

aij =
f(xj, yi)

pj(xj) pi(yi)
.

The explicit expressions for the partial derivatives correspond to

∂f

∂x
=

3∑
i=1

3∑
j=1

aij Sj(x) pi(y) , (5.14)

∂f

∂y
=

3∑
i=1

3∑
j=1

aij pj(x) Si(y) , (5.15)

∂2f

∂x2
= 2

3∑
i=1

3∑
j=1

aij pi(y) , (5.16)

∂2f

∂y2
= 2

3∑
i=1

3∑
j=1

aij pj(x) , (5.17)
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and
∂2f

∂x∂y
=

3∑
i=1

3∑
j=1

aij Sj(x) Si(y) . (5.18)

5.6 Calculation of normals

Theoretically, in order to calculate the ray influence as accurately as pos-
sible the vector ∆r (see section 5.1) is required to be perpendicular to the
polarization vector es(s) (or, alternatively, parallel to e1(s)). For an arbi-
trary position of the hydrophone such condition implies traveling along the
ray, until the condition (∆r · es) = 0 is fullfiled. In such case the normal
corresponds to

n = |∆r| .
Numerical calculations indicate that there is no significant loss of accuracy
(and requires much less computations) to take

∆r =

[
0

zh − z(s)

]
,

(i.e., at each hydrophone range one interpolates ray depth, so ∆r becomes a
vertical vector, connecting the ray to the hydrophone) and to calculate the
normal as

n = |∆r · e1(s)| .

5.7 Refraction correction

Besides the integration of the dynamic equations, and the update of p(s) and
q(s) after reflections, TRACEO borrows from Bellhop an undocumented
correction of refraction, which can be written as

p′ = p+ q r̃n ,

where ′ stands for the corrected value,

r̃n = −r̃m
(2Cnj − r̃mCsj)

c
,

r̃m = σr(s)/σz(s) ,

Cnj = δ∇c · σn , Csj = δ∇c · σ ,

c represents the sound speed at the arrival position, and δ∇c represents the
“jump” of the gradient, i.e., the variation of ∇c between the initial and final
positions.
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5.8 Ray reflection at a boundary

The laws of specular reflection simply state that the angle of reflection should
be equal to the angle of incidence, and that the incident ray, together with
the surface normal and the reflected ray, should all lie in a common plane.
Implementing such statement in terms of angles can become quite inefficient
if one keeps in mind that the boundary is not necessarily flat; in such case
the calculation of the angles of incidence and reflection requires calculat-
ing ray and boundary slopes, using inverse trigonometric functions to get
the ray/boundary angles relative to the horizontal, and figuring out how to
combine them. Such approach can become quite cumbersome. An efficient
method for the calculation of ray reflection consists in using the expression

e′s = es + (2 cos θ1) nb , (5.19)

where nb represents the boundary’s normal at the point of incidence, ′ stands
for the values after reflection, and

cos θ1 = nb · (−es) .

Thus, every time a ray intersects a boundary, TRACEO calculates the
point of ray-boundary intersection, which becomes the point of incidence;
the coordinates of the point are used to calculate the boundary’s normal,
and Eq.(5.19) is applied; the integration of the Eikonal equation is then
restarted at the point of incidence (as if the source was now located at the
boundary), with the launching angle being defined by the components of e′s.

5.9 Orientation of boundary normals

When a boundary is interpolated TRACEO calculates the normal at the
interpolation point. Such normal always points towards the bottom. How-
ever, in order to calculate correctly the reflection of the ray at the bottom
the bottom’s normal is flipped in the opposite direction, so the ray returns
to the watercolumn. As for a reflection on an object the reflection on the
lower side of the object (i.e. the side closer to the surface) is equivalent to a
bottom reflection, while the reflection on the upper side (i.e. the side closer
to the bottom) is equivalent to a surface reflection.

5.10 Ray-boundary intersection

As TRACEO calculates progressively ray coordinates it interpolates the
altimetry and the bathymetry at each ray range. It also checks if the range
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is inside an object “box”, i.e., if ray range is within the range interval, which
defines a given object; if the range is outside the object is ignored; otherwise,
an additional test is performed to test if the ray is inside the object. If ray
depth is above the altimetry, below the bathymetry, or inside the object,
TRACEO divides the interval between the initial and final positions into n
parts, and calculates the initial vertical distance ∆z0, between the ray and the
boundary; then, moving progressivel along the ray segment it calculates the
product p = ∆z0∆zi, with ∆zi representing the vertical distance between the
ray and the boundary at the ith step, until a change of sign in p is detected.
At such stage the calculation is interrupted, and the intersection is calculated
through linear interpolation between the last two points. By proceeding in
this way TRACEO is able to handle situations, in which the ray segment
can intersect the boundary at more than one point.

