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PECan is a Canadian N×2D/3D parabolic equation (PE) underwater sound propagation model
that was developed for matched-field processing applications. It is based on standard square-root
operator and/or propagator approximations that lead to an alternating direction solution of the
3D problem. A 2D split-step Padé approximation is employed for propagation in range. The 3D
azimuthal corrections are computed using either a split-step Fourier method or a Crank-Nicolson
finite-difference approximation. It features a heterogeneous formulation of the differential operators,
an offset vertical grid, energy conservation, a choice of initial field including self-starter, and both
absorbing and nonlocal boundary conditions. Losses due to shear wave conversion in an elastic
bottom are handled in the context of a complex density approximation. In this paper, PECan
is described and validated against some standard benchmark solutions to underwater acoustics
problems. Subsequently, PECan is applied to several single-frequency test cases that were offered
for numerical consideration at the SWAM’99 Shallow Water Acoustic Modelling workshop.
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I. INTRODUCTION

Canada’s three ocean environments encompass large continental shelf areas. Consequently, long range propagation
of underwater sound is strongly influenced by interactions with the top and bottom ocean boundaries in these regions.
At the ocean surface, this interaction typically involves a wind-driven sea surface or the rough underside of multi-year
Arctic pack ice. Alternatively, at the ocean bottom, range-dependent bathymetry and small-scale roughness can
significantly effect the propagation of acoustic energy. Since modern source localization schemes such as matched-
field processing [1] rely on correlating acoustic predictions with measured array data, it is important to properly and
efficiently model the coherent sound field in such environments.

PECan is a Canadian Parabolic Equation (PE) model that has been developed and enhanced in recent years to
become a fully modern underwater acoustic propagation modelling tool capable of computing acoustic predictions
in realistic oceanic environments. Numerical propagation models based on the parabolic approximation [2] have
undergone extensive improvements in the past decade [3, pp. 343–412]. In particular, as attention has shifted to
shallow water, finite-difference methods [4–6] have assumed a more prominent role. Current finite-difference algorithms
are accurate [7–9], energy-conserving [10], and efficient [11]. Moreover, recent models are also capable of treating
complicated waveguide effects such as elasticity [12–14], backscatter [15–17], porosity [18–20], and surface roughness
[21–23]. PECan incorporates several of these extended capabilities into a versatile propagation model that generates
coherent acoustic predictions in 3D range-dependent environments including elastic properties in the sediments. It
features an energy-conserving, split-step Padé algorithm to march the acoustic field in range, depth, and azimuth, i.e.,
N×2D propagation modelling. The user can optionally choose to correct the N×2D field using an azimuthal-coupling
operator thereby providing an approximation to full 3D acoustic modelling.

As part of the 1999 Shallow Water Acoustics Modeling (SWAM’99) workshop [24], PECan (along with several other
acoustic propagation models) was exercised against tonal benchmark-type test cases that included range-dependent
oceanographic parameters and bathymetry, 3D effects, and shear in the ocean bottom. In this document, we present
the relevant mathematical analysis underlying the current version of the PECan model. Specifically, we present
the various operator approximations necessary to develop a propagation algorithm for the PE field in range, depth,
and bearing. Also, we outline the analysis that is required to account for energy conservation [10], shear in the
sediments [25], a self-starter [26], and nonlocal boundary conditions to represent the effects of a rough ocean sur-
face [21–23] or a homogeneous ocean bottom [27–29]. Finally, we devote a brief discussion to the application of the
PECan algorithm to selected tonal SWAM’99 test cases. We examine specific issues associated with (i) environmental
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interpolation onto the PE computational grid, (ii) reciprocity in the context of PE algorithms, and (iii) 3D coupling
induced by azimuthal bathymetric variations.

II. PECAN THEORY

Consider a range-independent acoustic medium in cylindrical coordinates (r, z, ϕ), bounded above by a free surface
at z = 0, with a sound-speed profile that supports long range propagation (as r → ∞) in the upper part of the
waveguide. For a harmonic point source located at (0, zs, 0), the spatial part of the pressure p(r, z, ϕ)e−iωt in r > 0
satisfies the scalar Helmholtz equation

r−1 ∂

∂r

(
r
∂p

∂r

)
+ ρ

∂

∂z

(
ρ−1 ∂p

∂z

)
+ r−2 ∂

2p

∂ϕ2
+ k2

0N
2p = 0. (1)

Here, k0 = ω/c0 is a reference wavenumber, ρ(z) is the density, N(z) = n(z)[1 + iα(z)] where n(z) = c0/c(z) is the
refractive index, c(z) is the sound speed, and α(z) is the absorption loss. For numerical work, it is convenient to
introduce the reduced 3D-field Ψ via

p(r, z, ϕ) =
exp ik0r√

r
Ψ(r, z, ϕ). (2)

Substituting Eq. (2) into Eq. (1) and factoring the result into outgoing and incoming fields yields the one-way, far-field
(k0r À 1) wave equation for the forward-propagating component in the form

∂Ψ
∂r

= ik0

(
−1 +

√
1 +X3

)
Ψ. (3)

In Eq. (3), X3 denotes the 3D differential operator

X3 = X2 +Xϕ, (4)

where X2 is the 2D depth operator in the rz-plane

X2 = N2 − 1 + k−2
0 ρ

∂

∂z

(
ρ−1 ∂

∂z

)
(5)

and Xϕ is the azimuthal operator

Xϕ = (k0r)−2 ∂2

∂ϕ2
. (6)

Using the Taylor expansion

Ψ(r + ∆r, z, ϕ) = exp(∆r∂r)Ψ(r, z, ϕ) (7)

in conjunction with Eq. (3) yields a marching algorithm that forms the basis for all PE methods,

Ψ(r + ∆r, z, ϕ) = exp iδ
(
−1 +

√
1 +X2 +Xϕ

)
Ψ(r, z, ϕ), (8)

where we have set δ = k0∆r. In its present form, Eq. (8) is unsuitable for numerical work. However, if the azimuthal
coupling effects are sufficiently small, then we can approximate the full 3D propagator to O(δ) by writing

Ψ(r + ∆r, z, ϕ) ≈ exp iδ
(
−1 +

√
1 +Xϕ

)
exp iδ

(
−1 +

√
1 +X2

)
Ψ(r, z, ϕ), (9)

where we have used a wide-angle splitting [30,31] to separate the azimuthal operator Xϕ from the depth operator X2.
Other splittings [32] can yield propagator approximations accurate to O(δ2), but for the small effects of the azimuthal
operator we restrict ourselves to Eq. (9). For Xϕ → 0, Eq. (9) reduces to

ψ(r + ∆r, z, ϕ) = exp iδ
(
−1 +

√
1 +X2

)
ψ(r, z, ϕ). (10)
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Here ψ denotes a wavefield that is independent of the azimuthal operator Xϕ, although ψ can differ along different
azimuths if N is allowed to vary with ϕ. In this case, the solutions of Eq. (10) over a range-depth computational
grid for N azimuths constitute the so-called N×2D PE field. From Eq. (9), it is seen that 3D PE solutions involve
first propagating the known PE field out from r to r + ∆r for each azimuth using the N×2D propagator and then
correcting this field as a function of azimuth using the azimuthal propagator. It is important to realize that for 3D
calculations, azimuthal coupling must be accounted for at each range step. Even though the azimuthal operator is
applied independently at each depth, the propagation from one range step to the next couples all depths together.
There are many numerical PE approaches currently available for solving Eq. (9) that differ only in the treatment used
to approximate the square-root operators. Most PE solution techniques involve discretizing the environment onto a
regular grid in range, depth, and bearing, and then solving for the PE fields on a computational grid that can either
coincide with or be offset from the environmental grid.

