
The

ray tracing program (v1.0)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Range (m)

D
ep

th
 (

m
)

TRACEO − Munk profile, variable boundaries

Orlando Camargo Rodŕıguez
(http://w3.ualg.pt/˜orodrig, orodrig@ualg.pt)

Physics Department
Signal Processing Laboratory

Faculdade de Ciências e Tecnologia
Universidade do Algarve

03/05/2015

Contents

1 Introduction 3

2 Model description 4

3 Examples 5
3.1 Deep water . 5
3.2 Shallow water . 9

2

Chapter 1

Introduction

This document describes the latest release of TRACEO, a ray tracing model
written in Fortran 77 and tested with the GNU gfortran compiler. The
current release of the model updates the latest version of TRACEO by
introducing the following modifications:

• Code improvements.

• Variable names are all strings with eighth characters.

• Matlab MAT files are now generated using own subroutines.

• The model can now be compiled on any OS for which gfortran is
available.

A detailed theoretical description of ray tracing can be found in the original
manual together with a detailed description of the model [1] . This document
describes only the new conventions used for variable names; for accuracy
issues check [1] and [2]. Users with a preference for coding in C can consider
using cTraceo, a version of TRACEO written in C by Emanuel Ey [3].

3

Chapter 2

Model description

The Fortran sources of the model are provided with a simple makefile. The
gfortran GNU compiler is required for installation; invoking make on the
command line should allow to produce a binary called traceo.exe; the user
should place this binary and the shell script runtraceo in a directory, where
the system can find them. The input file has the in extension and can
be written from Matlab using the M-file wtraceoinfil.m. After creating
the input file (for instance, munk.in) the user can run the model with the
command runtraceo munk; according to the desired output the model will
create one of the following Matlab mat files:

1. rco.mat: ray coordinates;

2. ari.mat: ray or eigenray information (ray coordinates, plus travel
times and amplitudes);

3. aad.mat: arrivals and delays information;

4. cpr.mat: coherent acoustic pressure;

5. ctl.mat: coherent transmission loss;

6. pvl.mat: particle velocity;

7. pav.mat: coherent acoustic pressure and particle velocity.

Besides the Matlab mat files TRACEO writes a short munk.log ASCII file,
describing the type of output and the calculation time. The structure of the
input file is described in detail in the manual.

4

Chapter 3

Examples

This chapter showcases TRACEO capabilities through the presentation of
different examples. All the M-files mentioned in this chapter are distributed
together with the model’s code.

TRACEO examples are organized as follows:

• Deep water ray traces with variable boundaries and no objects:

– Munk profile;

– idealized Munk field;

• Shallow water examples for a Pekeris waveguide:

– calculation of rays, eigenrays and travel times (no objects).

– transmission loss and particle velocity calculations (two objects).

3.1 Deep water

A classical ray tracing test consists in the calculations of ray coordinates for
a Munk profile and flat boundaries, with a source at 1000 m depth and a
propagating range of 100 km (see [4]). In order to show TRACEO’s ability
to deal simultaneously with refraction and reflection over range the test was
extended by including variable boundaries: on top an idealized sinusoidal
surface (a feature which can be of interest for the study of scattering prob-
lems), while on bottom the variable bathymetry was given by a Gaussian sea
mountain. In a second test the model’s stability is further demonstrated, by
replacing the Munk profile with an idealization of a Munk field. Both ray
traces require the calculation of ray coordinates; in every case TRACEO
produces a mat file, called ’rco.mat’, which contains a vector of launching

5

angles, and a set of matrices called ’ray00001’, ’ray00002’,..., one per each
launching angle. Ray information is stored in each matrix as follows:

Row 1: ray range r;
Row 2: ray range z.

The Munk profile used in the first test can be seen in Fig.3.1. The ray
plot shown in Fig.3.2 is produced by running the command

>> rco varbounds

inside Matlab’s prompt. As shown by the figure ray boundary reflections and
refraction are properly handled by the model.

The second example idealizes a waveguide with the same boundaries as
the first example, but considers a sequence of Munk profiles, with the axis
channel depth deepening from 1000 m to 2000 m, when going from 0 to 100
km (see Fig.3.3). Such field reproduces approximately, on a small scale, the
variation of sound speed when moving from the poles to the equator. The
resulting ray trace, shown in Fig.3.4, is produced by running the command

>> rco varbounds field

The figure confirms the expected channeling of ray energy along range, from
shallow to deep waters, which is induced by the deepening of the deep sound
channel. As in the first example, TRACEO keeps a proper handling of
boundary reflections.

6

1500 1510 1520 1530 1540 1550 1560

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Sound speed (m/s)

De
pt

h
(m

)
Munk profile

Figure 3.1: Canonical Munk profile.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Range (m)

D
ep

th
 (

m
)

TRACEO − Munk profile, variable boundaries

Figure 3.2: TRACEO ray trace.

7

Figure 3.3: Idealized Munk field.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Range (m)

D
ep

th
 (

m
)

TRACEO − Munk field, variable boundaries

Figure 3.4: TRACEO ray trace

8

3.2 Shallow water

The shallow water case corresponds to a Pekeris waveguide with flat bound-
aries, as shown in Fig.3.5. Running the command

>> rco flat

produces Fig.3.6, which at a first glance does not look particularly interest-
ing; however, the ray pattern changes drastically if the boundary types are
changed from ’V’ (for the surface) and ’E’ (for the bottom) to ’A’; in such
case, running the previous command produces now the ray trace shown in
Fig.3.7, which predicts the lack of wave interference, previously induced by
ray reflections. Additionally, other patterns will be generated by changing
to ’A’ only one of the two boundary types.

