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Acoustic predictions of the recently developed TRACEO ray model, which accounts for bottom shear

properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic

Parabolic Equation Experiment) experiments. Both experiments are representative of signal propa-

gation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where

significant interaction of the signal with the bottom can be expected. The benchmarks show, in par-

ticular, that the ray model can be as accurate as a parabolic approximation model benchmarked in

similar conditions. The results of benchmarking are important, on one side, as a preliminary experi-

mental validation of the model and, on the other side, demonstrates the reliability of the ray

approach for seismo-acoustic applications.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4734236]
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I. INTRODUCTION

Tank experiments constitute a fundamental reference for

underwater acoustic modeling, by providing valuable data for

model benchmarking. In particular these types of experiments

are important because of the difficulties and costs involved

with obtaining high-quality ocean acoustic data at sea. In con-

trast with benchmarking analytic solutions,1–5 which are gen-

erally difficult to obtain for a broad set of geometries and

boundary properties, benchmarking to tank experimental data

imposes important constraints to numerical models. On one

side, propagation conditions can be carefully controlled; on

the other side, despite such control, mismatch will be always

observed since the numerical model is an approximation of

the theoretical solution. The importance of benchmarking to

tank experimental data was shown, for example, by the EPEE-

1 (Ref. 6) and EPEE-2 (Elastic Parabolic Equation Experi-

ment) (Ref. 7) experiments, which demonstrated the excellent

accuracy of the ROTVARS model, based on the variable rotated

elastic parabolic equation.8 The high quality of the data

acquired during these tank experiments is extremely important

because both experiments are representative of propagation in

a shallow water waveguide, with an elastic bottom and range-

dependent bathymetry involving sharp slope changes. Ray

models9–12 are also interesting candidates for benchmarking

against the tank experimental data. The ray solution to the

acoustic wave equation is an asymptotic approximation, which

improves as frequency increases, and ray methods are compu-

tationally efficient in waveguides with complex characteris-

tics, such as variable boundaries and range-independent or

range-dependent sound speed distributions. Additionally, for a

ray model to be accurate under such conditions, shear effects

need to be included as well. Naturally, a question arises

whether a ray model will be able to exhibit the same degree of

accuracy as a parabolic equation solution, when benchmarked

(in particular) to the data of the EPEE-1 and EPEE-2 tank

experiments. The main purpose of the discussion presented

here is to develop a systematic benchmarking of a ray model

against such experimental data. To this end the tank experi-

ments are briefly reviewed in Sec. II, while Sec. III describes

the recently developed TRACEO ray model, which is bench-

marked in detail in Sec. IV. The conclusions of benchmarking

and future work are presented in Sec. V.

II. THE EPEE-1 AND EPEE-2 TANK EXPERIMENTS

The tank experiments are described in great detail in the

literature;6,7 therefore, a sufficiently compact description is

presented in this section. Polyvinyl chloride (PVC) slabs

with the elastic parameters given in Table I were suspended

in a water tank by cables, that were attached to each slab

corner at substantial distances from the sound source to

avoid reflections. Source and receiver hydrophones were

positioned over the slabs with a robotic arm, allowing

for accurate positioning. Sound speed in the water is con-

sidered constant and corresponds to 1482 m/s. Acoustic
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transmissions were performed for a wide set of frequencies,

up to 1 MHz, but for the purposes of benchmarking only

three frequencies are here considered, namely, 125, 200, and

275 kHz. Due to the nature of the source used in the experi-

ment, data within the 100–300 kHz band are considered valid

for comparison purposes.

Acoustic propagation calculations are performed at a

scale of 1000:1; thus, for a proper modification of parameter

values the following conversion of units is adopted: experi-

mental frequencies in kHz become model frequencies in Hz

and experimental lengths in mm become model lengths in m

(for instance, an experimental frequency of 100 kHz

becomes a model frequency of 100 Hz and an experimental

distance of 10 mm becomes a model distance of 10 m).