5.11 Calculation of particle velocity

TRACEO ignores the ω and ρ factors in the calculation of particle velocity
(see section 2.5). Therefore, what TRACEO presents as particle velocity is
nothing more than the horizontal and vertical derivatives of acoustic pressure,
multiplied by the complex unit i. To calculate such derivatives at a given
position TRACEO performs an additional set of calculations, determining
the acoustic pressure above and below the given point, and also on both
sides. The points aligned along the horizontal are used to calculate the
horizontal derivative at the center, using a barycentric parabolic interpolator;
likewise, the points aligned along the vertical are used to calculate the vertical
derivative at the center. In order to obtain an accurate approximation to the
real derivatives the spacing between the points is defined, arbitrarily, as being
equal to λ/10, unless the hydrophones are spaced closer than such value.
The advantage of such strategy, despite its computational cost, resides on its
independence of the approximation used to calculate the acoustic pressure.

5.12 Eigenray search

Eigenray search is perhaps one of the most difficult problems to tackle within
the context of ray tracing. Stated simply as the task of calculating a set of
rays, which connect the source to the receiver, it is important to keep in mind
that in general rays can be sent backwards to the source. Therefore, if a ray
misses the receiver when propagating forward it still has the chance to hit
the receiver on its way back to the source. Further complications arise when
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the rays can be absorbed by the boundaries, or when small variations of the
launching angle lead to non-linear variations of ray trajectories (a situation,
typical of the placing of objects inside the waveguide). In order to provide a
robust method of eigenray search TRACEO uses two different approaches
to the problem, namely:

1. If all rays are propagating forwards, TRACEO interpolates ray depth
at each array range for every launching angle. This procedure generates
a matrix of the form:

r1 r2 r3 . . . rm
θ1 z1(θ1) z2(θ1) z3(θ1) . . . zm(θ1)
θ2 z1(θ2) z2(θ2) z3(θ2) . . . zm(θ2)
θ3 z1(θ3) z2(θ3) z3(θ3) . . . zm(θ3)
...

...
...

...
. . .

...
θn z1(θn) z2(θn) z3(θn) . . . zm(θn)


where zi(θj) represents ray depth at range i and launching angle j.
Then, at the ith range, with the hydrophone located at depth zh,
TRACEO calculates the function

f(θ) = zh − zi(θ)

using the correspond row of the matrix; if an eigenray exists in the
interval i and i+ 1, the function f(θ) will switch signs between θi and
θi+1; in such case the Regula Falsi method is used to find the zero of
the function. Once the zero is found the ray is calculated, and written
to the output file as an eigenray. In order to avoid an infinite loop
the eigenray search is interrupted if the number of iterations is greater
than a given limit. Particular care is taken in order to deal with rays,
which for any reason do not reach the given array range. The search is
interrupted if a “returning” ray is detected. The Regula Falsi method
is computationally accurate and efficient, as long as the function z(θ)
can be properly computed, which won’t be the case for returning rays.

2. As an alternative to the previous method TRACEO can use a less
accurate (but stable) search of eigenrays by proximity. At each range
ray depth z is calculated, and for each depth (if there is more than one)
TRACEO calculates the difference

|zh − z| ,

where zh represents hydrophone depth; if the difference is less than
a given threshold TRACEO writes the ray to the output file as an
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eigenray. Certainly, the accuracy of the method depends on the choice
of the threshold, and on the number of launching angles (the more, the
better). Until a better approach is idealized for dealing with returning
rays the proximity method seems to offer a reasonable compromise
between accuracy and stability.

Eigenrays are not grouped by TRACEO according the coordinates of the
array; they are witten progressively, one after another, to the output file. It
is up to the user to group them according to the position of each hydrophone.

5.13 Calculation of amplitudes and arrivals

Ray amplitudes and travel times are calculated using the same methods of
eigenray search, with the difference of being the only data written to the
output file, together with the coordinates of the hydrophone. As in the case
of eigenrays it is up to the user to group ray amplitudes and ray arrivals
according to the position of each hydrophone.
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Chapter 6

Model description

6.1 General strategy of calculations

Fig.6.1 provides a general view of the waveguide handled by TRACEO.
The source can be located anywhere inside a range “box” (hereafter called
rbox), and ray tracing is terminated every time a ray exits the box. Placing
the source on any of the rbox ranges prevents any calculations of being
performed. For the sake of numerical stability it is strongly recommended
(but not required) that both surface and bottom coordinates are defined
beyond the ranges of the rbox.

Launching angles can be defined clockwise or counter clockwise, as de-
sired, but launching angles too close to 90◦ (which are detected by the con-
dition |cos θ| < ε) are skipped. Additionally, TRACEO uses the convention
that rays launched towards the surface have a positive launching angle, while
negative launching angles indicate propagation of rays towards the bottom.
Depending on the reflection coefficient R any boundary waveguide (including
objects) can be one of four different types, namely absorbent (R = 0), rigid
(R = 1), vacuum (R = −1) or elastic (R is calculated as described in section
4.1). Rays arriving at an absorbing boundary are no longer traced. Another
condition for ray termination is that |R| < ε. The array can be horizontal,
vertical, rectangular or linear.