A. N×2D Propagation

In this section, we review two finite-difference procedures for solving Eq. (10). The split-step Padé PE algorithm is
based on approximating the propagator in the form

exp iδ
(
−1 +

√
1 +X2

)
≈ 1 +

M∑
m=1

AmX2

1 +BmX2
. (11)

The (complex) Padé coefficients Am, Bm are seen to depend on δ and can be determined in standard fashion subject
to additional constraints [11] that are designed to stabilize the numerical procedures used in propagating the PE field.
Using Eq. (11) in Eq. (10), we obtain the basic equation for the total one-way field

ψ(r + ∆r, z, ϕ) = ψ(r, z, ϕ) +
M∑
m=1

ψm(r + ∆r, z, ϕ), (12)

where each partial split-step component ψm satisfies

(1 +BmX2)ψm(r + ∆r, z, ϕ) = AmX2ψ(r, z, ϕ). (13)

Hence, the total 2D-field at range r + ∆r is obtained by combining the current field at range r with M intermediate
2D fields ψm each of which depends on ψ(r, z, ϕ) through the solution of Eq. (13). A numerical advantage of this
formulation is that the intermediate fields can be computed in parallel. In contrast, regular Padé PE algorithms [8]
that derive from Padé approximants to the square-root operator in Eq. (10) lead to a recursive solution procedure for
determining the total field at the advanced range from the partial fields. That is, substituting

−1 +
√

1 +X2 ≈
M∑
m=1

amX2

1 + bmX2
, (14)

into Eq. (11) yields

ψ(r + ∆r, z, ϕ) =
M∏
m=1

exp
iδamX2

1 + bmX2
· ψ(r, z, ϕ)

≈
M∏
m=1

1 + c+mX2

1 + c−mX2

· ψ(r, z, ϕ), (15)

where c±m = bm ± 1
2 iδam. Here, the (real) Padé coefficients are given in closed form by

am =
2

2M + 1
sin2 mπ

2M + 1
, bm = cos2 mπ

2M + 1
. (16)

For applications where numerical stability can be an issue, it is convenient to make use of complex coefficients [9,12].
It is evident that Eq. (15) admits a recursive solution in terms of M systems of the form
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(
1 + c−mX2

)
ψm(r, z, ϕ) =

(
1 + c+mX2

)
ψm−1(r, z, ϕ), (17)

where ψ0(r, z, ϕ) ≡ ψ(r, z, ϕ) and ψM (r, z, ϕ) ≡ ψ(r + ∆r, z, ϕ). In this case, since each higher-order partial field
component is based on a low-order [1/1] Padé approximant to its associated propagator, sufficiently small values of
δ are required to provide accurate solutions. Because the split-step Padé PE is based on an approximation to the
propagator itself, much larger values of δ can be used while maintaining the same level of accuracy. As a result,
split-step Padé PE algorithms can be significantly more efficient than corresponding regular Padé PE methods. The
PECan model contains routines for solving Eq. (10) by both the regular Padé and split-step Padé algorithms.

B. Hetergeneous Formulation

Solutions to Eq. (13) or Eq. (17) are computed on a discrete computational grid in depth, z, range, r, and azimuth,
ϕ. At each grid point, values of sound speed, c, density, ρ, and attenuation, α, need to be specified. These values
are often based on interpolation from a given set of environmental profiles provided at irregularly-spaced locations.
Nominally, the grid is terminated above by a free (or rigid) surface at z = 0 and below by an absorbing layer overlying
a free (or rigid) surface at z = zmax. The absorbing layer is necessary to attenuate any unwanted reflections from
the base of the computational grid. The choice of zmax and absorption profile α(z) in this physical absorbing layer
depends on the relative amount of energy that penetrates into the ocean subbottom from the ocean waveguide.

For the discretization in depth, we introduce the offset grid vector z = [z1, z2, . . . , zJ ]T , where [· · ·]T denotes
transpose and zj = (j − 1/2)∆z. Use of offset depths avoids the need to compute the field along the top and bottom
of the computational domain where it is known to vanish if either boundary is a free surface. In addition, the
implementation of either pressure-release or rigid boundary conditions can be effected in a symmetric way. In terms
of the z-grid, we apply a heterogeneous approximation for X2(z)ψ(z) in the form

X2(z)ψ(z) ≈ L(z)ψ(z−∆z) +D(z)ψ(z) + U(z)ψ(z + ∆z), (18)

where

L(z) = γρ−(z), U(z) = γρ+(z), γ = 1/(k0∆z)2, (19)
D(z) = N2(z)− 1 + L(z) + U(z), (20)
ρ±(z) = 2ρ(z)[ρ(z) + ρ(z±∆z)]−1. (21)

The use of this heterogeneous form precludes the need for explicitly enforcing continuity of pressure, p, and vertical
particle velocity, (iωρ)−1∂p/∂z, at any jump discontinuities in material properties—once values of ρ, c and α are
specified on z there are, in effect, no internal interfaces. From Eq. (21), it is observed that ρ±(z) → 1 for constant
density media and the weighted three-term approximation to the mixed derivative term in X2ψ reduces to the standard
central-difference form.

Substituting Eq. (18) into Eq. (13) produces a tridiagonal matrix system for the split-step Padé algorithm whose
jth row is given by

[1/Bm +X2(zj)]ψm(r + ∆r, zj , ϕ) = (Am/Bm)X2(zj)ψ(r, zj , ϕ). (22)

The diagonal matrix entries in the top (j = 1) and bottom (j = J) rows are modified by the boundary conditions
imposed along z = 0 and z = zmax, respectively. For a pressure-release surface, the antisymmetry of the field about
z = 0 is ensured by setting ψm(r,− 1

2∆z, ϕ) = −ψm(r, z1, ϕ). This condition is implemented numerically by subtracting
the L(z1) from the diagonal entry D(z1). The even symmetry associated with a rigid boundary is preserved by adding
L(z1) to the diagonal entry D(z1) instead. In a similar way, the bottom boundary condition corresponding to even
(odd) symmetry about z = zmax is handled by adding (subtracting) L(zJ) to (from) the diagonal entry D(zJ).