Sound speeds remain unchanged, as well as compressional

and shear attenuations, which are given in dB/k (where k
stands for the acoustic wavelength). In EPEE-1 the slab

allowed both range-independent, “flat,” and range-dependent

waveguides (see Fig. 1). In EPEE-2 the slab geometry

allowed three different types of range-dependent bottom

bathymetries, namely, flat to downslope, upslope to flat, and

upslope to downslope. Different configurations of the acous-

tic source and receiver were considered in both experiments,

but the benchmarking presented here will be limited to a sin-

gle position of both source and receiver; geometric parame-

ters for the waveguides of both experiments are shown in

Table II.

III. THE RAY MODEL

The ray model benchmarked in the current work is the

TRACEO Gaussian beam model, which is under current devel-

opment at the SiPLAB of the University of Algarve.13 The

code TRACEO was developed in order to

(1) Predict acoustic pressure and particle velocity in envi-

ronments with elaborate upper and lower boundaries,

which can be characterized by range-dependent com-

pressional and shear properties. Modeling particle veloc-

ity is important for vector sensor applications and can be

used, in particular, for geoacoustic inversion with high

frequency data.14–16

(2) Include one or more targets in the waveguide.

(3) Produce ray, eigenray, amplitude, and travel time infor-

mation. In particular, eigenrays are to be calculated even

if rays are reflected backwards on targets located beyond

the current position of the hydrophone.

The following sections compactly describe the theory

behind TRACEO calculations of acoustic pressure, shear inclu-

sion and particle velocity calculations; a numerical example

is presented as well.

A. Theoretical background

The starting point for the general description of a three-

dimensional Gaussian beam is given by the expression17

Pðs; nÞ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

coshð0Þ
detQ

s
exp �ix sðsÞþ1

2
ðMn �nÞ

� �� �
;

(1)

where s stands for the ray arclength, n is the normal to the

ray (such normal lies on a plane, which will be introduced

later), M and Q are 2� 2 matrices (whose meaning will be

explained below), the center dot represents the inner vector

TABLE I. PVC elastic properties at 300 kHz (k represents the acoustic

wavelength).

Parameter Unitsa Value

Density kg/m3 1378

Compressional speed m/s 2290

Shear speed m/s 1050

Compressional attenuation dB/k 0.76

Shear attenuation dB/k 1.05

aA note of advice: Compressional and shear attenuations are given in Ref. 6

as 0.33 dB/m and 1.00 dB/m, respectively. Attenuation is given here in dB/k,

which are the units used by the ROTVARS model.

FIG. 1. EPEE-1, sloped case (top) and EPEE-2, upslope to downslope case

(bottom).

TABLE II. Geometric parameters for the waveguides of the EPEE-1 and

EPEE-2 tank experiments.

Flat Upslope Flat/down Up/flat Up/down

zs (m) 69.1 63.4 74.2 73.5 72.1

zr (m) 137.1 15.6 75.8 78.7 74.8

z0 (m) 144.7 132.9 143.9 245.9 183.0

z1 (m) 145.4 45.4 152.1 151.2 147.2

z2 (m) N/A N/A 238.2 145.7 198.4

r1 (m) N/A N/A 988.8 985.9 1000.3

rmax (m) 1200 1200 1898.0 1898.0 1898.0
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product, hð0Þ is the initial ray elevation (i.e., the angle rela-

tive to the horizontal plane, which is formed by the X and Y
axes; the angle on the XY plane relative to the X axis will be

called, hereafter, the azimuth), and cðsÞ represents the sound

speed along the ray trajectory:

cðsÞ ¼ cðs; 0Þ : (2)

The travel time sðsÞ in Eq. (1) is calculated solving the set of

Eikonal equations18

dx

ds
¼ cðsÞrx;

dy

ds
¼ cðsÞry;

dz

ds
¼ cðsÞrz;

drx

ds
¼ � 1

c2

@c

@x
;

dry

ds
¼ � 1

c2

@c

@y
;

drz

ds
¼ � 1

c2

@c

@z
;

