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The Shallow Water Acoustic Modeling (SWAM’99) Workshop was organized to examine the 
ability of various acoustic propagation models to accurately predict sound transmission in a variety 
of shallow water environments designed with realistic perturbations.  In order to quantify this, tests 
of reciprocity, convergence, and stability must be considered.  This paper presents the results of an 
established parabolic equation model based on the split-step Fourier algorithm.  The test cases 
examined in this paper include a simple isospeed water column over a flat bottom with geoacoustic 
parameter variations, a randomly sloping bottom with geoacoustic parameter variations, and a 
canonical shallow water profile perturbed by internal waves over a flat, homogeneous bottom.  
Source configurations were generally held constant but numerous single frequency and broadband 
runs were performed.  Model testing is emphasized with specific criteria for accurate solutions 
being specified.  Random perturbations are added to one test case to examine the influence of 
environmental uncertainty on the details of the propagation.  The results indicate that point-wise 
accurate solutions to the acoustic field in shallow water cannot be achieved beyond a few 
kilometers.  This is partly due to the inaccuracies of the split-step Fourier algorithm employed in 
these shallow water scenarios and the treatment of the bottom interface boundary conditions, but 
also due to the inherent variability caused by uncertain environmental specification.  Thus, more 
general features of the acoustic field should be emphasized at longer ranges.

I.  Introduction
This paper will present results from a well-established, well-documented parabolic 

equation (PE) model with solutions based on the highly stable and efficient split-step Fourier 
algorithm.  The purpose of this paper is not to try to present benchmark quality solutions, but to 
suggest what level of accuracy is possible with such a model, and what its strengths and 
weaknesses are.  We shall limit the majority of this paper to the examination of the FLAT, Case A 
environment, as defined in the summary paper of the Shallow Water Acoustic Modeling 
(SWAM’99) Workshop.  Details of this scenario will be given in a subsequent section.  Resu
a few other SWAM’99 environments will also be presented.

In order to make such a case, it is necessary to run the model through a variety of te
For any given model or environment, a requirement which is easily justified and measurabl
test of reciprocity.  Solutions of the acoustic wave equation must satisfy reciprocity if the 

environment is stationary.  This may be formally written as[1]
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where  is the acoustic Green’s function measured by a point receiver at position 

to a point source located at position , vice-versa for , and  is the density at

corresponding position.  In the water column, we can treat the fluid as incompressible and d
is constant.  Since the Green’s function is directly proportional to the acoustic pressure, Eq

states that the complex acoustic pressure measured at a point receiver at position  due to

source located at position  should be identical to the complex acoustic pressure measure

point receiver at position  due to a point source located at position .

This is a necessary, but not sufficient, condition of any acoustic propagation model. 

can also show a similar reciprocity condition holds for broadband pulse responses.[2]  However, if 
this CW condition is satisfied for all frequencies over the bandwidth, then the pulse respon
condition must also be satisfied and does not provide an additional check of validity of the 
solution.  It is also important to note that this requirement is fundamental to any model that
attempts to use the principle of reciprocity for problems associated with matched field proce
transient localization, or tomography.

Another test which should be applied to any acoustic model is that of convergence. 
Unfortunately, there is no strict definition of convergence.  Many people assume that conver
must be attained as the computational mesh size is decreased to ever smaller sizes.  How
will be seen in this analysis, that is not true for the split-step Fourier algorithm because of t
structure of the propagator functions which march the solution from one range bin to the ne
addition, the treatment of the bottom interface boundary condition causes some difficulty in
obtaining accurate solutions, and the choice of depth mesh size is found to be optimal ove
specific finite range of values.  Instead, we shall assume a more relaxed definition of conve
in which the solution appears to approach a stable solution as the grid sizes are varied.

This issue of convergence is further complicated by the fact that although the accura
a solution at a single depth may improve with smaller depth mesh size, the accuracy of the
solution may not improve.  For example, if a solution is desired at a depth which does not 
coincide with a specific depth grid, an interpolation scheme must be employed to obtain tha
solution.  Such an interpolation scheme introduces its own error which is completely distinct
the convergence of the general solution.  Thus, one must consider when the general soluti
reached a reasonable level of convergence, and not rely on a single point in range or depth

In the following section, an overview of the acoustic propagation model and its 
implementation will be given.  Section III will contain results from the FLAT test case define
the workshop, and the aforementioned tests of the solutions will be considered.  The final r
will be compared with benchmark quality results provided by another researcher during the
workshop.  In Section IV, various results from some of the SWAM’99 test cases will be prese
including predictions of broadband pulse propagation.  Some final comments on the usefuln
this propagation model will be provided in the Conclusions.
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II.  Monterey-Miami Parabolic Equation (MMPE) Model
Much of this section has been adapted from the technical report written for the 

predecessor of the MMPE model.[3]  Rather than simply referring to this report, we include the 
fundamental aspects of the approximation and the details of its implementation, especially the 
choice of mesh sizes and the treatment of the interfaces.  This was felt to be appropriate since the 
remainder of the paper performs an exhaustive analysis of the influence of this treatment on the 
accuracy of the solutions.

We begin by representing the time-harmonic acoustic field in a cylindrical coordinate 
system  by

  . (2)

Substituting this into the wave equation in cylindrical coordinates leads to the Helmholtz 
equation,

(3)

where  is the reference wavenumber,  is the acoustic index of 

refraction,  is the reference sound speed, and  is the acoustic sound speed.  It is 

within  that all features of the environment are represented (except density, which will 
be added later).  The source function is that of a point source at coordinates  with 

reference source level  defined as the pressure amplitude at a reference distance of , 

and

(4)

is the Dirac-delta function defining the point source contribution.

To account for the cylindrical spreading which dominates the propagation and to simplify 
the form of the Helmholtz equation, we define

  . (5)

Substituting this into Eq. (3) (and neglecting the source term) yields
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  . (6)

The final term in this equation drops off like  and is generally neglected in the solution.  The 
second term in this equation introduces azimuthal coupling between different radials, and is 
generally small.  Neglect of this term is often referred to as the uncoupled azimuth (UNCA) 
approximation.  However, we shall keep this term for much of the remainder of this development 
to allow for full three-dimensional (3D) calculations.

The remaining Helmholtz equation can then be factored by introducing the operator 
notation

(7)

and

(8)

where

,  ,  and    . (9)

The homogeneous form of Eq. (3) then becomes

 . (10)

Proper factorization of the outward propagating field is obtained by defining[4]

 . (11)

It is important to include the Qop factor, the first order WKBJ approximation, in Eq. (11) for 
several reasons including proper initial condition of the starting field and power conservation.  We 
also assume the commutator  is negligible, implying weak range dependence in the 
environment, and is, in fact, exactly zero in layered media.  The outgoing wave then satisfies
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 . (13)

When backscattered energy may be considered negligible, Eq. (13) represents the 
complete description of the forward propagating acoustic energy in the waveguide.  This 
parabolic form of the acoustic wave equation is the foundation for all PE models.  What remains 
is a method for generating solutions to this equation.  As we shall see, much of this depends on 
developing approximations to the pseudo-differential operator .

The Split-Step Fourier Algorithm
In order to develop a numerical algorithm for solving the PE, we begin by recognizing that 

the acoustic field may be decomposed into a slowly modulating envelope function and a phase 
term which oscillates at the acoustic frequency.  The envelope function, or PE field function 

, is defined according to

(14)

or, in terms of the acoustic pressure,

  . (15)

This definition is scaled such that at ,  and .  Substitution of this 

expression into the Helmholtz equation yields the defining PE for the field function,

  , (16)

where

(17)

is a Hamiltonian-like operator which defines the evolution of the PE field function in range.