The general strategy of calculations can be resumed as follows:

• For every launching angle trace the ray, until it is terminated or exits
the rbox.

• At every step of ray integration check if the ray is above the surface, be-
low the bottom or inside an object. For a positive check determine the
intersection of the ray with the boundary, reflect the ray, and continue
with the integration of ray equations.
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Figure 6.1: General view of TRACEO’s waveguide.

• After exiting the rbox calculate the (p, q) parameters and the amplitude
of the ray.

• Use ray coordinates and amplitudes to calculate the output requested
by the user.

6.2 Installation

The Fortran sources of the model are provided with a simple makefile.
Matlab and the gfortran GNU compiler are required for installation. The
makefile uses the definitions of Matlab directories and libraries on the ma-
chine were the model was originally compiled; before invoking make on the
command line the user should review the correspondent definitions and adapt
them to his local machine. After a sucessful compilation the user can place
the resulting binary (traceo.exe) and the shell script runtraceo in a direc-
tory, where the system can find them. The input file has the in extension
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and can be written from Matlab using the M-file wtraceoinfil.m. After
creating the input file (for instance, munk.in) the user can run the model
with the command runtraceo munk; according to the desired output the
model will create one of the following Matlab mat files:

1. rco.mat: ray coordinates;

2. ari.mat: ray or eigenray information (ray coordinates, plus travel
times and amplitudes);

3. aad.mat: arrivals and delays information;

4. cpr.mat: coherent acoustic pressure;

5. ctl.mat: coherent transmission loss;

6. pvl.mat: particle velocity;

7. pav.mat: coherent acoustic pressure and particle velocity.

Although many of the output parameters are expected to be complex linkage
issues with the Matlab engine forced a workaround of packing complex vectors
as real two-dimensional matrices (first row represents the real part, second
row the complex part), and separating complex matrices into a real and
a complex part. Users are welcome to fix this issue. Besides the Matlab
mat files TRACEO writes a short munk.log ASCII file, describing the type
of array and the calculation time. The structure of the input file will be
described in the following section.

6.3 The input file

The general structure of the input file (hereafter called INFIL) can be better
understood if one thinks of it as composed of blocks; each block describes a
particular element of the waveguide, from top to bottom. In order to provide
a friendly view of the INFIL the blocks are separated with a long line, which
is ignored by the model. The structure of the INFIL is as follows:

Title

Source Block

Altimetry Block

Sound Speed Block

Objects Block

Bathymetry Block

Array Block

Output Block
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The Title is a character string, which is written in the LOGFIL (the file
with the *.log extension).

The structure of each block is as follows:

Source Block:

ds ray step

rx,zx source coordinates

rbox(1),rbox(2) range box

freqx source frequency

nthtas number of launching angles

theta(1), theta(nthtas) first and last launching angles

Optionally, the user can set ds to zero; in such case TRACEO uses the
ranges of the rbox to calculate a preliminary step.

Altimetry Block:

atype surface type

aptype surface properties

aitype interpolation type

atiu attenuation units

nati number of surface coordinates

atype can be one of the following characters:

’A’ absorbent surface
’E’ elastic surface
’R’ rigid surface
’V’ vacuum over surface

aptype can be one of the following characters:

’H’ homogeneous surface
’N’ non-homogeneous surface

aitype can be one of the following strings:

’FL’ flat surface
’SL’ surface with a slope
’2P’ piecewise linear interpolation
’3P’ piecewise parabolic interpolation
’4P’ piecewise cubic interpolation
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atiu can be one of the following characters:

’F’ dB/kHz
’M’ dB/meter
’N’ dB/neper
’Q’ Q factor
’W’ dB/λ

(same units used by Bellhop; for specific details regarding the definitions of
these units see [2]).
nati is the number of surafce coordinates.

For aptype = ’H’ the properties and coordinates of the surface are spec-
ified as follows:

cpati(1),csati(1),rhoati(1),apati(1),asati(1)
rati(1),zati(1)

rati(2),zati(2)

rati(3),zati(3)

...
rati(nati),zati(nati)

Alternatively, for aptype = ’N’ the properties and coordinates of the surface
are specified as:

rati(1),zati(1),cpati(1),csati(1),rhoati(1),apati(1),asati(1)

rati(2),zati(2),cpati(2),csati(2),rhoati(2),apati(2),asati(2)

rati(3),zati(3),cpati(3),csati(3),rhoati(3),apati(3),asati(3)

...
rati(nati),zati(nati),cpati(nati),...