(3)

where rx, ry, and rz stand for the components of the vector

of sound slowness. The derivatives dx=ds, dy=ds, and dz=ds
define the ray tangent es; the plane perpendicular to es

defines the plane normal to the ray. Introducing on such

plane a pair of unitary and orthogonal vectors e1 and e2 one

can write the ray normal as

n ¼ n1e1 þ n2e2 ; (4)

where n1 and n2 are arbitrary quantities. The matrices M and

Q are required to be complex; therefore, the imaginary part of

the product Mn � n induces a Gaussian decay of beam ampli-

tude along n, while the real part introduces phase corrections

to the travel time. As long as detQ 6¼ 0 the solution given by

Eq. (1) does not exhibit singularities. Besides Q and M the

Gaussian beam approximation involves two additional 2� 2

matrices, represented generally as P and C; all four matrices

are related through the following relationships:19

M ¼ PQ�1 ; (5)

d

ds
Q ¼ cðsÞP; d

ds
P ¼ � 1

c2ðsÞCQ; (6)

where

Cij ¼
@2c

@ni@nj
; (7)

i.e., the elements of C correspond to second order derivatives

of sound speed along either e1, e2, or both. Generally speak-

ing P describes the beam slowness in the plane perpendicular

to es, while Q describes the beam spreading. The pair of

expressions given by Eq. (6) is called the dynamic equations
of the full Gaussian beam formulation. The expression given

by Eq. (1) behaves near the source like an spherical wave

emitted by a point source through the choice of initial

conditions19

Pð0Þ ¼ 1 0

0 cos hð0Þ

� �.
cð0Þ (8)

and17

Qð0Þ ¼ 0 0

0 0

� �
: (9)

Generally speaking the full Gaussian beam approach is

difficult to implement numerically, with the main difficulties

being related to refraction effects (the problem of ray bound-

ary reflection is in fact much easier to account for). In partic-

ular, when horizontal refraction is considered, rays with a

common initial azimuth exhibit ray trajectories which do not

lie on a common plane; besides, horizontal refraction also

leads to the rotation of polarization vectors along a given ray

trajectory, inducing a large variability of beam shapes within

any group of rays (even if the initial orientation of polariza-

tion vectors was the same for all rays). Additionally, the cal-

culation of beam influence (which requires a proper

calculation of the matrix C) for the arbitrary position of an

hydrophone is cumbersome. Other issues related to the

calculation of eigenrays, such as determining arrivals and re-

spective amplitudes, are also difficult to implement. In order

to develop a two-dimensional application of Eq. (1), TRACEO

relies on the particular solution of dynamic and Eikonal

equations when horizontal refraction is absent. For such case

there is no rotation of the polarization vectors; thus, choos-

ing e2 to lie on the horizontal plane fixes the positioning of

e1 on a plane of constant azimuth (perpendicular to e2).

Beam amplitude is then calculated by TRACEO on the plane of

constant azimuth by considering the particular solution with

n2¼ 0. Since the particular solution does not exhibit cylin-

drical symmetry the approximation used by TRACEO can be

regarded as a Gaussian beam solution on the ðx; zÞ plane

(i.e., on the plane corresponding to azimuth zero).

Under the conditions above considered (i.e., absence of

horizontal refraction and e2 placed initially on the horizontal

plane) one can write that

C ¼ c11 0

0 0

� �
: (10)

Without loss of generality the matrix Q can be represented as

QðsÞ ¼ qðsÞ 0

0 q?ðsÞ

� �
(11)

so detQ ¼ qðsÞq?ðsÞ. Combining the initial conditions for a

point source with the given approximations one can substi-

tute the pair Eq. (6) with the expressions

d

ds
q ¼ cðsÞ ; d

ds
p ¼ � c11

cðsÞ2
q; (12)

where p ¼ p11 [it can be shown that p12 ¼ p21 ¼ 0,

p22 ¼ cos hð0Þ=cð0Þ]; thus, the particular solution of Eq. (1)

can be written as

Pðs; n1; n2Þ¼
1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

coshð0Þ
q?ðsÞqðsÞ

s

�exp �ix sðsÞþ1

2

pðsÞ
qðsÞn

2
1þ

1

2IcðsÞ
n2

2

� �� �
;