In Eq. (16), the function  is a vector (in z) in Hilbert space.  The relationship between the 

values of  at different ranges can now be expressed as

  . (18)

To propagate the solution out in range requires a representation of the propagator .  There 
are three common methods of computing PE solutions:  (1) the split-step Fourier (PE/SSF) 
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method,[5] (2) the implicit finite difference (IFD-PE) method,[6] and (3) the finite element (FEPE) 

method.[7],[8]  The primary strengths of the PE/SSF implementation of the PE are its speed and 
simplicity.  The computational efficiency of the PE/SSF algorithm is well-known in range-
dependent media.  Other PE algorithms have been shown to produce more efficient results in 

range-independent media.[9]  However, the primary reason for working with PE approximations is 
the treatment of general range-dependent environments in which the PE/SSF algorithm retains 
effectively the same level of efficiency as in range-independent scenarios.

Since the MMPE model uses the first technique, we shall isolate our discussion to the 
implementation of the PE/SSF method.  This is easily accomplished by approximating the 
propagator function by

(19)

where

  . (20)

The formal solution, using a Dyson time evolution operator,[10] would be

(21)

where

(22)

Thus, from Eqs. (21) and (22), the lowest order correction to Eq. (19) could be evaluated.  This 
author is unaware of any such error analysis having been performed in a range-dependent 
environment, however.

Finally, the SSF algorithm is based upon the observation that the operators  and  

are not simply scalar operators but instead are a combination of scalar and differential operators.  
However, each individual operator within  can be efficiently applied by a simple 

multiplication in the appropriate domain.  Thus, it is essential to the SSF algorithm that the 
different terms within  be separated.  This requires an approximation to the square-root 

operator, of which there are numerous forms.  Within the MMPE model, it is assumed that the 
azimuthal coupling term is small, and that a binomial expansion is sufficient to incorporate 
azimuthal coupling.  For the remaining terms within the square root, the wide-angle PE 
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approximation of Thomson and Chapman[11] is employed.  Thus, the full approximation for the 
Hamiltonian operator is

(23)

where

 , (24)

 , (25)

and

 . (26)

In this form, both differential operators have been separated from the index of refraction term as 
required for implementation with the SSF technique.

For the remainder of this discussion, we shall employ the UNCA approximation in which 
 identically.  The treatment of this operator within the SSF algorithm follows a similar 

approach as the  operator and has previously been described in detail.[12],[13]  The operator 

 is simply a multiplication operator in z-space and, hence, is a diagonal matrix.  The operator 

 is not diagonal in z-space so different depth eigenfunctions are coupled.  In vertical 

wavenumber space, however, the corresponding operator  is diagonal.  It is desirable, 
therefore, to separate the application of each operator, one in z-space and one in kz-space.  Using 

the Baker-Campbell-Hausdorff expansion,[14] we may write

(27)

where  and .  Since both  and  are small then we assume 

their products are of second order and negligible.  An analysis of the lowest order error due to this 
approximation in range-dependent media has also never been performed.  Finally then, we have
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where error analysis[15] shows that this “centered step” scheme provides third order accurac
, and is the method used in the MMPE implementation.

Note from Eq. (28) that if there are no losses present (i.e. ) then

 , (29)

and  is a unitary operator.  Therefore, the normalization condition for the complete 3-D
Nx2-D) field function is

 . (30)

Tappert[16] has shown this implies, because of the formulation of the propagator, that the PE
scheme is conservative.  Specifically, since

(31)

then

(32)

which shows conservation of the radial component of acoustic power.  Thus, there are no in
losses due to the numerical scheme and energy conservation is not a concern in this formu

The general algorithm behind the PE/SSF implementation is then as follows.  The PE
function ψ is specified at some range r in the z-domain.  A multiplication of the z-space operator 

 defined at the beginning of the range-step is applied.  A transformation is then 

to the kz-domain followed by a multiplication of the kz-space operator .  The result is 
then transformed again to the z-domain followed by a multiplication of the z-space operator 

 defined at the end of the range-step.  The final result is the field function at 

.  The discrete fast Fourier transform (FFT) subroutine employed in the numerical co
assumes the convention

(33)
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Therefore, the PE/SSF implementation can be represented by 

  , (35)

where, in kz-space,

  . (36)

Note that modes with  are evanescent since

  . (37)

In practice, only the real ocean half of the operator Uop is required to multiply the real 

ocean half of .  The symmetry condition defined below in Eq. (50) can then be applied prior to 
transformation to the kz-domain.  Furthermore, between range steps (at the end of one and the 

beginning of another), two separate applications of the scalar operator  are 
unnecessary, and are combined into a single application with range step ∆r.

MMPE Grid Sizes
As in all models, a discretization of the environment is required and defined by the mesh 

size .  The field and the propagator functions then become discretized arrays in depth of 
length N which defines the size of the FFT used in the SSF algorithm, i.e.
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Note that the depth mesh is defined such that grid points lie on fractional values of .  This 

convention was introduced to avoid carrying the zero-pressure value at  through the 
calculation.  Furthermore, note that half of the depth mesh values define an “image ocean”
negative depths.  This is necessary when using the full Fourier transform and has the adde
benefit of enforcing the surface boundary condition (to be defined below) through symmetr
the FFT.

Because the depth mesh influences the wavenumber increments ∆kz via the FFT, we may 
define a default value for ∆z, hence the transform size N, by considering a lower limit on 
allowable angles of propagation.  Since N wavenumber values will be spread over the range 
+kz,max to -kz,max, it follows that

(41)

where zT is the total computational depth (including both real and image ocean), so

(42)

Furthermore, the vertical wavenumbers are related to the angles of propagation by

(43)

It follows that for a given maximum angle of propagation, the minimum transform size requ
must satisfy

(44)

To define an upper bound on the range step size, , Tappert[4] used the analogy of 
physical optics to obtain an expression for the upper limit on the range step size

(45)

A similar analysis suggests that the maximum vertical mesh size is given by

(46)

which can be shown to yield roughly the same order for the transform size as Eq. (44).
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From the above analysis, it is obvious that if a particular problem is known to contain only 
small angle propagation, the mesh size  may be increased and, subsequently, the run-
time will be reduced.  Conversely, for problems where very large angle propagation is expected to 
be important a small mesh size may be required.  To allow for the highest angles of propagation in 
typical environments, we set  in Eqs. (44) through (46) and obtain

(47)

and

  . (48)

In other words, accurate solutions should be obtained when both ∆r and ∆z are on the order of a 
few acoustic wavelengths.  Note that this mesh size is considerably larger than that needed by 
other numerical algorithms based on finite difference or finite element approximations to the 
differential operators in range-dependent environments.  As this analysis will show, smaller grid 
sizes, on the order of a wavelength in range and a fraction of a wavelength in depth, are required 
to achieve optimal accuracy in shallow water environments with strong bottom interactions.

MMPE Boundary Conditions
The MMPE model treats the surface as a perfect reflector due to a pressure release 

boundary.  This is a Dirichlet boundary condition defined by

(49)

A popular technique used in PE/SSF models to achieve this is the image ocean method.  With this 
method, we assume an identical image ocean overlays the real ocean for negative values of depth 
and, furthermore, the acoustic field is exactly equal but of opposite sign in the image ocean, i.e.

(50)

The boundary condition (49) is then satisfied automatically.

In our numerical implementation, therefore, we must define our field array to be twice as 
long (i.e., twice as deep) as necessary to describe the real and image acoustic field.  Within each 
range step, the MMPE model assures this symmetry by simply imposing condition (50) on the 
image field for z < 0 after multiplying by the z-space operator in the real ocean (thus removing the 
need to actually define the image environment).  This formulation allows direct implementation 
of the split-step Fourier algorithm given by Eq. (35) using the full FFT transformations from z-
space to kz-space.

The MMPE model treats the bottom as a fluid of contrasting sound speed and density from 
that of water.  In addition, the MMPE model allows for an additional bottom layer to exist on top 
of the basement to allow for effects of sediment layers to be included.  Within either bottom 
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volume, the PE environmental potential function, , is defined as before in terms of the 

local acoustic index of refraction, , where c(z) now includes the sound speed 

within the bottom volume.  The effect of approximating the bottom as a fluid is the neglect of 
shear wave propagation.  When the true bottom does support shear waves, the conversion of 
compressional energy incident on the interface into downward propagating shear energy is treated 
as a loss.  In this manner, the bottom properties are replaced by equivalent fluid properties that 
produce the correct reflection from the interface.  This is discussed further at the end of this 
section.

