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The Shallow Water Acoustic Modeling (SWAM’99) Workshop was organized to examine the

ability of various acoustic propagation models to accurately predict sound transmission in a variety
of shallow water environments designed with realistic perturbations. In order to quantify this, tests
of reciprocity, convergence, and stability must be considered. This paper presents the results of an
established parabolic equation model based on the split-step Fourier algorithm. The test cases
examined in this paper include a simple isospeed water column over a flat bottom with geoacoustic
parameter variations, a randomly sloping bottom with geoacoustic parameter variations, and a
canonical shallow water profile perturbed by internal waves over a flat, homogeneous bottom.
Source configurations were generally held constant but numerous single frequency and broadband
runs were performed. Model testing is emphasized with specific criteria for accurate solutions
being specified. Random perturbations are added to one test case to examine the influence of
environmental uncertainty on the details of the propagation. The results indicate that point-wise
accurate solutions to the acoustic field in shallow water cannot be achieved beyond a few
kilometers. This is partly due to the inaccuracies of the split-step Fourier algorithm employed in
these shallow water scenarios and the treatment of the bottom interface boundary conditions, but
also due to the inherent variability caused by uncertain environmental specification. Thus, more
general features of the acoustic field should be emphasized at longer ranges.

|. Introduction

This paper will present results from a well-established, well-documented parabolic
eguation (PE) model with solutions based on the highly stable and efficient split-step Fourier
algorithm. The purpose of this paper is not to try to present benchmark quality solutions, but to
suggest what level of accuracy is possible with such amodel, and what its strengths and
weaknesses are. We shall limit the mgjority of this paper to the examination of the FLAT, Case A
environment, as defined in the summary paper of the Shallow Water Acoustic Modeling
(SWAM’99) Workshop. Details of this scenario will be given in a subsequent section. Results of
a few other SWAM'99 environments will also be presented.

In order to make such a case, it is necessary to run the model through a variety of tests.
For any given model or environment, a requirement which is easily justified and measurable is a
test of reciprocity. Solutions of the acoustic wave equation must satisfy reciprocity if the

environment is stationary. This may be formally writtedas

P(X2)g(X1, X2) = P(X1)g(X2, X1) 1)



Whereg(il, ?(2) is the acoustic Green’s function measured by a point receiver at p?)lsition due

to a point source located at positiim , vice-verseg(&ﬁ, )?1) ,ga(ﬁq is the density at the

corresponding position. In the water column, we can treat the fluid as incompressible and density
Is constant. Since the Green'’s function is directly proportional to the acoustic pressure, Eq. (1)

states that the complex acoustic pressure measured at a point receiver at?gosition due to a point
source located at positio?@ should be identical to the complex acoustic pressure measured at a

point receiver at positioﬁg due to a point source located at po%'ition

This is a necessary, but not sufficient, condition of any acoustic propagation model. One

can also show a similar reciprocity condition holds for broadband pulse res%ﬁﬁewever, if

this CW condition is satisfied for all frequencies over the bandwidth, then the pulse response
condition must also be satisfied and does not provide an additional check of validity of the
solution. It is also important to note that this requirement is fundamental to any model that
attempts to use the principle of reciprocity for problems associated with matched field processing,
transient localization, or tomography.

Another test which should be applied to any acoustic model is that of convergence.
Unfortunately, there is no strict definition of convergence. Many people assume that convergence
must be attained as the computational mesh size is decreased to ever smaller sizes. However, as
will be seen in this analysis, that is not true for the split-step Fourier algorithm because of the
structure of the propagator functions which march the solution from one range bin to the next. In
addition, the treatment of the bottom interface boundary condition causes some difficulty in
obtaining accurate solutions, and the choice of depth mesh size is found to be optimal over a
specific finite range of values. Instead, we shall assume a more relaxed definition of convergence
in which the solution appears to approach a stable solution as the grid sizes are varied.

This issue of convergence is further complicated by the fact that although the accuracy of
a solution at a single depth may improve with smaller depth mesh size, the accuracy of the global
solution may not improve. For example, if a solution is desired at a depth which does not
coincide with a specific depth grid, an interpolation scheme must be employed to obtain that
solution. Such an interpolation scheme introduces its own error which is completely distinct from
the convergence of the general solution. Thus, one must consider when the general solution has
reached a reasonable level of convergence, and not rely on a single point in range or depth.