D
=

10
0

m

R = 1 km

c = 1500 m/s

c = 1700 m/s

ρ = 1,7 g/cm3

α = 0,7 dB/λ

(r
s
, z

s
) = (0,25) m✹

z
r

= 75 m

Figure 3.5: The flat Pekeris waveguide (vacuum on top).

The change of the output option ’RCO’ to ’ARI’ can be seen by running
the M-file

>> ari flat

which produces a mat file, called ’ari.mat’; again, ray information is stored
in matrices ’ray00001’, ’ray00002’,..., but now each matrix contains the
following information:

9

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

90

100

Range (m)

D
ep

th
 (

m
)

TRACEO − Pekeris waveguide, ray coordinates

Figure 3.6: Pekeris waveguide: ray coordinates (top vacuum, bottom elastic).

Row 1: ray range r;
Row 2: ray depth z;
Row 3: ray travel time τ ;
Row 4: real part of ray amplitude Re(a);
Row 5: imaginary part of ray amplitude Im(a);
Row 6: phase for caustic correction.

Eigenray calculations shown in Fig.3.8) are produced by running the M-
file

>> eig flat

with the output options ’ERF’ and ’EPR’. Eigenray calculations produce a
’eig.mat’ mat file, with information stored as in the ’ari.mat’ output file.
The second case uses five times more launching angles than the first, and
still so the number of eigenrays is smaller. At a first glance eigenray search
by proximity seems inefficient.

The advantage of eigenray search by proximity over search by regula falsi
is revealed by running the command

>> eig wedge

10

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

90

100

Range (m)

D
ep

th
 (

m
)

TRACEO − Pekeris waveguide, ray coordinates

Figure 3.7: Pekeris waveguide: ray coordinates (top and bottom absorbers).

which produces Fig.3.9; in fact, eigenray search in this case is only possible
with the ’EPR’ option.

A demonstration of TRACEO’s arrival calculations is shown in Fig.3.8),
which is produced by running the command

>> adp flat

with the output option ’ADP’. Arrival calculations produce a mat file, called
’aad.mat’; arrival information is stored in vectors ’aad00001’, ’aad00002’,...,
one per eigenray; each vector contains the following information:

Element 1: hydrophone range rh;
Element 2: hydrophone depth zh;
Element 3: eigenray travel time τ ;
Element 4: real part of eigenray amplitude Re(a);
Element 5: imaginary part of eigenray amplitude Im(a);
Element 6: phase for caustic correction.

Arrival predictions shown in Fig.3.10 indicate a system of arrivals, clustered
in groups of four arrivals; as expected from the symmetry between the source
and the receiver central arrivals overlap, transforming the quadruplet groups
in groups of triplets.

11

Transmission loss calculations with two ellipsoidal objects, at the posi-
tions [25, 75] m and [75, 25] m, are shown in Fig.3.11; the figure is produced
by running the command

>> pav 2o

with the output option ’PAV’. Acoustic pressure and particle velocity calcula-
tions produce a mat file, called ’pav.mat’ with the complex matrices/vectors
for pressure and particle components; the coordinates of the array are stored
together with the requested quantities. Fig.3.11 reveals a partial blocking of
the acoustic field in the waveguide, with clear differences in the interference
patterns of p, u and w. Although no clear diffraction is visible around the
objects all cases indicate that the presence of the objects induces a significant
redistribution of wave energy.

12

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

90

100

Range (m)

D
ep

th
 (

m
)

TRACEO − Pekeris waveguide, eigenrays

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

90

100

Range (m)

D
ep

th
 (

m
)

TRACEO − Pekeris waveguide, eigenrays

Figure 3.8: Pekeris waveguide: eigenrays calculated by Regula Falsi (top)
and by proximity (bottom).

13

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

90

100

Range (m)

D
ep

th
 (

m
)

TRACEO − Pekeris waveguide, eigenrays

Figure 3.9: Pekeris waveguide with a wedge: eigenrays calculated by prox-
imity.

14

0.66 0.68 0.7 0.72 0.74 0.76 0.78
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Travel time (s)

R
ay

 a
m

pl
itu

de

TRACEO − Pekeris waveguide, arrivals and amplitudes

Figure 3.10: Pekeris waveguide: travel times and amplitudes calculated by
Regula Falsi.

15

Figure 3.11: Pekeris waveguide: transmission loss for pressure (top), hori-
zontal component of particle velocity (middle), and vertical component of
particle velocity (bottom). 16

Bibliography

[1] Rodŕıguez O.C. The TRACEO ray tracing program. SENSOCEAN Inter-
nal Report 1, SiPLAB, Campus de Gambelas, 800 FARO-PORTUGAL,
January 2011.

[2] Rodŕıguez O.C., Collis J., Simpson H., Ey E., Schneiderwind J., and Fe-
lisberto P. Seismo-acoustic ray model benchmarking against experimental
tank data. J. Acoust. Soc. Am, 132(2), August 2012.

[3] Ey. E. and Rodŕıguez O.C. cTraceo - User manual. SENSOCEAN Inter-
nal Report 1, SiPLAB, Campus de Gambelas, 800 FARO-PORTUGAL,
January 2012.

[4] Porter M.B. and Liu Y-C. Finite-Element Ray Tracing. In Theoretical
and Computational Acoustics, volume 2, pages 947–956, World Scientific
Publishing Co., 1994.

17

	Introduction
	Model description
	Examples
	Deep water
	Shallow water