We assume the interface between the bottom of the water column and the top of the 
basement, or sediment, layer is characterized by a sharp contrast in sound speed.  In a numerical 
code with finite sampling and recurrent use of FFT’s, it is desirable to use smoothly varying
continuous functions to avoid artificial reflections, aliasing, and noise from entering into the
calculation.  Therefore, we seek to find a smooth, continuous function of variable scale whic
accurately reproduce the physical effects of a discontinuous jump in sound speed at the wa
bottom interface.

We write the interface condition for the sound speed as

(51)

where we shall assume that the sound speed above the interface at  has a constant 
cw and below the interface has a value cb.  The Heaviside step function is defined by

(52)

where .  From the theory of generalized functions,[17] we may replace H(ζ) by any 
smooth function within a class of generalized functions that produces the same overall effec
has similar moments).

One such function satisfying the above criteria involves the hyperbolic tangent funct

(53)

or, equivalently,
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This function has the properties

(55)

(56)

and

(57)

Furthermore, the derivative of the Heaviside function is

(58)

where δ(ζ) is the Dirac-delta function and is characterized by

(59)

Similarly, the derivative of  is 

(60)

and it is easy to show that

(61)

is also satisfied.  This mixing function  is parameterized by a characteristic mixing length, 
Lc.  It is obvious from the above analysis that
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s 
This limiting equality can be shown to hold for higher derivatives as well.

We have now introduced an additional parameter into our model, the sound speed mixing 
length, Lc.  This can be adjusted by the user in an attempt to create the most realistic interface 
condition for reflections from a sound speed discontinuity.  The MMPE code then employs Eq. 
(54) to mix the sound speed profiles above and below the interface (or interfaces) at .  
Experience has shown that the most accurate results are gained by defining Lc as a fraction of an 
acoustic wavelength, specifically, λ/10.  However, in order to maintain a smooth shape and proper 
sampling of the PE potential function Uop(z), a default minimum value for Lc has been set at 

.  This suggests that the most accurate solutions are obtained when the depth mesh ∆z 

is less than a wavelength.  Thus, one should look for convergence of the solution as the depth 
mesh is decreased.

The effect of density on acoustic propagation has not yet been considered.  In fact, the 
variation of density was ignored in the original form of the Helmholtz equation.  In a fluid with a 
variable density ρ, one can easily show that the previous form of the Helmholtz equation, Eq. (3) 
or (6), can be obtained if the index of refraction n is replaced by an “effective” index of refraction
given by

(64)

Solutions for the pressure field , now defined by

(65)

may be obtained by marching the solution of the PE function  out in range with the 
definition

(66)

where U1(z) is the same environmental potential function previously defined and U2(z) accounts 

for the effect of the density discontinuity.  Note that a reference density, , ha

been introduced to keep the leading factor in Eq. (65) dimensionless.

If we assume that  only, then the density is defined by

(67)

z zb=

Lcmin ∆z=

n′2 n2 1
2k0

2
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ρ
--- ρ 3

2
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ρ
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  2
–∇2 .+=

p r z,( )

p r z,( ) P0
ρR0

ρ0r
---------Qop

1 2⁄– ψ r z,( )eik0r ,=

ψ r z,( )

Uop z( ) U1 z( ) U2 z( )+=

ρ0 1.0 g/cm3=
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ρ z( ) ρw ρb ρw–( )H z zb–( )+=
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where H(ζ) is the Heaviside step function described previously, and ρw and ρb are the densities 
(assumed constant) of the water column and bottom sediment, respectively.  Obviously, the 
function U2(z) is non-zero only in the vicinity of the interface.  As before, we wish to spread this 
discontinuity over some finite region in terms of smooth generalized functions.  This is a more 
critical problem than before because U2(z) depends not on the density but on the derivatives of the 
density.  As before, it is necessary to define a mixing function, with its subsequent derivatives, to 
describe the interface condition.  However, this introduces a density mixing length Lρ, the choice 
of which has always been somewhat ambiguous in this definition.

 Tappert[18] has shown that a good approximation for U2(z) is

(68)

where

(69)

For small density contrasts, this is equivalent to neglecting the last term in Eq. (64).  The main 
argument used to justify this approximation is that because we are using generalized functions to 
represent the density discontinuity, the function U2(z) must also be defined in terms of generalized 
functions.  However, the last term in (64) contains the square of a generalized function, 

specifically , which is not a generalized function.  This detailed analysis by Tappert, which 
attempted to remove as much singularity as possible from the solution in the vicinity of the 
density discontinuity, showed that Eq. (68) is the best expression to use.  Furthermore, this 
formulation inherently produces the best results when Lρ is minimized, i.e. as .  Note that 

Lρ must still be large enough such that the finite depth mesh adequately samples the function 
U2(z) (which is not a simple jump as U1 was).

For purposes of defining a mixing function which completely localizes the extent of the 
function to within a finite distance from the interface, we choose a cubic spline over the finite 
interval .  In designing a cubic spline approximation for H(ζ), we have used four 

sub-intervals of length Lρ/2.  Requiring continuity of the function and its first and second 
derivatives, we define

U2 z( ) ε
k0

2
-----

z2

2

∂
∂ H z zb–( )–≈

ε
1 ρw ρb⁄( )– 1 2⁄

1 ρw ρb⁄( )+ 1 2⁄
-------------------------------------- .=

δ2 z′( )

Lρ 0→

Lρ ζ Lρ≤ ≤–
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  . (70)

The first derivative of this function is then

  . (71)

Note that  and , so it is obvious that

(72)

and, therefore,

(73)

as required.

Finally, the second derivative is
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  . (74)

Combining (74) with (68) gives the formula for computing the density potential function by 
employing a cubic spline polynomial smoothing function.

As before, we define a lower limit default of , and when this limit is reached 

the mixing function is centered on the mesh nearest the true interface depth.  Smaller values than 
this will not properly sample the mixing function.  Analysis has shown that accurate solutions can 
be obtained by applying the condition , which yields the condition .  This is a 

stronger condition than before and suggests that twice the former transform size is needed to 
utilize the mixing function.  However, because of the finite nature of this representation, this 
condition may be relaxed slightly.  A good rule of thumb for either mixing function is  

when sound speed and density discontinuities are important for computing the correct reflection 
from the interface.  Again, tests for convergence should be applied.

Finally, this author would like to note that it is this treatment of the bottom interface which 
remains the weak point of this model.  In deep ocean problems, where bottom interactions are less 

significant, this model has been quite effective.[19]  However, with the current emphasis on 
shallow water propagation, more work needs to be done to improve this treatment of the bottom 
boundary condition and to understand the implications of generating such mixing functions.  At 
the present time, this is the only method for dealing with the bottom interface within the context 
of the SSF algorithm.  Other investigators have also developed a successful hybrid SSF/finite-

difference approach to solve for the density term in the effective index of refraction.[20]  But other 
potential treatments should be investigated.

MMPE Source Function

We now define the initial conditions for the PE field function, .  Previously, 
we have assumed the relationship between ψ and the acoustic pressure, ignoring the effect of 
density and the WKBJ factor, is of the form

 . (75)
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We obviously cannot define p at range r = 0 from this expression.  This is analogous to the 
undefined amplitude of a point source Green’s function at the source location.  Therefore, we 
choose to define the source amplitude relative to that at some small but finite distance from the 
source.  Specifically, we choose

 . (76)

Consistent with reference values used in most sonar equations, we define the reference range

(77)

and the source level, SL, is related to P0 by

 . (78)

The dB units of SL are explicitly stated relative to a reference pressure value of  at 
the reference range R0.