C. Profile Interpolation

Typical PE computational grid spacings for shallow water low-frequency predictions are of the order of 1 m in
depth, 10 m in range, and 1◦ in azimuth. Environmental information for the ocean rarely exists on this scale. Thus,
the acoustic modeler is faced with the issue of interpolating coarse environmental information, usually in the form of
depth profiles at specified horizontal-coordinate locations, onto the computational grid.

For simplicity, consider a two-dimensional environmental configuration in the range-depth plane (single radial).
The extension to include variations in three dimensions (multiple radials) is straightforward. Assume that we have
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a sequence of coarse environmental profiles along a constant azimuth at the known ranges Rk km, k = 1, . . . ,K.
Each profile is restricted to have points at the same number of depths Zk` m, ` = 1, . . . , L. The set of depth vertices
will generally be different for each value of Rk. Here, we anticipate that the set of coarse profiles has been pre-
processed to preserve significant oceanographic/geophysical features between profiles, such as the depth of the sound
channel axis or surface duct and the sediment thickness beneath a sloping bathymetry. In PECan, we assume that
all environmental parameters (sound speed, density, absorption) vary linearly with depth between points on a given
coarse profile. Moreover, between coarse profiles, we assume that each parameter varies linearly between depth points
that have the same depth index. This implies that common features between coarse profiles share the same depth
index. Any discontinuities in material properties, such as occur at the sea-bottom interface, are accommodated simply
by including a pair of coarse profile points that are displaced in depth by a tiny amount, e.g., 1 cm. This maneuver
ensures that the set of coarse profile depths forms a monotonically increasing sequence which can be safely processed
by an interpolation algorithm.

Let E(Zk` ) represent the value of sound speed, density, or attenuation at the depth of the `th point on the coarse
profile at range Rk. For an intermediate range Rk < R′ < Rk+1, the environment on the computational grid is
determined using a two-step linear interpolation procedure. First, a coarse profile at R′ is obtained using

Z ′` = (1− q)Zk` + qZk+1
` , (23)

E(Z ′`) = (1− q)E(Zk` ) + qE(Zk+1
` ), (24)

where q = (R′ −Rk)/(Rk+1 −Rk). Values for each material property on the computational grid associated with this
intermediate coarse profile are then determined using linear interpolation in depth.

For N×2D and 3D computations, it is necessary to extend the two-step procedure outlined above to include the
azimuthal coordinate. In the present version of PECan, we use a bivariate interpolation formula for finding an
intermediate coarse profile at (R′, T ′) within range Rk < R′ < Rk+1 and cross-range Tj < T ′ < Tj+1 rectangular
coordinates, namely

Z ′` = (1− q)(1− p)Zk,j` + q(1− p)Zk+1,j
` + (1− q)pZk,j+1

` + qpZk+1,j+1
` , (25)

E(Z ′`) = (1− q)(1− p)E(Zk,j` ) + q(1− p)E(Zk+1,j
` ) + (1− q)pE(Zk,j+1

` )

+ qpE(Zk+1,j+1
` ). (26)

Here, q has the same meaning as given above, p is the ratio p = (T ′ − Tj)/(Tj+1 − Tj), and E(Zk,j` ) represents the
value of sound speed, density, or attenuation at the depth of the `th point on the coarse profile at range Rk and
cross-range Tj .

D. Energy Conservation

The derivation of the one-way propagation equation relies on factoring the Helmholtz equation into outgoing and
incoming components and neglecting the coupling to the backscattered fields. Although this is formally exact only for
range-independent waveguides, the algorithm is routinely applied to range-dependent cases in which the environment
is modelled as a sequence of range-independent sections having different properties. That is, since the resulting
propagators march the PE field step-by-step outward in range, the environment is simply updated after each range
step and the coefficients implied by the terms in Eq. (13) are modified accordingly. Even for relatively benign range-
dependent environments, however, this approach may not yield sufficiently accurate results [33]. The inaccuracy
is related to the fact that, at abrupt changes in the environment between range sections, two boundary conditions
need to be satisfied at the corresponding vertical interface in order to properly account for energy transfer along the
waveguide. Of course, the one-way PE can only satisfy one boundary condition there [34]. Subsequent analysis [10]
has shown, however, that if ψ is replaced by the scaled field ψ∗ ≡ ψ/β where β =

√
ρ(z)c(z) in the PE algorithm,

then a good approximation to the true energy-conserving condition is realized. To achieve this numerically, we replace
Eq. (13) by the “energy-conserving” variant

ψ∗m(r + ∆r, z, ϕ) =
AmX

∗
2

1 +BmX∗2
ψ∗(r, z, ϕ) (27)

where the depth operator X∗2 is defined by

X∗2 = N2 − 1 + k−2
0

√
ρ

β

∂

∂z

(
ρ−1 ∂

∂z
β

)
. (28)
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To illustrate the effectiveness of Eq. (28) over Eq. (13) in the case of range-varying bathymetry, we examine the
penetrable wedge test case introduced as one of the Acoustical Society of America (ASA) range-dependent benchmark
problems [8,33,35]. The ASA wedge geometry consists of a shallow-water shoaling waveguide in which the water depth
decreases from 200 m to 0 m over a range of 4 km. The homogeneous wedge has a sound speed of 1500 m s−1 and a
density of 1 g cm−3. The fluid bottom has a constant sound speed, density and absorption of 1700 m s−1, 1.5 g cm−3

and 0.5 dB λ−1 respectively, so that jump discontinuities in density, sound speed, and absorption occur along the
sloping line z = 200−r/20 m, for 0 < r < 4000 m. Calculations have been carried out at 25 Hz for a source located at
r = 0 km and z = 100 m. Curves of transmission loss (−10 log10 |p|2) versus range calculated for a shallow receiver at
a depth of 30 m are shown in Fig. 1 and Fig. 2. The reference results (dashed lines) were obtained using the coupled
mode code COUPLE [33,36]. Results obtained using PECan are shown as solid lines and were computed using M = 2,
∆z = 0.5 m, ∆r = 5 m and c0 = 1500 m s−1. Both PECan calculations included an absorbing layer in the region
500 < z < 1000 m over which the attenuation ramped linearly from 0.5 to 2 dB λ−1. PECan results using Eq. (13)
are given in Fig. 1 while those obtained using Eq. (28) are shown in Fig. 2. Clearly, the calculations obtained using
the energy-conserving (EC) adjustment do not exhibit the extra cumulative increase in transmission losses that are
observed using the non-energy-conserving (non-EC) formulation.