Sound Speed Block:

cdist type of sound speed distribution

cclass class of sound speed

nr0,nz0 number or points in range, number of points in depth

cdist can be one of the following strings:

’c(z,z)’ sound speed profile c = c(z)
’c(r,z)’ sound speed field c = c(r, z)

For a sound speed field both range and depth derivatives are calculated using
a bi-dimensional barycentric parabolic interpolator, on the grid of nr0×nz0
points. For a sound speed profile all range derivatives are zero; depth deriva-
tives are calculated depending on the value of cclass, which can be one of
the following strings:
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’ISOV’ isovelocity profile
’LINP’ linear profile
’PARP’ parabolic profile
’EXPP’ exponential profile
’N2LP’ n2-linear profile
’ISQP’ inverse-square gradient profile
’MUNK’ Munk profile
’TABL’ tabulated profile

All but the last cclass describe analytical profiles, whose derivatives can
be calculated explicitely. The parameters of those profiles can be specified
through a simple list of the form

z0(1),c0(1)

z0(2),c0(2)

Here it follows a description of each analytical profile:

• Isovelocity profile:

c(z) = c0 = constant ,
dc

dz
= 0 ,

d2c

dz2
= 0 ;

therefore, only the value c0(1) is used during the calculations.

• Linear profile:

c(z) = c0 + k (z − z0) ,
dc

dz
= k ,

d2c

dz2
= 0 ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k =
c(2)-c(1)

z(2)-z(1)
.

• Parabolic profile:

c(z) = c0 + k (z − z0)2 ,
dc

dz
= 2k (z − z0) ,

d2c

dz2
= 2k ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k =
c(2)-c(1)

(z(2)-z(1))2
.
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• Exponential profile:
c(z) = c0e

−k(z−z0) ,

dc

dz
= −kc0e−k(z−z0) ,

d2c

dz2
= k2c0e

−k(z−z0) ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k =
1

z(2)-z(1)
ln

[
c(1)

c(2)

]
.

• n2-linear profile:

c(z) =
c0

[1 + k (z − z0)]1/2
,

dc

dz
=

−kc0
2 [1 + k (z − z0)]3/2

,
d2c

dz2
=

3k2c0

4 [1 + k (z − z0)]5/2
;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k =
1

z(2)-z(1)

(c(1)
c(2)

)2

− 1

 .

• Inverse-square gradient profile:

c(z) = c0

1 +
k (z − z0)[

1 + k2 (z − z0)2
]1/2

 ,

dc

dz
=

kc0

2
[
1 + k2 (z − z0)2

]3/2 , d2cdz2 =
−3k3c0 (z − z0)[

1 + k2 (z − z0)2
]5/2 ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k =
1

z(2)-z(1)

√
a

1− a
,

with

a =

[
c(1)

c(2)
− 1

]2
.

• Munk profile:
c(z) = c0

[
1 + ε(η + e−η − 1)

]
,

dc

dz
=

2εc1
B

(1− e−η) , d
2c

dz2
=

4εc1
B2

e−η ,
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with the parameters ε = 7, 4 × 10−3, η = 2 (z − z0) /B, B = 1,3 km,
(z0 represents the depth of the channel axis and c0 the corresponding
value of sound speed); the parameters are calculated as z0 = z(1) and
c0 = c(1). The remaining values are ignored.

The combination cdist = ’c(z,z)’ and cclass = ’TABL’ requires the
sound profile to be specified as follows:

z0(1),c0(1)

z0(2),c0(2)

...
z0(nz0),c0(nz0)

The specification cdist = ’c(r,z)’ (a sound speed field) should be followed
by cclass = ’TABL’, otherwise the program stops execution; the sound speed
field should be specified as follows:

r0(1),r0(2),r0(3),...,r0(nr0)

z0(1),z0(2),z0(3),...,z0(nz0)

c(1,1) c(1,2) ... c(1,nr0)

c(2,1) c(2,2) ... c(2,nr0)

c(3,1) c(3,2) ... c(3,nr0)

...

c(nz0,1) c(nz0,2) ... c(nz0,nr0)

When specifying the sound speed profile or field it is highly recommended to
use an evenly spaced grid, avoiding vertical segments where a smooth vari-
ation is followed by an isovelocity layer. Including such segments introduce
unrealistic artifacts, which result from the calculation of inaccurate sound
speed gradients.

After the Sound Speed Block it should follow the single line

nobj

which indicates the number of objects defined inside the waveguide. If nobj
= 0 the Objects Block is empty; otherwise (with nobj > 0) the INFIL
should contain the following line

oitype

which describes the method of interpolation (’2P’, ’3P’ or ’4P’, no other
types are allowed), to be applied to the boundaries of all objects. For each
object it should be defined an Object Block with the following structure:
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otype object type
obju attenuation units
no number of coordinates
ocp(i), ocs(i), orho(i) ... Object cp, cs, etc.
ro(1),zdn(1),zup(1)

ro(2),zdn(2),zup(2)

...
ro(no),zdn(no),zup(no)

otype and obju are the same as those indicated for the Altimetry Block.
The list above shows that the upper and lower boundaries of the object are
sampled along a common range interval.