We are still left with the task of determining a form for the source field .  We 
begin by writing Eq. (75) as

(79)

from which it follows that

(80)

In the vicinity of a point source, we know the pressure field takes the form of the spherical 
Green’s function.  Thus, we write

(81)

where  is defined by requiring  at .  We represent the source at  as a 

point source by defining 

 , (82)
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where α is a normalization factor.  Integrating both sides of Eq. (80) over all (real) depths, and 
taking the far-field approximation, yields

(83)

It is desirable to begin the calculation by specifying the source in the k-domain.  Including 
the influence of the image source, a straightforward Fourier transform of Eq. (82) yields

(84)

which indicates that the wavenumber representation of the starting field has a constant amplitude 
modulated by a phase due to the interaction of the source and its image.  This constant amplitude 
is consistent with the notion of an omnidirectional point source which puts equal energy into all 
wavenumbers (i.e., all directions).

For the wide angle PE approximations, it is tempting to allow the amplitude of this 
function to be unity for all wavenumbers, thereby equally populating all directions of 
propagation.  However, even the wide angle approximations are assumed valid only up to angles 
of  or so.  Additionally, the finite FFT size will restrict how large  can be.  Therefore, a 

smooth taper is included at high absolute wavenumber values to limit the angular width of the 

source function and to reduce the influence of sidelobes.  Thomson and Bohun[21] have also 
shown that a wide angle source needs to be modified by the factor

(85)

to produce the correct solution in the far-field.  This results from proper treatment of the WKBJ 
factor in the definition of the starting field.  Note that  corresponds to , so 

 represents imaginary angles of propagation (evanescent modes).  It is required then that 

the source function be tapered within the limits of .

Note that in order to accommodate the so-called “1/2 mesh symmetry” as defined by
depth gridding given in Eq. (40), it is also necessary to add a phase term in the wavenumb

domain of .  Thus, the final form for the wavenumber domain starting field for the wide
angle point source is now given by

α
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Other MMPE Implementation Tricks
There remain numerous other tricks within the MMPE model which should be noted.  

Volume attenuation within the water column and sediment layers, , is treated simply by 
damping the solution in the z-domain by the factor

(87)

which defines the introduction of an additional term in the z-space propagator function,

  . (88)

In terms of transmission loss, this reduces the field by

 . (89)

The MMPE model assumes values input for volume attenuation have units [dB/m/kHz].  
Internally, these values are multiplied by the frequency of the calculation (in kHz) which produces 
values equivalent to 8.686α.  These can then be used to define the loss function given in Eq. (88).  
Empirical expressions for the volume attenuation in sea water are generally used in the model, but 
were removed from the calculations for the SWAM’99 test cases which assumed no loss in
water column.

As mentioned previously, the treatment of shear within the MMPE model is simply in
terms of defining an equivalent fluid bottom.  Both the compressional attenuation and dens

given effective values based on the analysis of Tindle and Zhang.[22]  This provides a reasonable
approximation to both the phase and amplitude of the reflection coefficient for low grazing 
angles.  Specifically, a bottom with compressional and shear speeds cb and cs, respectively, 
density ρb and compressional and shear attenuations αb and αs, respectively, can be represented
by an equivalent fluid bottom with compressional speed cb, effective density

(90)

and effective attenuation
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(91)

Note that Eq. (91) requires that .  In cases where , it is unrealistic to expect 

anything but very small shear speed values, and so they are assumed to be zero in such cases.  
These formulae are implemented in the MMPE model at each interface with the understanding 
that the upper layer is treated as the fluid and the lower layer is treated as the solid.  A more recent 

analysis of the parameters of an equivalent fluid bottom by Zhang and Tindle[23] showed an 
improvement over this method by defining a complex effective density.  This treatment works 
better at higher shear speed values and higher grazing angles.  The necessary equations are 
currently being implemented into the MMPE model and should be available by the time of 
publication of this paper.  However, during the SWAM’99 Workshop, it was apparent that th
introduction of shear into some of the environments had negligible effect.  Therefore, the 
treatment of shear will not be analyzed in this paper.

The way in which environmental inputs are treated should also be noted.  Within the
MMPE model, every input sound speed profile is first run though a simple interpolation routi
define the value of the sound speed on the grid points in depth.  This interpolated profile is
smoothed by using a simple 1-2-1 smoothing routine.  This is to wash out any unrealistic “k
in the sound speed profile interpolation which may result in numerical scattering.  Then, at 
range step, a linear interpolation between these smoothed sound speed profiles at each gr
in depth is performed.  This is done even at depths greater than the bottom depth.  Only af
final interpolated sound speed profile is created is it combined, via the previously defined m
functions, with the bottom sound speed profile.  Note that the bottom profile, which could b
equally as general as the water column, is simply defined by a value at the interface and a c
gradient within the sediment.  Naturally, this treatment of the environment will not have any
impact on the results generated for the isospeed water column test cases.

This combination of the water column sound speed and bottom sound speed, as wel
density mixing function, are defined at the depth of the bottom interface.  This bathymetry d
also input in a range-dependent manner, and bottom depths at intermediate ranges are de
a simple linear interpolation between given range points.  Note that the bottom interface de
need not fall exactly on a grid point since the mixing functions generally extend over severa
points in depth.  The center of these mixing functions is, by definition, at the given bottom 
interface depth.  Thus, more accurate solutions may require smaller mesh sizes in depth to
characterize the true location of the bottom interface.

Another set of implementation tactics employed in the MMPE model relates to unde
filters, or “sponges”, employed to remove acoustic energy from very deep depths in the bo
(from which no energy is expected to return) and from very high angles of propagation.  The
obvious need for a filter we first recognize is the radiation condition  as . 
Because the computational depth is finite, however, we must force the field amplitude to ze
the maximum depth.  Note this also serves to eliminate wrap-around between the real and

αb′ αb

4cs
3 cb
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cb cw
2 2cs

2–( )2
--------------------------------- 2αs
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ifically,
oceans.  This must be done in a smooth and relatively “slow” manner to avoid reflections fro
filter function itself.  The MMPE model applies a sine-squared filter function to the bottom t
of the computational depth of the real ocean.  Because there is no energy at these depths 
initial range, it is not necessary to create a filter which goes from unity all the way down to z
Rather, since this filter is applied at every range step anyway, it is only necessary to reduce
field by some fractional amount at the deepest depths.  After multiple applications of such a
the deepest part of the signal will be greatly reduced.  Thus, the sine-squared filter is desig
range from unity down to only 0.5.  Without reducing the level completely to zero in a single
this has the advantage of reducing the numerical reflections often caused by this filter func

Similarly, some type of filtering may be needed in the kz-domain to remove angles beyond

, i.e. .  As previously noted, the form of the wavenumber domain propagator func

defined in Eq. (36), naturally provides a filter for these angles by making them evanescent. 
energy is attenuated beyond this limit, assuming the kz-space is sampled at such high values.  I

on the other hand, the FFT size N is smaller such that , a kz-domain filter is needed to 

avoid numerical reflections at .  An identical filter as that used in the z-domain is employed 

for that purpose.

III.  Convergence and Stability Issues
In this section, we apply the previously defined PE/SSF algorithm to the first flat-bot

test case of the SWAM’99 environments.  We will limit our analysis here to the 250 Hz CW 
source at a depth of 30 m.  A schematic of the environment is provided below in Fig. 1.  Th
environment has an isospeed water column overlying a flat bottom.  The bottom properties
defined every 2 km and, as described in the previous section, these are linearly interpolate
range out to 20 km.  There is no shear in the bottom, and the compressional attenuation is 
0.1 dB/λ.  The remaining bottom properties defined, sound speed, sound speed gradient, a
density, are also displayed in Fig. 1 to provide some idea of the level of variability in the bo

Figure 2 displays the full, CW field at 250 Hz for the source at 30 m, including the 
cylindrical spreading loss.  It also shows the TL trace at a receiver depth of 35 m out to a ra
20 km.  This calculation was performed with an FFT size of N = 4096 and a computational depth
of zmax = 400 m, corresponding to a depth mesh size of about 0.2 m (including the image oc
At 250 Hz, this provides a depth sampling of roughly 0.03λ.  The range step size was chosen to 
∆r = 5 m, on the order of a wavelength.  These values were found to produce the best curv
will be shown in more detail below.  It should be noted that all calculations were made on a
MHz Pentium based PC.  For these values of the calculation parameters, this single freque
took approximately 1 minute to complete.