E. Nonlocal Boundary Conditions

Finite-difference solutions to the PE are well-suited to handling appropriate boundary conditions at external and
internal interfaces. For a water-borne source, the large impedance mismatch at the air-sea boundary (z = 0) results in
an almost perfect reflection of a sound wave with a 180◦ phase shift. Consequently, it is usually modelled in applications
as a flat, pressure-release surface. However, an air-layer backing can be convenient for some PE applications involving
deterministically-rough surfaces [37,38]. Internal interfaces are handled implicitly through the use of the heterogeneous
approximations of Eq. (18)–Eq. (21) (suitably modified for use with the energy-conserving operator given in Eq. (28)).
The traditional method of implementing the radiation condition for downgoing waves is to append an absorbing layer
to the computational mesh and to set the field to zero at the base of this layer. The procedure can be inefficient
for some applications, as the tapered absorption strength must increase sufficiently slowly with depth to prevent any
artificial reflections due to impedance mismatches.

The approximate treatment of the downgoing radiation condition can be replaced with a nonlocal boundary con-
dition (NLBC) that exactly transforms the original semi-infinite PE problem to an equivalent one in a bounded
domain [27–29,38]. The use of such NLBC’s can significantly reduce the size of the computational domain, leading
to faster numerical solutions. In addition to handling radiation into (and scattering from) a homogeneous half-space,
NLBC’s can also be derived to treat the coherent scattering losses due to a rough sea-surface [21–23]. For N×2D
computations, nonlocal boundary conditions that represent the effects of either a rough pressure-release surface at
z = 0 or a homogeneous penetrable bottom in z > zb, where zb is a depth below which the properties of the medium
do not change, are available as options in PECan. For a rough free surface with Gaussian statistics, the appropriate
NLBC for the standard PE (derived from the square-root approximation

√
1 +X2 ≈ 1 + 1

2X2) can be put in the form
of the Dirichlet-to-Neumann (DtN) mapping

ψz(r, 0) = −
(
B0/σ

2
0

) ∫ r

0

ψ(r − t, 0)
exp ib0t√

t
dt, (29)

where B0 =
√
i/(2πk0), b0 = 1

2k0(N2
0 − 1), N0 = N(0+), and σ0 is the rms roughness along z = 0. Although this

NLBC is most relevant to low-angle propagation, it can be applied to many shallow-water calculations in the far
field since the steep-angle energy is usually scattered into the bottom where it is absorbed. In a similar way, at the
interface above a homogeneous ocean bottom, a Neumann-to-Dirichlet (NtD) mapping for the standard PE can be
derived in the form

ψ(r, zb) = −B0(ρ+
b /ρ

−
b )
∫ r

0

ψz(r − t, zb)
exp ibbt√

t
dt, (30)

where bb = 1
2k0(N2

b − 1) with Nb = N(zb − 0) and ρ±b = ρb(zb ± 0). Both Eq. (29) and Eq. (30) are derived under
the assumption that the vertical wavenumber associated with the PE field near the respective interfaces is adequately
approximated by the vertical wavenumber that corresponds to the standard PE. Although this approximation implies
that these NLBC’s are mismatched when combined with higher-order split-step Padé propagators, numerical testing
has indicated that these low-order NLBC’s give good results in many cases of interest [22,23]. Although nonlocal
boundary conditions satisfied by the third-order Claerbout PE [39] (obtained when M = 1 by setting A1 = 1

2 iδ and
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B1 = 1
4 (1− iδ) in Eq. (11), or equivalently, a1 = 1

2 and b1 = 1
4 in Eq. (14)) and the exact one-way PE in Eq. (10) have

been derived and implemented elsewhere [22,23,28], they have not yet been incorporated into PECan. At present, the
option of applying either Eq. (29) or Eq. (30) (or both) to higher-order solutions of Eq. (13) or Eq. (18) are available.

For the ASA wedge example, the results of replacing the absorbing layer with nonlocal boundary conditions applied
along z = 250 m are shown in Fig. 3 and Fig. 4. In this case, the depth extent of the computational grid was decreased
by a factor of four. The PECan+NLBC transmission losses shown in Fig. 3 for the shallow receiver are observed to
agree closely with those in Fig. 2 obtained using PECan with the absorbing layer. In addition, the corresponding CPU
time decreased by a factor of three. The calculations for the 150-m receiver are shown in Fig. 4 and while there is
good agreement overall between transmission loss curves, the PECan+NLBC results are observed to depart from the
COUPLE results in the vicinity of the high-loss null near a range of 3 km. The agreement in this region is expected
to improve for a nonlocal boundary condition based on Claerbout’s PE [28].

As mentioned above, NLBC’s can also be used to incorporate the extra scattering losses in the coherent component
of the propagating fields due to a rough surface. To examine this feature, we consider the shallow-water Pekeris
waveguide that was introduced at a 1981 PE Workshop as Test Case 3 [40]. The region 0 < z < 100 m contains a
homogeneous fluid with sound speed 1500 m s−1 and density 1 g cm−3 that overlays a fluid half-space with constant
sound speed, density and absorption of 1590 m s−1, 1.2 g cm−3 and 0.5 dB λ−1, respectively. The 250-Hz source
frequency gives rise to 11 propagating modes in this waveguide. Both the source and the receiver are located at
mid-depth (50 m) in the upper layer. We compute predictions of transmission loss for both a flat-surface and one
characterized by a zero-mean, Gaussian surface with an rms roughness of 4 m. For this range-independent example,
we compare our results to reference results obtained using SAFARI [41], a well-known spectral model based on
wavenumber integration that includes a capability for modelling rough boundaries [42,43].

The results of applying PECan with nonlocal boundary conditions to the Pekeris waveguide are displayed in Fig. 5
for the flat-surface case and in Fig. 6 for the rough-surface case. For both PECan calculations, we used M = 4,
∆z = 0.125 m, ∆r = 5 m and applied an NLBC along the interface at z = 100 m to handle reflection/transmission
effects due to the bottom half-space. The flat-surface PECan results shown in Fig. 5 are indistinguishable from the
SAFARI results. For the rough-surface problem, PECan was also used with the NLBC of Eq. (29) applied along
z = 0 m. Again, the agreement with the SAFARI prediction is excellent. At this frequency, the 4 m rms surface
roughness is observed to have a considerable effect on the propagating waves. Due to the stripping of the higher-order
modes, the transmission loss results are considerably smoother and the overall losses have increased by several dB.