(13)
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where

IcðsÞ ¼
ðs

0

cðs0Þ ds0 (14)

and

q?ðsÞ ¼
cos hð0Þ

cð0Þ IcðsÞ: (15)

Taking n2 ¼ 0 in Eq. (13) and representing n1 simply as n
one can write the solution on the plane of constant azimuth

as

Pðs; nÞ ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

cos hð0Þ
q?ðsÞqðsÞ

s

� exp �ix sðsÞ þ 1

2

pðsÞ
qðsÞ n

2

� �� �
: (16)

Equation (16) is similar to the Gaussian beam expres-

sion for a waveguide with cylindrical symmetry18,20

Pðs; nÞ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

coshð0Þ
rqðsÞ

s
exp �ix sðsÞþ1

2

pðsÞ
qðsÞn

2

� �� �
:

(17)

The term 1=
ffiffi
r
p

appears in Eq. (17) due to the cylindrical

spreading of the pressure field, and the expression itself is an

asymptotic solution of the wave equation, which breaks

down at the source position. Therefore, a “blind” numerical

application of Eq. (17) to rays propagating back to the source

produces waves, which are focused back to the source and

break down in its vicinity. When compared to Eq. (17) one

can notice that Eq. (16) contains the parameter q?ðsÞ instead

of r; since q?ðsÞ is proportional to the ray arclength, beam

amplitudes given by Eq. (16) always decrease independently

of rays propagating forwards or backwards. This feature of

Eq. (16) is expected to be relevant for backscattering studies.

The field given by Eq. (16) is not sufficient for TRACEO to

account properly for phase and amplitude corrections every

time a ray hits a boundary; in such case the beam amplitude is

multiplied by a boundary reflection coefficient, which takes

into account shear speed and shear attenuation;21 the full

expression of such reflection coefficient is presented in Appen-

dix A. Additional corrections to the ray amplitude are intro-

duced using finite element ray tracing22 and phase corrections

induced by caustics (which are described in detail in Ref. 18).

To understand the method implemented in TRACEO for

particle velocity calculations let us recall that particle veloc-

ity v is related to acoustic pressure P in the frequency do-

main through the relationship23

v ¼ � i

xq
rP; (18)

where q represents the watercolumn density, and x stands

for the frequency of the propagating wave. The factors q and

x only affect the amplitude of v, while the imaginary unit

implies a phase shift of p=2 radians. Without these factors

particle velocity can be viewed as the gradient of acoustic

pressure. To obtain this gradient, TRACEO calculates the

acoustic pressure on a star-shaped stencil, with the hydro-

phone located at the star’s center; outer points are located at

the coordinates ðr 6 D; z 6 DÞ. The points aligned along the

horizontal are used to calculate the coefficients of a para-

bolic interpolator (described in Appendix B), and those coef-

ficients allow determination of the horizontal derivative at

the center; a similar procedure is followed for the points

aligned along the vertical. To avoid aliasing, the spacing

between an outer point and the center is taken (arbitrarily) as

corresponding to D ¼ k=10, where k represents the acoustic

wavelength. Interpolation is preferred to analytic expressions

derived from Eq. (16) or Eq. (17) because either of them is

written in terms of ray coordinates ðs; nÞ, instead of horizon-

tal and vertical coordinates. Such analytic expressions are

elaborate and can be used only with a Gaussian beam model,

while the interpolation approach is valid for any model and

can easily be extended to three dimensions.

B. Numerical example

The capabilities of TRACEO require intense testing

through comparisons with other models, a discussion of

backscattering issues in more detail and comparison between

experimental data and field predictions when targets are

present in the water column (just to mention a few further

directions of research). Such issues go far beyond the main

goals of the discussion presented here and will be addressed

in future studies. The numerical example in this section is

limited to a comparison of TRACEO predictions of the horizon-

tal and vertical components of particle velocity (hereafter

represented as u and w, respectively), with the corresponding

values found from analytic expressions for an elastic bottom

Pekeris waveguide (shear included); the compressional and

shear potentials of such a waveguide are well known in the

literature,24 and the particle velocity components are easily

calculated from the analytic expressions for both potentials.