Bathymetry Block: the structure of this block is identical to the struc-
ture of the Altimetry Block.

Array Block:

artype array type

nra nza number of hydrophones along range and depth

r(1) r(2) .... r(nra) hydrophones ranges

z(1) z(2) .... z(nza) hydrophones depths

The option artype can correspond to one of the following strings:

’RRY’ Rectangular aRraY
’HRY’ Horizontal aRraY
’VRY’ Vertical aRraY
’LRY’ Linear aRraY

The option artype = ’LRY’ requires that nra = nza.

Output Block:

outype output type

miss eigenray parameter

The option outype defines the type of output and can correspond to one
of the following strings:
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’RCO’ output Ray COordinates;
’ARI’ output All Ray information;
’ERF’ output Eigenrays (use Regula Falsi);
’EPR’ output Eigenrays (use PRoximity method);
’ADR’ output Amplitudes and Delays (use Regula falsi);
’ADP’ output Amplitudes and Delays (use Proximity method);
’CPR’ output Coherent acoustic PRessure;
’CTL’ output Coherent Transmission Loss;
’PVL’ output coherent Particle VeLocity;
’PAV’ output Coherent acoustic Pressure And Particle velocity.

The miss parameter is used as a threshold to find eigenrays and to cal-
culate arrivals.
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Chapter 7

Examples and comparisons

This chapter is divided in two sections. The first section showcases TRACEO
capabilities through the presentation of different examples; the second sec-
tion adresses the model’s accuracy when compared to other models. All the
M-files mentioned in this chapter are distributed together with the model’s
code.

7.1 Examples

TRACEO examples are organized as follows:

• Deep water ray traces with variable boundaries and no objects:

– Munk profile;

– idealized Munk field;

• Shallow water examples for a Pekeris waveguide:

– calculation of rays, eigenrays and travel times (no objects).

– transmission loss and particle velocity calculations (two objects).

7.1.1 Deep water

A classical ray tracing test consists in the calculations of ray coordinates for
a Munk profile and flat boundaries, with a source at 1000 m depth and a
propagating range of 100 km (see [11]). In order to show TRACEO’s ability
to deal simultaneously with refraction and reflection over range the test was
extended by including variable boundaries: on top an idealized sinusoidal
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surface (a feature which can be of interest for the study of scattering prob-
lems), while on bottom the variable bathymetry was given by a Gaussian sea
mountain. In a second test the model’s stability is further demonstrated, by
replacing the Munk profile with an idealization of a Munk field. Both ray
traces require the calculation of ray coordinates; in every case TRACEO
produces a mat file, called ’rco.mat’, which contains a vector of launching
angles, and a set of matrices called ’ray1’, ’ray2’,..., one per each launching
angle. Ray information is stored in each matrix as follows:

Row 1: ray range r;
Row 2: ray range z.

The Munk profile used in the first test can be seen in Fig.7.1. The ray
plot shown in Fig.7.2 is produced by running the command

>> varbounds profile

inside Matlab’s prompt. As shown by the figure ray boundary reflections and
refraction are properly handled by the model.

The second example idealizes a waveguide with the same boundaries as
the first example, but considers a sequence of Munk profiles, with the axis
channel depth deepening from 1000 m to 2000 m, when going from 0 to 100
km (see Fig.7.3). Such field reproduces approximately, on a small scale, the
variation of sound speed when moving from the poles to the equator. The
resulting ray trace, shown in Fig.7.4, is produced by running the command

>> varbounds field

The figure confirms the expected channeling of ray energy along range, from
shallow to deep waters, which is induced by the deepening of the deep sound
channel. As in the first example, TRACEO keeps a proper handling of
boundary reflections.
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Figure 7.1: Canonical Munk profile.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Range (m)

D
ep

th
 (

m
)

TRACEO − Munk profile, variable boundaries

Figure 7.2: TRACEO ray trace.
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Figure 7.3: Idealized Munk field.
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Figure 7.4: TRACEO ray trace
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7.1.2 Shallow water

The shallow water case corresponds to a Pekeris waveguide with flat bound-
aries, as shown in Fig.7.5. Running the command

>> pekeris rco

produces Fig.7.6, which at a first glance does not look particularly interest-
ing; however, the ray pattern changes drastically if the boundary types are
changed from ’V’ (for the surface) and ’E’ (for the bottom) to ’A’; in such
case, running the previous command produces now the ray trace shown in
Fig.7.7, which predicts the lack of wave interference, previously induced by
ray reflections. Additionally, other patterns will be generated by changing
to ’A’ only one of the two boundary types.
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Figure 7.5: The flat Pekeris waveguide (vacuum on top).