Reciprocity
First, let us examine this result under the context of the reciprocity test.  As stated 

previously, if an identical point source is placed in the environment at the 20 km range at a
of 35 m, and the field propagating through the reciprocal (range-reversed) environment is 
computed, then the solution back at the original source location should be the same.  Spec

90° kz k0>

kz max, k0<

kz max,

1 r⁄
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where  is the “forward propagating” field due to a point source at   a

 is the “reciprocal propagating” field due to a point source at  .  Th

results of such a reciprocity test are displayed in Fig. 3, where it is observed that reciprocit
obeyed to within less than a tenth of a dB in transmission loss (less than a 1% error in amp
and less than two-tenths of a degree in phase.

In fact, the accuracy used in the depth mesh was not necessary to achieve this leve
confirmation of reciprocity.  Smaller FFT sizes in the PE/SSF algorithm can still produce 
reciprocal results, even though the solution may have not yet converged.  Thus, it is import
recognize that, although this reciprocity test is a necessary one to evaluate the validity of th
model, it is not sufficient to guarantee an accurate solution.

Convergence
We shall now focus on the issues relating to convergence, and thereby examine in d

the structure of the solution and the propagators employed in the calculation.  As the basel
calculation, we shall consider the parameters stated previously, an FFT size of N = 4096, a 
computational depth of zmax = 400 m, and a range step size of ∆r = 5 m.  Figure 4 compares the 
TL trace at a receiver depth of 35 m for various values of N, the FFT size.  Note that the range ha
been expanded to enhance the first and last 5 km of the run.

These results suggest that convergence has essentially been reached at an FFT sizN = 
4096.  This is a bit misleading, though, and should be clarified.  The real reason the N = 1024 data 
does not match up as well as the other curves is because of the mixing lengths at the botto
interface.  Specifically, for N = 1024, the depth mesh is .  Thus, the 

minimum sound speed mixing length condition  just exceeds the optimal value o

.  For all higher values of N, the latter value is used.  Upon closer inspection, we fi

that values higher than N = 4096 do produce slightly different results.  However, these differen
are less than a dB in level and, at very high values of N, begin to introduce numerical noise in th
SSF algorithm.

Just from this analysis, we are already confronted with a convergence issue.  If we re
the condition on the optimal sound speed mixing length to , we would find general 

convergence in the solution at smaller values of N, around 256.  This corresponds to a depth me
of .  Higher values of N would be found to change the solution slightly, bu
only due to more accurate interpolation between grid points to the desired depth of 35 m.  
consistent with the use of FFT’s in the algorithm, i.e. sampling smaller than λ/2 does not provide 
any real additional information, and so does not improve the general solution.

Since the model defines , this is a crucially important point.  

General convergence will not be obtained until , requiring larger values of N and 

pf r 20 km z, 35 m= =( ) pr r 0 km z, 30 m= =( )=

pf rs 0 km zs, 30 m= =

pr rs 20 km zs, 35 m= =

∆z 0.78125 m 0.13λ≈=

Lcmin ∆z=

Lc λ 10⁄=

Lc λ∼

∆z 3.125 m 0.5λ≈=

Lc max ∆z λ 10⁄,( )=

∆z λ 10⁄≤
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longer run times.  For the current calculation, with the range step fixed at , the run time 
for N = 4096 is roughly 1 minute as compared to N = 256 which completes the calculation in 
under 3 seconds.  The significance of this difference is even more obvious when one begins to 
consider broadband calculations which scale linearly with the number of frequencies computed.

So why define  rather than ?  To address this 

issue, we set N = 4096 and vary the size of Lc relative to λ.  (Lρ is fixed at 2λ.)  Figure 5 displays 
the results for several values of Lc.  The upper two panels display the TL trace at 35 m for the first 
and last 5 km of the calculation, as before.  However, in this case, there is no clear convergence 
near the final ranges.  All four values of Lc produce slightly variable results.  Thus, it is not clear 
that convergence is even possible due to this ambiguity in the sound speed mixing length.  As a 
means of determining which value is “best”, the third panel of Fig. 5 displays only the first 2
of the calculation.  There, we see that the results do appear to converge for .  No

discrepancies begin at roughly 0.5 km.  This is presumably due to the interaction of low mo
which are more sensitive to this choice of mixing length.  Other fractional wavelength value
were chosen, and  consistently seemed to provide the best convergence.

Fixing the sound speed mixing length at  and N = 4096, we now examine the 

convergence with respect to the density mixing length.  The results are displayed in Fig. 6.
clear from this figure that there is a limit to how small this mixing length can be to produce 
accurate results.  It is unclear whether this is merely a numerical issue, a problem with the f
the mixing function, or whether it is something more fundamental in the approximate form o
density treatment as defined in Eq. (68).

For the three larger values of density mixing length used, the middle panel shows a 
considerable amount of variability in solutions with no clear convergence occurring.  Again
focus our attention on the lower panel where the results of the first 2 km of the calculation a
displayed.  It appears that a “stable” solution begins to appear when .  The term “st

rather than “convergent” is used since this is not a limiting effect as Lρ is increased or decreased
indefinitely.  For values of Lρ much greater or less than this, the solution appears to degrade

seen in the middle panel for .

We now consider the final free parameter, the range step size ∆r.  As noted previously, the
algorithm is based on the centered-step scheme which is third order accurate in ∆r.  This implies 
that as the range step is continually decreased, the solution should continue to improve in 
accuracy until it converges to a stable solution.  This is true in most PE models, including t
based on implicit finite difference or finite element methods.  However, this is not the case 
the SSF algorithm is employed.

In Figs. 7 and 8, the solutions are displayed for several different values of range step
The solution appears to be converging in Fig. 7 at .  The smaller value of 
does not significantly change the solution.  We would expect that even smaller values woul

∆r 5 m=

Lc max ∆z λ 10⁄,( )= Lc max ∆z λ,( )=

Lc λ 10⁄∼

Lc λ 10⁄∼

Lc λ 10⁄∼

Lρ 2λ∼

Lρ λ 5⁄=

∆r 5 m∼ ∆r 2 m=
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not change the solution.  However, as observed in Fig. 8, this does not hold true.  The solution is 
seen to degrade for smaller values of ∆r.  Thus, the solution does not converge with decreasing ∆r 
but rather reaches a stable solution at finite ∆r.  From this analysis, it appears that the solution 
reaches such a stable solution at .  Note, as is often one of the stated advantages of the PE/
SSF model, the range step can be several wavelengths and still achieve accurate solutions at 
shorter ranges.  For longer ranges, it appears that a range step on the order of a wavelength may be 
necessary.

But what is the cause of this non-convergence at small range steps?  This is a little known 
feature of the SSF algorithm, and is related to the structure of the propagator functions.  For the 

same range step sizes used above, the environmental propagator function, , where 

 is given by Eq. (25), is displayed in Figs. 9 and 10.  The corresponding wavenumber 

propagator function, , where  is given by Eq. (36), is displayed in Figs. 11 

and 12.  Note that the magnitude of the environmental propagator exhibits the decay of the 
solution at deep depths down to 0.5, and the wavenumber propagator decays exponentially 
beyond .

Based on the previous conclusion that a range step of  provided the most stable 
solution, the shapes of the propagator functions suggest the following.  For large ∆r, the SSF 
algorithm attempts to put a lot of phase information into a single range step.  If ∆r is too large, this 
generates errors in the solution.  On the other hand, for small ∆r, there is little phase information 
in each range step.  And if ∆r is too small, there is not enough phase information to produce a 
stable, accurate solution.  Also note that, for small ∆r, the exponential decay of high 
wavenumbers beyond  does not occur as effectively, and such non-realistic energy may 

creep into the solution as noise.