It is worth remarking that, from the point of view of normal

modes, the contribution of lower-order modes is enhanced in

the field of u, while the field of w is enhanced by the contri-

bution of higher-order modes.25 The comparison between

particle velocity calculations from the analytic solution and

TRACEO predictions for the flat waveguide (200 Hz,

z0 ¼ z1¼ 145 m) is shown in Fig. 2; in both cases the ana-

lytic solution is indicated by the solid curve, while the model

prediction is indicated by the dashed curve. The interpola-

tion approach is so accurate in the case of u that the two

curves are difficult to distinguish [Fig. 2(a)]. The approach is

less accurate for w, with the model exhibiting some over-

shooting of the analytic solution [Fig. 2(b)], although it does

correctly reproduce the interference pattern in both phase

and amplitude in range.

IV. BENCHMARKING

Seismo-acoustic benchmarking of the ray solution

against tank data is discussed in this section through a
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systematic set of comparisons with transmission loss curves

calculated from tank experimental data at model frequencies

of 125, 200, and 275 Hz. Comparisons against EPEE-1 data

are discussed in Secs. IV A and IV B for the flat and upslope

waveguides, while comparisons againts EPEE-2 data for the

flat to downslope, upslope to flat, and upslope to downslope

waveguides are discussed in Secs. IV C–IV E. Results from

Secs. IV A and IV B can be related to Figs. 4 and 7 from

Ref. 6, respectively; the results for the EPEE-2 data concern

source-receiver configurations not discussed in Ref. 7. In all

sections, tank data is shown in the figures as a solid curve,

while the dashed curve indicates TRACEO predictions; addi-

tionally, the plots are arranged with frequency increasing

from top to bottom; geometries (source depth, receiver

depth, and source-receiver range) are all given in model val-

ues. It is worth remarking that the benchmarking was not

limited to the mentioned set of frequencies. Additional com-

parisons were performed at model frequencies of 100 and

300 Hz, with no appreciable deviation from what was found

at the chosen set of frequencies. Since no new information

was provided by the benchmarking at such frequencies, com-

parisons are not included in the discussion. In order to pro-

duce TRACEO predictions as objectively as possible the

following procedure was followed: the number of rays was

taken, arbitrarily, as high as 201 rays, in order to ensure that

field coherence was properly modeled at all frequencies.

Source aperture corresponded to 55:25�; that value was

obtained by minimizing the standard deviation over aper-

tures in the interval [35�, 85�] of the difference between the

experimental transmission loss and the model transmission

loss for the flat waveguide at the “central” model frequency

of 200 Hz. Thus, 201 rays between �55.25� and 55.25� were

calculated by TRACEO at all frequencies, for all waveguides,

and for all considered source/receiver configurations.

FIG. 2. Particle velocity calculations at 200 Hz for the flat waveguide

(z0 ¼ z1¼ 145 m): u (top); w (bottom). Solid curve: analytic solution;

dashed curve: TRACEO’s prediction (compare with the middle plot of Fig. 3).

FIG. 3. Benchmarking for the flat waveguide, source at 69.1 m and receiver

at 137.1 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bottom). Solid curve: tank

data; dashed curve: TRACEO’s prediction (compare with Fig. 4 of Ref. 6).
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A. Flat waveguide

Tank experiment and model curve comparisons for the

flat waveguide are shown in Fig. 3. In all cases the ray model

consistently and accurately reproduces the phase and ampli-

tude behavior of experimental data, although occasional

overshooting is observed. Despite the eventual limitations

that one would expect from ray predictions at low frequen-

cies the match between TRACEO and experimental data is

remarkably accurate at 125 Hz. The results can be compared

directly with Fig. 4 of Ref. 6 and indicate that for the given

configuration the accuracy of both TRACEO and ROTVARS is

nearly the same.