If the output option ’RCO’ is changed to ’ARI’ running the command

>> pekeris rco

produces now a mat file, called ’ari.mat’; again, ray information is stored
in matrices ’ray1’, ’ray2’,..., but now each matrix contains the following
information:

49



0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

90

100

Range (m)

D
ep

th
 (

m
)

TRACEO − Pekeris waveguide, ray coordinates

Figure 7.6: Pekeris waveguide: ray coordinates (top vacuum, bottom elastic).

Row 1: ray range r;
Row 2: ray depth z;
Row 3: ray travel time τ ;
Row 4: real part of ray amplitude Re(a);
Row 5: imaginary part of ray amplitude Im(a).

Eigenray calculations shown in Fig.7.8) are produced by running the com-
mand

>> pekeris eig.m

with the output options ’ERF’ and ’EPR’. Eigenray calculations produce a
’eig.mat’ mat file, with information stored as in the ’ari.mat’ output file.
The second case uses five times more launching angles than the first, and
still so the number of eigenrays is smaller. At a first glance eigenray search
by proximity seems inefficient.

The advantage of eigenray search by proximity over search by regula falsi
is revealed by running the command

>> pekeris wedge eig
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Figure 7.7: Pekeris waveguide: ray coordinates (top and bottom absorbers).

which produces Fig.7.9; in fact, eigenray search in this case is only possible
with the ’EPR’ option.

A demonstration of TRACEO’s arrival calculations is shown in Fig.7.8),
which is produced by running the command

>> pekeris aad

with the output option ’ADR’. Arrival calculations produce a mat file, called
’aad.mat’; arrival information is stored in vectors ’aad1’, ’aad2’,..., one
per each eigenray; each vector contains the following information:

Element 1: hydrophone range rh;
Element 2: hydrophone depth zh;
Element 3: eigenray travel time τ ;
Element 4: real part of eigenray amplitude Re(a);
Element 5: imaginary part of eigenray amplitude Im(a).

Arrival predictions shown in Fig.7.10 indicate a system of arrivals, clustered
in groups of four arrivals; as expected from the symmetry between the source
and the receiver central arrivals overlap, transforming the quadruplet groups
in groups of triplets.
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Transmission loss calculations with two ellipsoidal objects, at the posi-
tions [25, 75] m and [75, 25] m, are shown in Fig.7.11; the figure is produced
by running the command

>> pekeris pav2o

with the output option ’PAV’. Acoustic pressure and particle velocity cal-
culations produce a mat file, called ’pav.mat’; for a rectangular array the
information is stored in matrices ’rp’, ’ip’, ’ru’, ’iu’ and ’rw’, ’iw’,
which contain the real and imaginary parts of p, u and w, respectively. For
a linear array the information is stored in vectors ’p’, ’u’ and ’w’, each
containing the following information:

Row 1: real part;
Row 2: imaginary part.

In both cases the coordinates of the array are stored, together with the
requested quantities. Fig.7.11 reveals a partial blocking of the acoustic field
in the waveguide, with clear differences in the interference patterns of p, u
and w. Although no clear diffraction is visible around the objects all cases
indicate that the presence of the objects induces a significant redistribution
of wave energy.
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Figure 7.8: Pekeris waveguide: eigenrays calculated by Regula Falsi (top)
and by proximity (bottom).
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Figure 7.10: Pekeris waveguide: travel times and amplitudes calculated by
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Figure 7.11: Pekeris waveguide: transmission loss for pressure (top), hori-
zontal component of particle velocity (middle), and vertical component of
particle velocity (bottom). 56



7.2 Model accuracy

This section discusses TRACEO accuracy by comparing the model results,
with the predictions calculated by other models. The following cases are
considered:

• Comparison with KRAKEN for a Munk profile.

• Comparison with UAN models.

7.2.1 Comparison with KRAKEN

The discussion presented in [11, 12] and [1] share in common a calculation
of transmission loss for canonical Munk profile shown in Fig.7.1. Source
frequency is 50 Hz, and the source is located at 1000 m. 51 rays were traced
with TRACEO between -14◦ and 14◦, restricting the ray fan exclusively to
waterborne rays (see Fig.7.12). The ray plot indicates the existence of three
large shadow zones, two of them (10-50 km and 70-100 km) in the upper part
of the waveguide and the other one (40-80 km) in the lower part of it.
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Figure 7.12: TRACEO ray trace.

Those rays were used to calculate a curve a transmission loss, for a receiver
at 800 m depth. The comparison of TRACEO with Bellhop and KRAKEN
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(see Fig.7.13) reveals a good agreement in the general trend of transmission
loss calculated by both models. The differences in amplitude are negligible,
except in the shadow zones, where rays contribute poorly to the field.
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Figure 7.13: Transmission loss comparison: KRAKEN, solid line and
TRACEO, dash-point line.