F. Shear

The current focus on shallow water propagation, where the physics of bottom interaction must be taken into account,
implies that PE models must be capable of treating the influence of shear rigidity in the sediments. Although a fully
elastic PE model could be employed for this purpose [12,13], it is desirable from an efficiency standpoint to have a
less computationally intensive solution. Fortunately, for many problems, it is possible to represent the effects of shear
on the propagation in the water column through use of an “equivalent” fluid approximation [25,44]. The approach is
based on choosing fluid parameters to match the reflection coefficient of the actual solid bottom. One way to achieve
this is to convert the shear parameters into a complex density of the form

ρ′b = ρb

[(
1− 2/N2

s

)2
+

4iγsγb
k2

0N
4
s

]
, (31)

where ρb is the true value of density in the sediment, Ns = (c0/cs)(1 + iαs), and cs and αs are the sediment shear
speed and attenuation, respectively. In Eq. (31), the quantities γs = k0

√
N2
s − 1 and γb = ik0

√
1−N2

b are the
respective vertical wavenumbers of the shear and compressional waves in the sediments. Choosing the density to be
complex in this way allows the plane-wave reflection coefficient of the fluid-elastic sub-bottom to be approximated
by the reflection coefficient of an equivalent fluid for a range of angles that correspond to the propagating modes.
Although the value of c0 may require adjustment to optimize the matching (it is a free parameter), this does not
significantly affect high-order PE algorithms which are inherently capable of modelling wide-angle propagation and,
hence, insensitive to the value of c0 that is chosen.

For an elastic half-space, the complex density can be directly incorporated into the nonlocal boundary condition
in Eq. (30). To demonstrate this capability, we introduce a further modification to the Pekeris waveguide problem in
which the fluid half-space z > 100 m is replaced with a solid half-space having the same values of compressional speed
and compressional absorption, but with values of shear speed and shear absorption given by 500 m s−1 and 1 dB/λ,
respectively. To enhance the bottom interaction, we consider propagation between a source and receiver placed at a

7



depth of 99.5 m. Difficulties associated with truncating a vertically extended PE source field (see, e.g., [3]) placed
adjacent to the bottom interface were avoided by extending the depth at which the NLBC is applied to 110 m.

Transmission loss comparisons for the 99.5-m source-receiver pair in the Pekeris waveguide are given in Fig. 7
for the fluid-bottom case and in Fig. 8 for the solid-bottom case. For both PECan calculations, we used M = 4,
∆z = 0.125 m, ∆r = 5 m, c0 = 1530 m s−1, and a NLBC applied 10 m below the sea-bottom interface to absorb
downgoing radiation in z > 110 m. For both the fluid and solid bottoms, the PECan results are observed to be in
good agreement with the SAFARI results. For the near-bottom placement of the source and receiver in this problem,
the equivalent fluid approximation is seen to account accurately for the significant loss of energy (several dB) due
to shear wave propagation in the solid. Moreover, the equivalent bottom accommodates the phase changes in the
propagating modes that alter the interference pattern of the transmission loss curve. The slight departure in level
that is observed between the PECan and SAFARI curves is due to the use of a simple starting field—it does not take
the influence of the geoacoustics of the bottom into account. This aspect of propagation due to a near-bottom source
is described next.

G. Self-starter

Before a PE algorithm can advance the solution of a one-way equation outward in range, an initial condition
(starting field) is required at the range of the source. In addition to the simple PE starting fields [2,3,35,45] that
approximate asymptotically the field due to a point source, PECan also includes an option for generating the so-called
self-starter [26]. The self-starter initial field is determined by solving√

1 +X2 · ψ(0, z) = − 1
2 (i/k0)δ(z − zs), (32)

where zs is the depth of the source and ψ(0, z) is the starting field at r = 0. Whereas the simple starting fields only
model the environment as a homogeneous half-space, the self-starter contains all of the environmental information
in the vicinity of the source. Different procedures for solving Eq. (32) numerically derive from various formulations
used to represent the square-root operator. In PECan, we use the standard PE approximation

√
1 +X2 ≈ 1 + 1

2X2

in Eq. (32) to obtain

(2 +X2)ψ(0, z) = −(i/k0)δ(z − zs). (33)

Specialized, but straightforward techniques are then used to solve Eq. (33) within a heterogeneous finite-difference
framework.

The self-starter is most important for near-field calculations, although it can be important for obtaining the correct
far-field levels for sources that are placed near the sea-bottom. To illustrate this latter behaviour, we consider another
modified version of the Pekeris fluid waveguide problem. The modifications to the original NORDA 3 problem this
time involve placing the source-receiver pair right on the sea-bottom interface at z = 100 m and increasing the density
in the lower half-space from 1.2 g cm−3 to 2 g cm−3 [3]. Transmission loss comparisons for this problem are shown
in Fig. 9 between SAFARI and PECan where the PE calculation was initialized using a simple starting field due to
Green [45]. It is evident that the level of the transmission loss curve is displaced from the reference curve by a constant
value of about 2.5 dB. In contrast, the transmission loss curve shown in Fig. 10 obtained with the self-started PE
source field is indistinguishable from the SAFARI curve. It can be shown that the use of the self-starter also shifts
the PECan curves in Fig. 7 and Fig. 8 into near-perfect alignment with the SAFARI curves.

H. 3D Coupling

3D parabolic equation models have been developed by several authors for modelling the effects of three-dimensional
oceanographic features on acoustic propagation [46–52]. In this section, we extend the finite-difference procedure for
solving the 2D PE to accommodate azimuthal variations by considering (recall Eq. (9) and Eq. (10))

Ψ(r + ∆r, z, ϕ) = exp iδ
(
−1 +

√
1 +Xϕ

)
ψ(r + ∆r, z, ϕ). (34)

The exponential azimuthal operator can be handled using either discrete Fourier transforms (DFT’s) or finite-
differences. Essentially, ψ(r + ∆r, z, ϕ) represents the 2D PE field at range r + ∆r on a grid of points in depth
and azimuth. In order to compute the full 3D PE field, Eq. (34) must be solved at every point in the depth grid
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over all azimuths. PECan is currently configured to compute azimuthal coupling contributions over a full 360◦-sector.
Applying DFT’s to Eq. (34) yields the solution

Ψ(r + ∆r, z, ϕ) = F−1
ϕ

{
exp iδ

(
−1 +

√
1− κ2

)
· Fϕ {ψ(r + ∆r, z, ϕ)}

}
(35)

where k2
0κ

2 = k2
ϕ[r(r + ∆r)]−1, Fϕ{·} denotes the DFT from ϕ-space to kϕ-space and F−1

ϕ {·} denotes its inverse
transform. At each range step, the 3D coupling involves computing a DFT pair and applying a multiplicative
operator at each point on the depth grid.