B. Upslope waveguide

Tank experiment data and model curve comparisons for

the upslope waveguide are shown in Fig. 4. As one might

FIG. 4. Benchmarking for the upslope waveguide, source at 63.4 m and re-

ceiver at 15.6 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bottom). Solid

curve: tank data; dashed curve: TRACEO’s prediction (compare with Fig. 7 of

Ref. 6).

FIG. 5. Benchmarking for the flat to downslope waveguide, source at

74.2 m and receiver at 75.8 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bot-

tom). Solid curve: tank data; dashed curve: TRACEO’s prediction (compare

with Figs. 2 and 3 of Ref. 7).
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expect ray results improve as frequency increases and

TRACEO produces accurate predictions in all cases (with

matches that at first glance appear even more accurate than

those of the flat waveguide). The match is surprisingly good

in many cases near the final ranges if one takes into account

the existing bottom gap beyond the end of the PVC slab. The

results can be compared directly with Fig. 7 of Ref. 6 and

indicate, one more time, that for the given configuration

there are no significant differences in the predictions pro-

duced by either TRACEO or ROTVARS.

C. Flat to downslope waveguide

Tank experiment data and model curve comparisons for

the flat to dowslope waveguide are shown in Fig. 5. The fig-

ures reveal some undershooting or overshooting of the

FIG. 6. Benchmarking for the upslope to flat waveguide, source at 73.5 m

and receiver at 78.7 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bottom).

Solid curve: tank data; dashed curve: TRACEO’s prediction (compare with

Figs. 4 and 5 of Ref. 7).

FIG. 7. Benchmarking for the upslope to downslope waveguide, source at

72.1 m and receiver at 74.8 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bot-

tom). Solid curve: tank data; dashed curve: TRACEO’s prediction (compare

with Fig. 6 of Ref. 7).
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solution near the end of the slab, although the behavior is not

consistent over frequency. Curiously the slight deviation of

TRACEO’s prediction from experimental data does not start at

the range where the slab ends, but slightly beyond that range.

Despite the slight mismatch, TRACEO properly reproduces the

phase variations of the experimental data. A partial compari-

son can be done with Figs. 2 and 3 from Ref. 7 (the data is

from the EPEE-2 experiment, but for different source and re-

ceiver depths), which indicates that TRACEO exhibits nearly

the same accuracy as ROTVARS.

D. Upslope to flat waveguide

Tank experiment data and model curve comparisons for

the upslope to flat waveguide are shown in Fig. 6. In this

case the general trend of the ray model is to slightly under-

shoot the experimental data near the final ranges, although

phase variations are again accurately reproduced by the nu-

merical solution. A partial comparison can be done with

Figs. 4 and 5 from Ref. 7 (the data are from the EPEE-2

experiment, but for different source and receiver depths),

which shows no significant differences in the accuracy of ei-

ther TRACEO or ROTVARS.

E. Upslope to downslope waveguide

Tank experiment and model curves for the upslope to

downslope waveguide are shown in Fig. 7. This case could

be considered to be the most difficult to simulate because of

the significant change in bottom slope and it reveals in fact a

set of less satisfactory matches to the experimental data. The

comparisons are somehow intriguing for two reasons: first,

one can notice that the mismatch is much more severe at the

“central” model frequency of 200 Hz; second, the mismatch

at 275 Hz is more severe near the middle of the waveguide

than near the end. Additional comparisons with the RAMS

model26 (not shown here) produced a similar set of results.

Curiously, Fig. 6 in Ref. 7 (which is related also to the

EPEE-2 experiment, but for different source and receiver

depths) exhibits a similar pattern.

V. CONCLUSIONS AND FUTURE WORK

The discussion presented in the previous sections demon-

strated the feasibility of using a ray approach for seismo-

acoustic studies related to acoustic propagation over isotropic

elastic bottoms. Systematic benchmarking of the TRACEO ray

model to experimental tank data, representative of propaga-

tion over elastic bottoms with sharp slope transitions exhibited

a high degree of accuracy, comparable to the one already

found with ROTVARS. As an experimental validation of the

TRACEO model the results are extremely encouraging for fur-

ther model applications, given the unique model features.