7.2.2 Comparison with UAN models

The last comparison can be seen in Fig.7.14, which shows the transmission
loss calculated at 25,6 kHz by TRACEO and the acoustic models JEPE,
REV3D and XRAY, used by the partners of the UAN project. Although
there are no two identical matches all the models exhibit the same trend up
until the range of 7 km. The ability of TRACEO to provide similar trans-
mission loss levels to the ones provided by the different models constitutes
an important validation of the model’s accuracy.
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Chapter 8

Conclusions and future work

Hopefully, members of the acustic community will find TRACEO a useful
and reliable tool of research. The model was written with modularity, sta-
bility and accuracy in mind and the examples and comparisons presented in
this document are expected to speak by themselves regarding the potential
of the model. There remain, however, several degrees of freedom worth of
further development, namely:

• Code optimization; analysis of the subroutines will reveal repeating
patterns of code, which some programmers will consider annoying. But
such patterns exist in order to make the code as understandable as
possible, and anybody capable of improving the code is invited to do
so and to share such knowledge with the community.

• Translation to other programming languages; generally speaking For-
tran statements are efficiently converted into machine code, but there
are limitations of the Fortran 77 standard (like the need for initial mem-
ory allocation and no access to pointers in memory), which are higly
desirably for optimization and/or for the development of interfaces1.

• Parallelization (and cloud computing); ray calculation is an ideal task
for distributed calculations, either way by using multi-processor ma-
chines or by distributing the calculations in a computer cloud. It is an
interesting option for cases, which require a huge amount of repetitive
calculations.

• Extension to the three-dimensional case; among the modelling tools
used in underwater acoustics ray tracing has no match in terms of
computational efficiency; thus, three-dimensional modeling with ray

1A C version is presently under way.
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models represents an important alternative. TRACEO was written in
order to allow easily such extension, but some elements of the code will
require an ellaborate rewriting, in particular, to allow the inclusion
of three-dimensional objects, to update the dynamic equations after
boundary reflections and to calculate the normals and the ray influence
at a given position of the array.
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Appendix A

Additional topics

Besides accounting only for sound speed and being limited to the Lagrangian
formalism there are additional approaches, with alternatives forms of the
Eikonal equations, inclusion of ocean currents and discussion of ray tracing
in terms of the Hamiltonian formalism. A brief discussion is presented here
as an extension to the topics already presented.

A.1 Vector form of Eikonal equations

Alternatively with the compact form

dr

ds
= c σ ,

dσ

ds
=

1

c2
∇c , (A.1)

the change of ds by dτ allows to obtain the following Eikonal equations[13]

dr

dτ
= c2σ ,

dσ

dτ
=

1

c
∇c . (A.2)

A.2 Eikonal equations including wavenumber

The vector form of Eikonal equations can be rewritten in order to include
the wavenumber as[14]:

d

ds

(
k
dr

ds

)
= ∇k . (A.3)

The previous equation can be written as the system:

dr

ds
= es and

des
ds

=
1

k
∇k − 1

k

dk

ds
es . (A.4)
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A.3 Wavenumber 2D Eikonal equations

The system given by Eq.(A.4) can be written in cylindrical coordinates as[14]:

d

dr
cos θ =

1

k

∂k

∂r

sin2 θ

cos θ
− 1

k

∂k

∂z
sin θ , (A.5)

d

dr
sin θ =

1

k

∂k

∂z
cos θ − 1

k

∂k

∂r
sin θ . (A.6)

If integration over z is required the system becomes:

d

dz
cos θ =

1

k

∂k

∂r
sin θ − 1

k

∂k

∂z
cos θ , (A.7)

d

dz
sin θ =

1

k

∂k

∂z

cos2 θ

sin θ
− 1

k

∂k

∂r
cos θ . (A.8)

Independently of integrating over r or z it holds valid in both cases that

dz

dr
=

sin θ

cos θ
.

A.4 Ray slope 2D Eikonal equations

The 2D Eikonal equations with the substitution of slowness by θ can be
written as follows[15]:

dθ

dr
=

1

c

∂c

∂r
tan θ − 1

c

∂c

∂z
, (A.9)

dz

dr
= tan θ , (A.10)

dτ

dr
=

sec θ

c
. (A.11)

A.5 Earth 2D Eikonal equations

The equations from section A.4 can be easily extended in order to account
for earth’s curvature, and correspond to[15]:

dθ

dr̃
= fe

1

c

∂c

∂z̃
− 1

c

∂c

∂r̃
tan θ − 1

Re

, (A.12)

dz̃

dr̃
= fe tan θ , (A.13)

dτ

dr̃
= fe

sec θ

c
. (A.14)
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where z̃ lies along the radius of the earth, z̃ = 0 at the surface, z̃ = Re at
the earth’s center, Re represents the earth’s radius, r̃ is the distance traveled
along a circular arc at the sea level, and

fe =
Re − z̃
Re

.