Alternatively, the finite difference solution of Eq. (34) requires that we first find a representation for
exp iδ

(
−1 +

√
1 +Xϕ

)
that is amenable to finite-difference treatments. Although it is possible to use a higher-

order Padé representation for this purpose, since Xϕ is assumed to be small, PECan makes use of a low-order [1/1]
Padé approximation to the square-root operator followed by a rational-linear approximation to the propagator to
obtain

Ψ(r + ∆r, z, ϕ) ≈ exp
1
2 iδXϕ

1 + 1
4 iδXϕ

· ψ(r + ∆r, z, ϕ)

≈ 1 + 1
4 (1 + iδ)Xϕ

1 + 1
4 (1− iδ)Xϕ

· ψ(r + ∆r, z, ϕ), (36)

which can be written in the equivalent form,(
1 + 1

4 − 1
4 iδXϕ

)
Ψ(r + ∆r, z, ϕ) =

(
1 + 1

4 + 1
4 iδXϕ

)
ψ(r + ∆r, z, ϕ). (37)

The implicit Crank-Nicolson form in Eq. (37) can be solved on a discrete grid using standard finite-difference approx-
imations.

To illustrate the effect of azimuthal coupling, we consider N×2D and 3D propagation for a penetrable wedge
problem that was examined previously by Fawcett [50]. The Fawcett wedge is based on a modification to the 2D ASA
wedge configuration discussed above. The original ASA geometry is continued downslope until a range of 3.6 km
is reached at which point the waveguide becomes range independent with a water depth of 380 m. Similarly, at an
upslope range of 3.6 km, the sloping waveguide is terminated with a range independent section of depth 20 m. A 25-Hz
point source is situated at range r = 0 km and depth z = 100 m above the sloping bottom where the water depth
is zb = 200 m. We choose the ϕ = 0◦ azimuth to align with the upslope direction. The 2D wedge is invariant along
the ϕ = 90◦ and the ϕ = 270◦ azimuths. The resulting acoustic fields are symmetric about the upslope direction.
Because the coherent field behaviour due to a point source can be very complicated even for such a simple bathymetric
geometry, we choose to examine the N×2D and 3D fields that are excited by a single mode of the form

ψ2(0, z, ϕ) =
{

sin(γwz) for 0 ≤ z ≤ zb
sin(γwzb) exp−γb(z − zb) for z > zb

(38)

Here γw =
√
ω2/c2w − k2

n and γb =
√
k2
n − ω2/c2b are vertical wavenumbers of the field in z < zb and z > zb,

respectively, for the nth modal wavenumber ω/cb < kn < ω/cw that satisfies the characteristic equation for a Pekeris
waveguide having the Fawcett wedge parameters at r = 0 km (see [51] for details). For the calculations to follow,
we initiated PECan using Eq. (34) for n = 3 where k3 = 0.0962252 rad m−1. All calculations for this example were
carried out using ∆z = 1 m, ∆r = 100 m, and M = 4 for 2048 azimuths with c0 = 1632 m s−1 (corresponding to
the phase speed for mode 3 at the source location). For comparison, we validate our results against those generated
using Fawcett’s 3D PE code FawPE [50,51].

To show a full azimuthal comparison, we display gray-scale images of the transmission loss (at a receiver depth of
36 m) as a function of range and azimuth in Fig. 11 for the N×2D calculations and in Fig. 12 for the 3D calculations.
For this geometry, both fields are symmetric about the upslope (ϕ = 0◦) direction so only the results in a 180◦-sector
are shown. The 3D result in Fig. 12 clearly exhibits horizontal refraction of energy into the region just downslope
from the cross-slope direction (along the ϕ = 270◦ azimuth) that is not evident in the N×2D result in Fig. 11. This
behaviour is typical of propagation across sloping bathymetry and has been observed experimentally using a towed
array off a continental shelf environment [53]. The differences in transmission loss observed between the N×2D and
3D results decrease for receivers away from the cross-slope direction.

In Fig. 13, we display transmission loss-versus-range curves for a receiver at a depth of 36 m along ϕ = 90◦, i.e.,
the cross-slope azimuth corresponding to the 200 m isobath. PECan results for both N×2D (no azimuthal coupling)
and 3D (full azimuthal coupling) are shown. The departure of the 3D curve from the N×2D curve near a range of
12 km illustrates the importance of azimuthal coupling in this case. In Fig. 14, we compare our 3D PECan results to
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the corresponding results generated using FawPE. The good agreement between the PECan and FawPE transmission
losses well into the shadow region indicates the viability of PECan in its accounting of such coupling. For the upslope
(downslope) transmission loss comparisons shown in Fig. 15 (Fig. 16), almost no differences can be observed at a
receiver depth of 36 m. Finally, the comparisons of azimuthal transmission losses along circular arcs at r = 5 km and
r = 15 km given in Fig. 17 and Fig. 18, respectively, reveal that these azimuthal differences become more localized to
the cross-slope direction with increasing range from the source.

III. SWAM’99 RESULTS

In this section, we present results obtained with PECan for several selected CW test cases introduced at the
SWAM’99 workshop. A more detailed comparison of PECan results with results from other models is presented
elsewhere [24]. Typically, transmission loss as a function of range, depth or azimuth for a given source and receiver
combination is used as the performance measure. Results for N×2D and 3D problems are also displayed in the form
of images of transmission loss versus range and azimuth at a fixed receiver depth.

A. Test Case 1

One criterion underlying the selection of the SWAM’99 test cases was to examine the method of range interpolation
used in a range-varying environment. Test Case 1 (Flat) consisted of several sets of ten different 2D coarse profiles
spaced at roughly 2-km intervals along a 20-km track. Each environmental set is characterized by an isospeed ocean
(1500 m s−1) overlaying 10 2-km bottom sections with differing geoacoustic parameters in each range section, e.g.,
compressional speed gradients and shear rigidity. The water depth of each section is 100 m. The question of how
the geoacoustic parameters in the bottom should be interpolated within each range section was left unresolved and
provided an additional degree of freedom for each acoustic modeler to consider. The simplest method is to keep the
environmental parameters fixed between given coarse profiles, that is, without any range interpolation (non-RI). An
alternate method is to apply the range interpolation (RI) scheme specified in Eq. (23) between each pair of input
profiles. PECan calculations were carried out using both RI and non-RI methods. In this section, we compare
transmission loss results for Test Cases 1a and 1c.

Test Case 1a is characterized by a low value of compressional speed for the sediment at the water-bottom in-
terface (1487.04 m s−1). In contrast, the surficial sediment compressional speed for Test Case 1c is much higher
(1688.53 m s−1). In Fig. 19 and Fig. 20 we display transmission losses versus depth at a range of 15 km for Test
Cases 1a and 1c, respectively, comparing RI results (dashed line) to non-RI results (solid line). The results shown
in these figures were computed using the energy conservation (EC) option for ∆r = 10 m, ∆z = 0.5 m, M = 4
and included a 500-m absorbing bottom layer (recall that an NLBC cannot be applied in a range-varying layer or
one that contains sound-speed gradients). It is evident from these results that the effects of range interpolation are
much more significant for the slow-speed bottom (Fig. 19) than for the high-speed bottom (Fig. 20). This behaviour
is also evident in the transmission losses versus range results for a receiver at a depth of 35 m given in Fig. 21 for
Test Case 1a and in Fig. 22 for Test Case 1c. Because of the low compressional speed in the ocean bottom in Test
Case 1a, when range interpolation is not invoked, more energy is coupled into the ocean bottom within the first 2-km
range section. When range interpolation is applied, however, the higher bottom speed and upward-refracting sound
speed gradient in the second range segment causes the interpolated bottom compressional speed to increase rapidly
with range. As a result, sound energy that was transmitted into the low-speed medium with the non-RI approach
becomes trapped and is subsequently returned to the water column with the RI method. This effect is much less
noticeable for Test Case 1c since the sea-bottom sound speeds in the vicinity of the source are larger than that in
the water column and a greater proportion of energy is trapped at short ranges. In summary, range interpolation of
coarse environmental information onto the fine-scale computational grids can have a significant effect on PE model
predictions for range-dependent propagation problems.