Such applications can be oriented, for instance, to seismo-

acoustic inversion of both compressional and shear bottom

properties, using either standard hydrophone or vector sensor

arrays, as long as the bottom does not exhibit a complex lay-

ered structure. Benchmarking results shown in Sec. IV indi-

cate that such applications do not require necessarily to deal

with high frequency propagation, since TRACEO exhibited a

high accuracy at relatively low frequencies. A preliminary

comparison of computational times between TRACEO and RAMS

(which is widely available) on a typical laptop produced aver-

age values of 0.9 s vs 1.8 s, respectively, for the configurations

of the EPEE-1 experiment, and of 1.8 s vs 5.2 s, respectively,

for the configurations of the EPEE-2 experiment. Thus this

particular trend shows TRACEO being faster than RAMS, although

model parameters in the two cases were not optimized to min-

imize computational time without compromising accuracy. At

high frequencies differences in computational times can be

expected to become more relevant. Future directions of

research will necessarily include detailed comparisons with

field data (where mismatch can be expected to become more

relevant), studies of backscattering issues (based on bench-

marking against analytic solutions, backscattering-capable

models, and/or available experimental data), accounting for

ray tracing in elastic layered systems and three-dimensional

field predictions where a ray approach looks like an attractive

alternative for efficient and fast field computations.
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APPENDIX A: RAY MODEL REFLECTION
COEFFICIENT FOR AN ELASTIC BOTTOM

The calculation of the reflection coefficient for the elas-

tic bottom is given by the following expression:21

Rðh1Þ ¼
Dðh1Þ cos h1 � 1

Dðh1Þ cos h1 þ 1
; (A1)

where

Dðh1Þ ¼ A1

	
A2ð1� A7Þ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

6

q
þ A3A7

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A5=2

p 

;

A1 ¼
q2

q1

; A2 ¼
~cp2

cp1

; A3 ¼
~cs2

cp1

;

A4 ¼ A3 sin h1; A5 ¼ 2A2
4; A6 ¼ A2 sin h1;

A7 ¼ 2A5 � A2
5;

~cp2 ¼ cp2

1� i~acp

1þ ~a2
cp

; ~cs2 ¼ cs2

1� i~acs

1þ ~a2
cs

;

~acp ¼
acp

40p log e
; ~acs ¼

acs

40p log e
;

the units of attenuation should be given in dB/k and the angle

h1 is given relative to normal to the bottom (see Fig. 8). In

general the reflection coefficient is real when acp ¼ acs ¼ 0,

and the angle of incidence h1 is less than the critical angle hcr,

with hcr given by the expression
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hcr ¼ arcsin
cp1

cp2

� �
: (A2)

Attenuation can be expected to be negligible when h1 < hcr ,

and for small h1 the energy transferred to shear waves in the

elastic medium is only a small fraction of the total energy

transferred.

APPENDIX B: BARYCENTRIC PARABOLIC
INTERPOLATION

The barycentric parabolic interpolator can be described

as follows: let us consider a set of three points x1, x2, and x3

aligned along the X axis, and the corresponding function val-

ues f ðx1Þ, f ðx2Þ, and f ðx3Þ. At a given point x between x1 and

x3 the interpolant can be written as

f ðxÞ ¼ f ðx1Þ þ a2ðx� x1Þðx� x3Þ þ a3ðx� x1Þðx� x2Þ:
(B1)

It follows from this expression that

a2 ¼
f ðx2Þ� f ðx1Þ
ðx2� x1Þðx2� x3Þ

and a3 ¼
f ðx3Þ� f ðx1Þ
ðx3� x1Þðx3� x2Þ

:

The approximations for the derivatives become

df

dx
¼ a2ð2x� x1 � x3Þ þ a3ð2x� x1 � x2Þ

and

d2f

dx2
¼ 2ða2 þ a3Þ:
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FIG. 8. Ray reflection at an elastic media interface.
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