The general conclusion we may draw from this analysis of the propagator shapes is that 
stable, accurate solutions occur at range steps where there is a full cycle of phase information in 
each propagator.  This appears to occur when  in this shallow water environment.  
Solutions close to this stable solution may also be obtained using range steps of a few 
wavelengths, particularly in deeper water or at shorter ranges.

In this section, we have clearly seen the difficulty in obtaining convergent, accurate 
solutions with the SSF/PE model.  However, for the remainder of this section, we shall fix the free 
parameters, unless otherwise noted, as , , , and 

.  The latter two conditions defining the mixing lengths are explicitly written 

into the MMPE model, and ∆r and ∆z will be adjusted depending on the frequency and depth of 
the problem.

Comparison With Other Solutions
Based on the previous analysis of the FLATa environment at 250 Hz, the best solution is 

obtained when a range step of  and an FFT size of N = 4096 are used.  To check the 

∆r λ∼

e ik0∆rUop r z,( )–

Uop r z,( )

e ik0∆rT
ˆ

op kz( )– T
ˆ

op kz( )

kz k0>

∆r 5 m∼

kz k0>

∆r λ∼

∆r λ∼ ∆z λ 10⁄< Lc max ∆z λ 10⁄,( )=

Lρ max 5∆z 2λ,( )=

∆r 5 m=
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true accuracy of this calculation requires a benchmark solution.  However, no formal benchmark 
solutions were generated for the SWAM’99 test cases.  This was intentional so that each di
model’s results could be compared for consistency or differences without the aid of a true so
to guide the modeler.  Fortunately, there were two different models, those developed by Broet 

al.[24] and Mikhin[25] which showed excellent agreement for several test cases.  Thus, for th
purposes of benchmarking, we shall assume that these results represent the “true” solution

Figure 13 displays the results from Dmitry Mikhin’s model and the MMPE model for 
FLATa case at 250 Hz for a source depth at 30 m and a receiver trace at 35 m.  In this figu
MMPE model used values of  and N = 4096.  The maximum computational depth wa

, so the depth mesh size was .  The comparison is 

reasonably good, in this author’s opinion.  The larger scale structures, fluctuating with rang
scales of ~ 0.5 km, appear to agree throughout most of the range.  It should also be noted 
agreement is quite good for ranges less than 2 km.  Still, one may argue that the MMPE so
seem to contain more numerical noise.  The differences at longer ranges may simply be du
treatment of the bottom interface for which the MMPE model has introduced the mixing func
previously described.  A proper test of the accuracy of the MMPE model may then require 
solution of this modified environment.  However, the purpose of this exercise is to determin
model’s ability to generate solutions to the prescribed environment, and these differences s
be accepted as limitations of the current technique.

During the course of our convergence/stability analysis, we observed that larger FFT
appeared to reach convergent solutions, although very large FFT sizes introduced some sm
scale numerical noise.  Thus, we may expect this to be partly to blame for this effect.  To te
we should reduce the FFT size.  However, because of our condition on sound speed mixin
length, , increasing  beyond  will begin to degrade the solution

So as a limiting case, we now choose N = 1024 which corresponds to , approximate
matching the limiting value allowed for Lc.  The comparison of these results with the converge
solution of Mikhin’s is displayed in Fig. 14.

The results are seen to improve noticeably at all ranges, particularly with the remova
some of the small-scale numerical noise.  This is also advantageous because it reduces th
time of the calculation from roughly one minute down to about 12 seconds, nearly a factor 
improvement.  Thus, it appears that the MMPE generates the most accurate and efficient s
when  and .  These conditions will be used throughout most of the remaind
this paper to produce the most accurate MMPE solutions.

Finally, before we accept that this resolution is needed in general, let us examine one
solution when we relax our grid conditions to  and .  For the current 
environment, that means reducing the FFT size to N = 256.  Note that this run can be completed 
roughly 3 seconds.  The comparison of the results with Mikhin’s solution is given in Fig. 15
Obviously, the accuracy of the solution has been severely degraded at larger ranges.  Howe
results are still quite good at ranges less than about a km, or roughly 10 water depths.  Thi
likely a characteristic feature of the PE/SSF solution in shallow water:  for ranges less than

∆r 5 m=

zmax 400 m= ∆z 2zmax( ) N⁄ 0.03λ≈=

Lc max ∆z λ 10⁄,( )= ∆z λ 10⁄

∆z 0.13λ≈

∆r λ∼ ∆z λ 10⁄∼

∆r λ∼ ∆z λ 2⁄∼
26



 30 m 
h was 

m 
 100 m.  
, 
ar that 

ere 

se 
cale 
nges.  
ll at all 

 
 Similar 
ssed 
lyzed.

 200 m 
 FLAT 
ging.

er 
e large-

res of 
e at 200 
water depths, a depth mesh of  is adequate, but for longer ranges, finer sampling in 

depth is needed down to our limit of .

IV.  SWAM’99 Test Case Results
Based on our analysis of the MMPE model solutions for the FLATa environment at 250 

Hz, we can now examine the accuracy of the model using a generalized approach.  In most of the 
following cases, the MMPE solutions have been generated using  and .  
Exceptions to this are noted.  The CW results are again compared with Mikhin’s solutions.

FLATa
In Fig. 16, the results for the FLATa environment are presented for a 25 Hz source at

and a receiver trace at 35 m.  For this low frequency, it was found that a smaller depth mes
necessary to achieve the best result, specifically, .  The difficulty with this proble
was apparently the scale of the wavelength, 60 m, compared to the scale of the waveguide,
Thus, this density mixing length, 2λ, is actually larger than the waveguide itself!  In light of this
it is rather remarkable that the solution compares as well as it does.  However, it does appe
the MMPE model is not well suited for very low frequency propagation in shallow water wh
only a few propagating modes exist.

The solution for the 500 Hz source is shown in Fig. 17.  The level of accuracy of the
results is comparable to the 250 Hz solutions examined in the previous section.  The fine-s
structure matches well for the first few km while the larger scale features match well at all ra
One may expect that a comparison of range-averaged solutions would agree extremely we
ranges.

Finally, the 1000 Hz solutions are compared in Fig. 18.  Again, we find the fine-scale
features agree well at shorter ranges while the general structure is consistent at all ranges. 
comparisons were consistently found for all of the FLAT environments, and will not be discu
further.  For the remainder of this section, only the 250 Hz and 500 Hz solutions will be ana

DOWNa
This environment combines bottom acoustic parameter variability with a variable 

downslope bathymetry, increasing the bottom depth from 50 m at the source range to over
at 20 km.  Because of this slope, we would expect more mode coupling to occur than in the
environments.  Thus, accurate modeling of this propagation is expected to be more challen

The solutions for the 250 Hz and 500 Hz sources are displayed in Figs. 19 and 20, 
respectively.  As before, the results agree well at short range and begin to degrade at long
ranges.  In this case, however, we find that some phase errors begin to appear  for even th
scale features at ranges beyond about 15 km.

IWc
This environment contains the most complicated water column sound speed structu

all the test cases.  The bottom is a simple, homogeneous half-space with a smooth interfac

∆z λ 2⁄∼
∆z λ 10⁄∼

∆r λ∼ ∆z λ 10⁄∼

∆z λ 20⁄∼
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m.  The background water column profile is also relatively simple, defined using a typical shallow 
water, downward-refracting canonical profile with a minimum at the bottom depth of 200 m, and 
surface duct from 0 to 26 m.  However, this background profile in the water column is perturbed 
by a train of five solitons superimposed upon five sinusoidal linear internal waves of scales 500 m 
to 1700 m.

The solutions for the 250 Hz and 500 Hz sources are displayed in Figs. 21 and 22, 
respectively.  Once again, we find the results agree well at short range and begin to degrade at 
longer ranges.  This suggests that the MMPE model is quite capable of dealing with complicated 
sound speed structures in the water column.  The real challenge for this model appears to be in the 
treatment of the bottom interface condition.