B. Test Cases 2 & 3

Test Case 2 (Down) and Test Case 3 (Up) combine 2D range-dependent bathymetry with range-varying environ-
ments similar to the Flat ones considered in Test Case 1 and provide an opportunity to check the capability of PECan
to preserve reciprocity. In particular, the transmission loss between a receiver at range r0 km and depth 35 m due to
a source at range 0 km and depth 30 m for Test Case 2c should exactly equal the transmission loss between a receiver
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at range r0 km and depth 30 m due to a source at range 0 km and depth 35 m for Test Case 3c. To ensure a proper
check on reciprocity in this instance, the environmental configuration for the Down waveguide geometry must exactly
mirror the environmental configuration of the Up waveguide geometry. In order to meet this requirement for this
comparison, we must use r0 = 18 km for the RI results instead of r0 = 20 km that was used for the non-RI results.
Reciprocal transmission losses obtained with PECan are presented in Fig. 23 and Fig. 24 for the non-RI method and
in Fig. 25 and Fig. 26 for the range interpolated method. Non-EC results are shown in Fig. 25 and Fig. 27 while
energy conserved results are given in Fig. 26 and Fig. 28. The absolute value of the difference in transmission loss
values (∆) observed between each pair of curves are displayed at the appropriate reciprocal point on each figure.
These PECan results were generated using the computational parameters ∆z = 0.5 m, ∆r = 10 m, and M = 4.

The non-RI results given in Fig. 23 and Fig. 24 indicate that reciprocity is approximately satisfied (∆ ∼ 1 dB)
whether or not energy conservation is invoked. A simple explanation for this behaviour is that, in the absence of
range interpolation, there are only 10 vertical interfaces across which the PE-field needs to be corrected for energy
conservation. Evidently, the relatively small number of interfaces encountered in non-RI calculations for this test case
pair do not contribute significantly to any loss (gain) of energy as the field is marched upslope (downslope).

For the RI curves shown in Fig. 25 and Fig. 26, however, large departures are observed between the EC and non-EC
reciprocity values. For the case of range interpolation, the field is corrected at each PE range step. As the number
of interfaces increases, the cumulative departure between EC and non-EC reciprocity values increases. We note that
the best reciprocal behaviour is exhibited by the energy conserving and range interpolated results (to within 0.3 dB).
The poorest reciprocal agreement occurs for range interpolated results when energy conservation is not applied.

C. Test Case 4

Test Case 4b (Synthetic Canyon) involves 3D propagation in the vicinity of a bathymetric canyon-type feature.
The canyon depth, zb (m), as a function of range, r (km), along the R coordinate (ϕ = 0◦) is parameterized by the
analytical bathymetric function zb(r) = 200 + 500 exp− 1

2 (r− 10)2. This 2D feature is then extended uniformly in the
cross-range coordinate T . A 25-Hz source is situated at a depth of 30 m midway across the canyon. For this geometry,
the resulting N×2D and 3D acoustic fields are symmetric about both the cross-canyon and along-canyon directions.
The ensuing calculations for this case were generated using ∆z = 1 m, ∆r = 100 m, for M = 4 and 2048 azimuths.

The effects of azimuthal coupling between N×2D and 3D propagation for this canyon test case can be seen by
comparing the grey-scale images displayed in Fig. 27 and Fig. 28. Because of symmetry, only a portion of the
azimuthal fields are displayed. The N×2D results are displayed in Fig. 27 and the 3D results are displayed in Fig. 28
for a receiver depth of 35 m. The significant differences between the uncoupled and coupled results that are evident
along the canyon axis are a result of the substantial focussing of acoustic energy by the sidewalls of the canyon when
azimuthal coupling is taken into account. Transmission losses versus range along the ϕ = 0◦ (across canyon) and
ϕ = 90◦ (along canyon) radials are shown in Fig. 29 and Fig. 30, respectively, for a receiver at a depth of 35 m.
Both N×2D (dashed line) and 3D (solid line) PECan results are displayed. Although there is no reference solution
available for this problem, a significant enhancement of acoustic levels along the axis of the canyon is observed when
3D coupling effects are taken into account. In contrast, the 3D coupling effects are not nearly as evident for the across
canyon results.

Finally, we compare in Fig. 31 and Fig. 32, N×2D and 3D transmission losses along the quarter-circle arcs at ranges
of r = 5 km and r = 15 km, respectively. Although the overall transmission loss levels at these ranges are similar, it
is clear that horizontal refraction of sound significantly alters the phasing of the modal interference patterns observed
at all angles away from the cross canyon (ϕ = 0◦) direction.

IV. SUMMARY

In this paper, the N×2D/3D underwater acoustics propagation model PECan (Canadian Parabolic Equation)
was introduced, validated against standard benchmark solutions, and applied to some test cases that were offered
for numerical consideration at the SWAM’99 shallow water acoustics modelling workshop [24]. It is based on high-
order finite-difference Padé approximations to the 2D depth-dependent pseudo-differential operator with provisions
to accommodate: energy conservation (needed to prevent extra transmission loss (gain) in upslope (downslope)
situations for range-dependent problems); nonlocal boundary conditions (for treating either the reflection losses due
to a statiscally-rough ocean (free) surface or the reflection/transmission effects due to a homogeneous ocean bottom);
shear rigidity in ocean sediments (through the use of an equivalent fluid approximation that results in a complex
density); a self-starter initial field algorithm (important when the source is placed on or near the ocean bottom);
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and, full 3D azimuthal coupling approximations (to accommodate horizontal refraction effects, e.g., due to sloping
bathymetry typically found in continental shelf environments, that cannot be accounted for using an N×2D model).