A.6 Including ocean currents

The Eikonal equations can be extended in order to handle ocean currents;
the system can be written compactly in vector form as[16]

dr

dτ
=

c2

Ω
σ + v , (A.15)

dσ

dτ
= −Ω

c
∇c− σ × (∇× v)− (σ ·∇) v , (A.16)

where v represents the vector of currents and

Ω =
c

c (1 + v · σ)
. (A.17)

A.7 Hamiltonian formalism

Within the context of the Hamiltonian formalism the travel time can be
written as

τ =

B∫
A

(σxẋ+ σyẏ + σz ż −H) ds , (A.18)

where H represents the system’s Hamiltonian:

H(x, y, z, σx, σy, σz) = σxẋ+ σyẏ + σz ż − σ , (A.19)

or compactly, in vector notation:

H(x, y, z, σx, σy, σz) = σ · es − σ . (A.20)

The perturbation in travel time becomes

δτ =

B∫
A

[ẋδσx + σxδẋ+ ẏδσy + σyδẏ + żδσz + σzδż − (. . .)] ds

where

(. . .) =
∂H
∂σx

δσx +
∂H
∂x

δx+
∂H
∂σy

δσy +
∂H
∂y

δy +
∂H
∂σz

δσz +
∂H
∂z

δz .
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It follows then that

δτ =

B∫
A

[(. . .) + σxδẋ+ σyδẏ + σzδż] ds .

where
(. . .) =

=

(
ẋ− ∂H

∂σx

)
δσx−

∂H
∂x

δx+

(
ẏ − ∂H

∂σy

)
δσy−

∂H
∂y

δy+

(
ż − ∂H

∂σz

)
δσz−

∂H
∂z

δz .

Let us notice now that

B∫
A

(σxδẋ+ σyδẏ + σzδż) ds =

= σxδx+ σyδy + σzδz|BA︸ ︷︷ ︸
=0

−
B∫
A

(σ̇xδx+ σ̇yδy + σ̇zδz) ds ,

so the perturbation in travel time becomes

δτ =

B∫
A



(
ẋ− ∂H

∂σx

)
δσx −

(
σ̇x +

∂H
∂x

)
δx+(

ẏ − ∂H
∂σy

)
δσy −

(
σ̇y +

∂H
∂y

)
δy+(

ż − ∂H
∂σz

)
δσz −

(
σ̇z +

∂H
∂z

)
δz


ds .

According to Fermat’s principle δτ = 0, which allows to infer the following
system of equations

dx

ds
=
∂H
∂σx

,
dσx
ds

= −∂H
∂x

,

dy

ds
=
∂H
∂σy

,
dσy
ds

= −∂H
∂y

,

dz

ds
=
∂H
∂σz

,
dσz
ds

= −∂H
∂z

.

(A.21)

The Hamiltonian can equally be rewritten in order to proceed with an
integration along travel time, and by substituting the components of sound
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slowness with the components of the wavenumber. In fact, by taking into
account that

ds = dτ/σ

and that
kx = ωσx , ky = ωσy , kz = ωσz ,

one can obtain the Hamiltonian[17]1:

H = ω2 − c2k2 (A.22)

(this expression corresponds to the Hamiltonian given by Eq.(A.19), multi-
plied by the factor −ω2/σ); the system of equations becomes

dx

dτ
=
∂H
∂kx

,
dkx
dτ

= −∂H
∂x

,

dy

dτ
=
∂H
∂ky

,
dky
dτ

= −∂H
∂y

,

dz

dτ
=
∂H
∂kz

,
dkz
dτ

= −∂H
∂z

.

As shown by the two-dimensional case with cylindrical symmetry follows
automatically from this case as

dr

dτ
=
∂H
∂kr

,
dkr
dτ

= −∂H
∂r

,

dz

dτ
=
∂H
∂kz

,
dkz
dτ

= −∂H
∂z

.

There are also alternativa approaches, which consider a Hamiltonian writ-
ten in terms of s or r. For the first case and for two-dimensional case with
cylindrical symmetry one can obtain the Hamiltonian

H = σrṙ + σz ż − σ , (A.23)

related to the system of equations

dr

ds
=
∂H
∂σr

,
dσr
ds

= −∂H
∂r

,

1The complete expression for the Hamiltonian corresponds to

H = (ω − k · v)
2 − c2k2 ,

where v represents the vector of currents.
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dz

ds
=
∂H
∂σz

,
dσz
ds

= −∂H
∂z

;

as for the second case the Hamiltonian and associated system of equations
correspond to[18]

H = −
√

1

c2
− σ2

z , (A.24)

and
dz

dr
=
∂H
∂σz

,
dσz
dr

= −∂H
∂z

.
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