Broadband Pulse Propagation:  FLATa
Finally, we examine some results from the FLATa environment when the broadband 

source is modeled.  The source is again placed at a depth of 30 m but now has a finite bandwidth.  
The definition of the source spectrum was based on a Gaussian function centered at 375 Hz and a 
Gaussian half-width of 80 Hz.  As stated in Section II, the MMPE model produces single 
frequency solutions which can then be Fourier synthesized to generate pulse propagation 
predictions.  In general, any source spectrum could be used to scale the individual frequency 
components.  The post-processing software of the MMPE model assumes a simple, Hanning 
window form for the source spectrum.  Since the specific details of the spectrum were not the 
issue but rather the bandwidth and temporal resolution, the default Hanning window was used 
with a total bandwidth of 175 Hz.  This is comparable to the defined Gaussian spectrum.

In order to avoid wrap-around of the signal in the time domain, a total time window of 
roughly 1.5 seconds was needed.  Thus, a minimum of 256 single-frequency calculations was 
required, evenly spaced over the bandwidth.  To insure that there was no influence from wrap-
around, the following data was run with 512 single-frequency calculations.  Due to the higher 
frequencies involved, a range step of 2.5 m was chosen while the depth mesh was set to ~ 0.4 m.  
Note that the wavelength varies from roughly 5 m down to 3 m over this bandwidth, and so our 
convergence and stability conditions on the mesh sizes are roughly satisfied for all frequencies.

For these settings, each CW run takes about 45 sec to complete.  The total time for this 
pulse prediction is then roughly 6 hours.  Because this scales linearly with the number of single 
frequency runs completed, we are motivated to consider using smaller bandwidths.  This will 
reduce our temporal resolution of the multipath structure, but may be worthwhile if we can 
significantly reduce the run-time.  Therefore, a second calculation was done with only 128 
frequencies over a total (Hanning window) bandwidth of 80 Hz.  This reduces the calculation to 
just over 1 1/2 hours, a much more manageable time.  The results for each of these calculations 
are given in Fig. 23 for a receiver at range 20 km and depth 35 m.

Significant differences are noted between the two solutions which are beyond simple 
temporal resolution issues.  Two possible causes may be suggested.  First, we assume both 
solutions are accurate for their given bandwidths, and the differences arise because of effects at 
the upper and lower ranges of the larger bandwidth which generate more interference and appear 
to reduce the average levels near 13.6, 13.8, and 14 secs.  Second, that the upper and lower ranges 
28
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of the larger bandwidth are not as accurate as necessary due to being further away from the 
optimal values of the range and depth mesh sizes.  (Note that the smaller bandwidth results end 
before the larger bandwidth simply due to a reduction in the total time window for the latter 
calculation.  This would not be expected to introduce the observed differences.)

Unfortunately, neither of the models of Mikhin or Brooke, et al., were used to generate 
predictions of the broadband pulse propagation.  So any comments on the accuracy of these 
results are purely speculative.  However, it should be noted that the broadband results can show 
some of the same sensitivity to the computational mesh sizes as the CW runs.  An example of this 
is given in Fig. 24 which compares the previous, wide bandwidth results with those computed 
using an increased mesh size of  and .

Clearly these results do not compare favorably for the later arrivals corresponding to the 
higher modes.  This may be consistent with the previous issues encountered with the mixing 
lengths, which could be expected to effect the higher modes more significantly than the lower 
modes.  Still, without a benchmark solution for comparison, no formal analysis of this effect has 
been performed

FLATa: Random Perturbations
Finally, we consider a very important point regarding the accuracy of the MMPE model 

predictions.  Although the environments defined are considered to have “realistic” fluctuatio
they are still idealized in the sense that the environment is defined exactly.  But what impact do 
unknown perturbations have on the solutions, even those considered of benchmark quality

To examine this issue, we return to the FLATa environment with the 250 Hz source 
transmission.  In addition to the specified environment, we now add a random 1% error to t
depth (still range-independent), the bottom sound speed and sound speed gradient, the de
and the attenuation.  A 0.1% random error is added to the water column sound speed (still
homogeneous).  This was accomplished simply by generating a random number between -
for each of the parameters affected, and then multiplying by the appropriate percentage (i.e
either 0.01 or 0.001).  The parameter value was then altered by adding this percentage var

  The results of two such randomized perturbations are compared to the unperturbe
MMPE solution in Fig. 25.  While the discrepancies between these results are not as sever
those compared with Mikhin’s solution, they still show a relatively high degree of variability 
the fine-scale structure at ranges beyond about 10 km.  Thus, one could certainly argue th
real ocean environments, point-wise predictions of acoustic propagation are not possible a
of water depths in shallow water.  General trends are probably possible, and PE/SSF mode
properly used, can produce quite accurate results to this resolution.  Such models also hav
advantage of being highly efficient, numerically stable, and may even be automated to prod
acceptable predictions of acoustic propagation.

Other SWAM’99 Test Cases
Solutions for the other SWAM’99 test cases using the criteria determined from this 

analysis are, at the time of this writing, still being catalogued.  They will be available on the

∆r 5 m= ∆z 1.6 m≈
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SWAM’99 ftp site for other investigators to examine.  They can also be provided directly to 
anyone by contacting the author via e-mail.

V.  Conclusions
In this paper, a detailed description of the Monterey-Miami Parabolic Equation (MMP

model was given along with an exhaustive analysis of its predictions in several shallow wa
environments defined in the SWAM’99 Workshop.  Much of the model development is simil
other parabolic equation models based on other numerical algorithms.  The MMPE model 
employs the split-step Fourier numerical algorithm to march the solution to the acoustic fiel
in range.  It was shown that, while this algorithm is one of the most highly efficient numeric
approaches, it introduces other complexities which make point-wise predictions in explicitly
defined environments difficult.  Much of this is related to the treatment of the bottom interfa
boundary condition, which must be treated numerically in terms of smooth, generalized mix
functions used to simulate the discontinuous nature of the boundary.  Such problems do no

in the models developed by other researchers,[24],[25] which explicitly treat the parabolic 
approximation on the boundaries of finite elements by higher order numerical methods.  No
are these methods higher order in their approximation of the square root operator, but they
directly treat the proper boundary condition across the boundary interfaces.  However, suc
methods are generally more computationally intensive.  They must also consider the prope
treatment of vertical boundary conditions in range-dependent environments in order to mai
proper energy conservation.  Such energy conservation is intrinsic in the development of th
PE algorithm used in the MMPE model.

The sound speed discontinuity, relatively simple to define, is treated with a smooth 
hyperbolic mixing function.  In order to properly sample this function, the mixing length mus
at least one depth mesh.  Furthermore, the scale of the mixing length used to produce the 
accurate results was found to be .  The small scale relative to a wavelength is no

surprising since we are attempting to model a step function discontinuity.  However, smalle
mixing lengths were found to degrade the solution.  The exact cause is unclear, but is presu
due to either numerical problems associated with the environmental propagator function or
numerical noise resulting from the Fourier synthesis of a sharp discontinuity.  In addition, la
mixing lengths did not perform well, presumably due simply to the poor simulation of a 
discontinuous interface.

The density discontinuity is a much more difficult issue to treat, particularly with mixi
functions.  Part of the difficulty is in the form of the effective index of refraction which conta
both the second derivative of the density with respect to depth, but also the square of the f
derivative.  It was argued that only the former can properly be modeled with generalized 
functions, and should produce accurate results with small mixing lengths.  However, this fun
is simulating the first derivative of a delta function, which is difficult to do over a small depth
well defined cubic spline function was employed to model this interface.  For this function, 
least two depth meshes are required to properly sample the function.  Analysis showed tha
optimal mixing length was .

Lc λ 10⁄∼

Lρ 2λ∼
30
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Finally, an analysis of the solution accuracy with range step size was performed.  The best 
solution was found when .  Furthermore, unlike other numerical algorithms, it was shown 
that solutions based on the split-step Fourier algorithm actually degrade as the range step is 
decreased further.  This is due to the form of the propagator functions which no longer provide 
enough phase information per range step for values much less than a wavelength.