A comparison of PECan results to other N×2D/3D models results for a suite of single-frequency test cases is
summarized elsewhere [24]. Herein, we focussed on presenting the underlying theory of PECan with emphasis on
several modifications that have been incorporated to accommodate recent advances in PE modelling capability. These
enhancements to PECan were validated by comparing 2D transmission loss predictions to predictions obtained using
standard benchmark models (COUPLE, SAFARI) for several well-known test cases adapted from the underwater
acoustics literature. For validation of PECan’s N×2D/3D capability, we chose to compare our results to those
obtained using another PE model implementation (FawPE). In this case, we examined the field about a 2D penetrable
wedge excited by a single mode. Subsequently, we presented some results for a few selected cases taken from the
SWAM’99 workshop. In particular, we examined the effects of range interpolated (RI) versus non-RI calculations,
for both energy conserved (EC) and non-EC options. It was found that the RI+EC combination gave the best
agreement when reciprocity was checked for an upslope/downslope range-varying environment. Finally, pronounced
3D azimuthal coupling was observed in the fields that were computed for a synthetic canyon test case due to a point
source located in the center of the canyon.

The version of PECan described herein is intended to undergo regular upgrades to incorporate significant advances
in PE modelling capability. The aim is to produce and maintain a robust PE-based N×2D/3D acoustic modelling
code for ongoing application to a wide range of problems in underwater sound propagation within Canada’s three
ocean environments.
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Figure 1: Transmission loss comparisons for the ASA wedge—PECan without energy con-
servation (non-EC). The source depth is 100 m and the receiver depth is 30 m.
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Figure 2: Transmission loss comparisons for the ASA wedge—PECan with energy conserva-
tion (EC). The source depth is 100 m and the receiver depth is 30 m.
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Figure 3: Transmission loss comparisons for the ASA wedge—PECan (EC) with nonlocal
boundary condition (NLBC) at z = 250 m. The source depth is 100 m and the receiver
depth is 30 m.
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Figure 4: Transmission loss comparisons for the ASA wedge—PECan (EC) with nonlocal
boundary condition (NLBC) at z = 250 m. The source depth is 100 m and the receiver
depth is 150 m.
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Figure 5: Transmission loss comparisons for the flat-surface Pekeris waveguide—PECan with
nonlocal boundary condition (NLBC) at z = 100 m. The source and receiver depths are
50 m.
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Figure 6: Transmission loss comparisons for the rough-surface Pekeris waveguide—PECan
with nonlocal boundary conditions (NLBC’s) at both z = 0 m and z = 100. The source and
receiver depths are 50 m.
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Figure 7: Transmission loss comparisons for the fluid-bottom Pekeris waveguide—PECan
with nonlocal boundary condition (NLBC) at z = 110 m. The source and receiver depths
are 99.5 m.
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Figure 8: Transmission loss comparisons for the solid-bottom Pekeris waveguide—PECan
with nonlocal boundary condition (NLBC) at z = 110 m. The source and receiver depths
are 99.5 m.
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Figure 9: Transmission loss comparisons for the modified Pekeris waveguide—PECan with
nonlocal boundary condition (NLBC) at z = 110 m and using Greene’s (G) source field. The
source and receiver depths are 100 m.
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Figure 10: Transmission loss comparisons for the modified Pekeris waveguide—PECan with
nonlocal boundary condition (NLBC) at z = 110 m and using the self-starter (SS) source
field. The source and receiver depths are 100 m.
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Figure 11: N×2D transmission losses for the Fawcett penetrable wedge for mode 3 excitation.
The receiver depth is 36 m.
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Figure 12: 3D transmission losses for the Fawcett penetrable wedge for mode 3 excitation.
The receiver depth is 36 m.
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Figure 13: Transmission loss comparisons for the Fawcett penetrable wedge for ϕ = 90◦

(cross-slope) and mode 3 excitation. The receiver depth is 36 m.
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Figure 14: Transmission loss comparisons for the Fawcett penetrable wedge for ϕ = 90◦

(cross-slope) and mode 3 excitation. The receiver depth is 36 m.
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Figure 15: Transmission loss comparisons for the Fawcett penetrable wedge for ϕ = 0◦

(upslope) and mode 3 excitation. The receiver depth is 36 m.
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Figure 16: Transmission loss comparisons for the Fawcett penetrable wedge for ϕ = 180◦

(downslope) and mode 3 excitation. The receiver depth is 36 m.
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Figure 17: Transmission loss comparison along r = 5-km arc for the Fawcett penetrable
wedge. The receiver depth is 36 m.
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Figure 18: Transmission loss comparison along r = 15-km arc for the Fawcett penetrable
wedge. The receiver depth is 36 m.
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Figure 19: Range interpolated (RI) and non-RI transmission losses for SWAM Test Case 1a
at a range of 15 km. The source depth is 30 m.
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Figure 20: Range interpolated (RI) and non-RI transmission losses for SWAM Test Case 1c
at a range of 15 km. The source depth is 30 m.
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Figure 21: Range interpolated (RI) and non-RI transmission losses for SWAM Test Case 1a.
The source depth is 30 m and the receiver depth is 35 m.
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Figure 22: Range interpolated (RI) and non-RI transmission losses for SWAM Test Case 1c.
The source depth is 30 m and the receiver depth is 35 m.
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Figure 23: Reciprocal (non-RI, non-EC) transmission loss comparison for SWAM Test Cases
2c and 3c. The source/receiver depth combination is 30/35 m.
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Figure 24: Reciprocal (non-RI, EC) transmission loss comparison for SWAM Test Cases 2c
and 3c. The source/receiver depth combination is 30/35 m.
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Figure 25: Reciprocal (RI, non-EC) transmission loss comparison for SWAM Test Cases 2c
and 3c. The source/receiver depth combination is 30/35 m.
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Figure 26: Reciprocal (RI, EC) transmission loss comparison for SWAM Test Cases 2c and
3c. The source/receiver depth combination is 30/35 m.
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Figure 27: N×2D transmission losses for SWAM Test Case 4b (Synthetic Canyon). The
source depth is 30 m and the receiver depth is 35 m.
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Figure 28: 3D transmission losses for SWAM Test Case 4b (Synthetic Canyon). The source
depth is 30 m and the receiver depth is 35 m.
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Figure 29: Transmission loss comparison across the channel axis (ϕ = 0◦) for SWAM Test
Case 4b. The source depth is 30 m and the receiver depth is 35 m.
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Figure 30: Transmission loss comparison along the channel axis (ϕ = 90◦) for SWAM Test
Case 4b. The source depth is 30 m and the receiver depth is 35 m.

29



0 15 30 45 60 75 90

40

50

60

70

80

90

Azimuth (Deg)

Lo
ss

 (
dB

 R
e 

1 
m

)

PECan (N×2D)
PECan (3D)

Figure 31: Transmission loss comparison along the r = 5-km arc for SWAM Test Case 4b.
The source depth is 30 m and the receiver depth is 35 m.
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Figure 32: Transmission loss comparison along the r = 15-km arc for SWAM Test Case 4b.
The source depth is 30 m and the receiver depth is 35 m.
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