This analysis of optimal mixing lengths and mesh sizes proved to be a challenging 
exercise.  Convergence of the solutions was not obtained by continually decreasing the mesh 
sizes, but rather stability was used to define the best solutions.  This also limits the accuracy of 
spatial points which do not fall on a grid point to the interpolation scheme employed.  Still, it was 
comforting to find that the model did satisfy the requirement of reciprocity out to the longest 
ranges specified to within 1% in amplitude and two-tenths of a degree in phase.

With these findings, predictions of the acoustic propagation for several of the SWAM
test cases were made.  These results were compared to those generated by another parab
equation model which was thought to produce high quality solutions.  It was found that thes
predictions compared quite well at short range (less than ~ 10 water depths), including the
scale fluctuations.  This appeared independent of frequency, suggesting that there are spec
like paths which exhibit the sensitivity to the treatment of the bottom interface condition.  A
longer ranges, the larger scale features of the solutions also compared well.  This was cons
found to be true for all environments at all frequencies considered, with the slight exception 
lowest frequency problems which contained only a few propagating modes within the wave

The results did suggest potential problems with the model for very low-frequency so
due to the finite extent of the density mixing function.  In this sense, low frequency is define
terms of the number of wavelengths or modes which can fit within the water column.  In the
FLATa case considered here, the water depth was only about one and a half times the wave
Thus, the mixing function extended throughout most of the water column, significantly pertu
the environment we were attempting to model.

The accuracy that should be required of any propagation model should be put in the
context of our ability to accurately define the environment.  To address this issue, minor ran
perturbations were added to one test case.  It was found that the variability introduced in th
solutions due to these perturbations was of the same order as the differences between the
solutions and Mikhin’s solutions.  Thus, one may conclude that the MMPE produces solutio
which are just as accurate as a benchmark quality model given a real ocean environment w
inherent uncertainties.  The efficiency of this PE/SSF model in producing both CW and 
broadband pulse predictions makes it an attractive and powerful tool for ocean acoustic 
propagation modeling.

Results from a broadband calculation were also presented.  However, due to a lack
other model results for comparison, the accuracy of such results is unknown.  It is hoped th
developers of the benchmark quality models will attempt to produce broadband results for 
comparison in the future.

∆r λ∼
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Finally, potential improvements to the model should be mentioned.  Because much of the 
difficulty in finding stable, convergent solutions resulted from the treatment of the bottom, other 
approaches should be considered.  One attractive alternative may be related to the recently 
developed non-local boundary treatments which are able to produce the required reflection 

condition without having to directly account for the field penetrating below the interface.[26]  
Unfortunately, this approach is not currently suitable for implementation within the split-step 
Fourier algorithm.

Additionally, it is known that the WAPE approximation used in the model does introduce 
phase errors which accumulate with range.  In fact, these errors could certainly be a contributing 
factor to the fine-scale mismatch observed at longer ranges.  Tappert’s c0-insensitive method has 

been shown to significantly reduce these phase errors in this approximation.[27]  The addition of 
this approach to the MMPE model is currently being attempted, and any improvement in th
model’s accuracy will be reported in the near future.
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Figure 1:  The FLATa test case environment.  The water column is homogeneous and
the range-dependent bottom acoustic parameters are shown linearly interpolated as
the model treats the input.

D = 100 m* zs = 30 m



Figure 2:  MMPE model solution for the FLATa environment with a 250 Hz CW source
at 30 m. Upper panel shows the complete two-dimensional field in the water column while
the lower panel displays the transmission loss trace at a receiver depth of 35 m.
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Figure 3:  Results of reciprocity test for the FLATa environment.  Upper panel shows
TL trace at reciprocal depths while the lower plot displays the acoustic phase at each
depth.  The “Forward Propagation” results correspond to a 250 Hz CW source at 30 m
and receiver at 35 m while the inverse is true for the “Reciprocal Propagation”.
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Figure 4:  Convergence testing for various transform sizes used in the PE/SSF
algorithm.  The maximum depth of the “real” ocean is 400 m, so the depth mesh
size is determined from ∆z = 800/N (including the image ocean).  Upper and lower
panels show the first and last 5 km of the solution, respectively.
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Figure 5:  Convergence testing for various values of the bottom interface sound speed
mixing length relative to an acoustic wavelength.  Upper and middle panels show the
first and last 5 km of the solution, respectively, while the lower plot displays an
enhanced view of the first 2 km.
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Figure 6:  Convergence testing for various values of the bottom interface density
mixing length relative to an acoustic wavelength.  Upper and middle panels show the
first and last 5 km of the solution, respectively, while the lower plot displays an
enhanced view of the first 2 km.
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Figure 7:  Convergence testing for various range step sizes, ∆r.  Upper and lower
panels show the first and last 5 km of the solution, respectively.
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Figure 8:  Stability analysis for range step sizes smaller than the optimal.  Upper and
lower panels show the first and last 5 km of the solution, respectively.
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Figure 9:  z-space propagator function for the various values of range
step used to generate the data in Fig. 7. 
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Figure 10:  z-space propagator function for the various values of range
step used to generate the data in Fig. 8. 
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Figure 11:  kz-space propagator function for the various values of range
step used to generate the data in Fig. 7. 
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Figure 12:  kz-space propagator function for the various values of range
step used to generate the data in Fig. 8. 
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Figure 13:  Comparison of MMPE results with Mikhin’s results for the FLATa
environment generated by Dmitry Mikhin.  The source corresponds to the 250 Hz
CW source at 30 m depth.  Upper panel displays the complete TL trace at 35 m,
while the middle and lower panels provide an enhanced view of the first and last
5 km, respectively.  For this run, ∆z = 0.03λ and ∆r = λ.
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Figure 14:  Comparison of MMPE results with Mikhin’s results for depth mesh
value ∆z = 0.13λ and range step ∆r = λ.  The source corresponds to the 250 Hz
CW source at 30 m depth.
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Figure 15:  Comparison of MMPE results with Mikhin’s results for depth mesh
value ∆z = 0.5λ and range step ∆r = λ.  The source corresponds to the 250 Hz
CW source at 30 m depth.
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Figure 16:  Comparison of optimal MMPE results with Mikhin’s results for the
FLATa environment.  The source corresponds to the 25 Hz CW source at 30 m
depth.
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Figure 17:  Comparison of optimal MMPE results with Mikhin’s results for the
FLATa environment.  The source corresponds to the 500 Hz CW source at 30 m
depth.
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Figure 18:  Comparison of optimal MMPE results with Mikhin’s results for the
FLATa environment.  The source corresponds to the 1000 Hz CW source at 30 m
depth.
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Figure 19:  Comparison of optimal MMPE results with Mikhin’s results for the
DOWNa environment.  The source corresponds to the 250 Hz source at 30 m
depth.
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Figure 20:  Comparison of optimal MMPE results with Mikhin’s results for the
DOWNa environment.  The source corresponds to the 500 Hz CW source at 30 m
depth.
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Figure 21:  Comparison of optimal MMPE results with Mikhin’s results for the
IWc environment.  The source corresponds to the 250 Hz CW source at 30 m depth.
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Figure 22:  Comparison of optimal MMPE results with Mikhin’s results for the
IWc environment.  The source corresponds to the 500 Hz CW source at 30 m depth.
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Figure 23:  Comparison of MMPE results for different bandwidths of broadband pulse
propagation in the FLATa environment.  The source spectrum is modeled as a Hanning
window with total width 175 Hz and 80 Hz, as indicated.  The source depth is 30 m
and the receiver is located 20 km away at depth 35 m.
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Figure 24:  Comparison of the same broadband MMPE results for the FLATa case
for different computational mesh sizes.  Both source spectra are modeled as Hanning
windows with total width 175 Hz.



Figure 25:  Comparison of MMPE results for the 250 Hz CW source in the FLATa
environment.  Two of the results were computed using perturbed environments to
show variability caused by environmental uncertainty.
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