In the following section, an overview of the acoustic propagation model and its
implementation will be given. Section Il will contain results from the FLAT test case defined at
the workshop, and the aforementioned tests of the solutions will be considered. The final results
will be compared with benchmark quality results provided by another researcher during the
workshop. In Section IV, various results from some of the SWAM’99 test cases will be presented,
including predictions of broadband pulse propagation. Some final comments on the usefulness of
this propagation model will be provided in the Conclusions.



1. Monterey-Miami Parabolic Equation (MM PE) M odel
Much of this section has been adapted from the technical report written for the

predecessor of the MM PE model I8 Rather than si mply referring to this report, we include the
fundamental aspects of the approximation and the details of itsimplementation, especialy the
choice of mesh sizes and the treatment of the interfaces. Thiswas felt to be appropriate since the
remainder of the paper performs an exhaustive analysis of the influence of this treatment on the
accuracy of the solutions.

We begin by representing the time-harmonic acoustic field in a cylindrical coordinate
system (r,z ¢) by

P(r,z ¢, wt) = p(r,z ¢)e"" . )
Substituting thisinto the wave equation in cylindrical coordinates |eads to the Helmholtz
eguation,

2 2
logopg, 10p ,0pP, 2.2 _ NN
e §D+ r2W+ﬁ+ kgn<(r,z, ¢)p = —41P0(X —Xg) 3

C
where k, = D isthe reference wavenumber, n(r,z ¢) = 0 isthe acoustic index of

Co c(r,z ¢)
refraction, c, isthe reference sound speed, and c(r, z, ¢) isthe acoustic sound speed. Itis

within c(r, z, ¢) that all features of the environment are represented (except density, which will
be added later). The source function is that of a point source at coordinates (r = 0, z = zg) with

reference source level P, defined asthe pressure amplitude at areference distanceof Ry = 1 m,
and

5(%) = 5-8(2-293(r) 4

isthe Dirac-delta function defining the point source contribution.

To account for the cylindrical spreading which dominates the propagation and to simplify
the form of the Helmholtz equation, we define

p(r,z) = %u(r,z) . 5)

Substituting thisinto Eq. (3) (and neglecting the source term) yields
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Thefinal term in thisequation drops off like 1/r% and isgenerally neglected in the solution. The
second term in this equation introduces azimuthal coupling between different radias, and is
generally small. Neglect of thisterm is often referred to as the uncoupled azimuth (UNCA)
approximation. However, we shall keep thisterm for much of the remainder of this development
to alow for full three-dimensional (3D) calculations.

The remaining Helmholtz equation can then be factored by introducing the operator
notation

_ 0
Pop - m (7)
and
Qup = (H+E+V+1)1/2 (8)
where
2 2
10 1 0
e=n?-1, up==—,ad v =—5—_ . 9
7 oz Ker2ag? ®)
The homogeneous form of Eq. (3) then becomes
(ng + nggp)u =0. (20
Proper factorization of the outward propagating field is obtained by defini ng[4]
-1/2
u=Qy, V. (12)

It isimportant to include the Qq, factor, the first order WKBJ approximation, in Eq. (11) for
severa reasonsincluding proper initial condition of the starting field and power conservation. We
al so assume the commutator [Pop, Qop] is negligible, implying weak range dependence in the
environment, and is, in fact, exactly zero in layered media. The outgoing wave then satisfies

Pop¥ = 1kgQgp¥ (12)

or



o
-ikglas = Qe . (13)

When backscattered energy may be considered negligible, Eq. (13) represents the
complete description of the forward propagating acoustic energy in the waveguide. This
parabolic form of the acoustic wave equation is the foundation for all PE models. What remains
isamethod for generating solutions to this equation. Aswe shall see, much of this depends on

devel oping approximations to the pseudo-differential operator Qop -

The Split-Sep Fourier Algorithm

In order to develop anumerical algorithm for solving the PE, we begin by recognizing that
the acoustic field may be decomposed into a lowly modulating envel ope function and a phase
term which oscillates at the acoustic frequency. The envelope function, or PE field function
Y(r,z ¢), isdefined according to

W= e (14)
or, in terms of the acoustic pressure,
~1/2 ;

p(r,z ¢) = PoﬁoQoé/ W(r, z ¢)ek (15)
Thisdefinitionisscaled suchthatat r = Ry, [¢| = 1 and [p| = P,. Substitution of this
expression into the Helmholtz equation yields the defining PE for the field function,

M ik +ik = _ikyH 16

W - = OqJ OQopLIJ - _kO Oqu ’ ( )
where

Hop = 1-Qqp (17)

isaHamiltonian-like operator which defines the evolution of the PE field function in range.

In Eqg. (16), thefunction Y isavector (in z) in Hilbert space. The relationship between the
values of | at different ranges can now be expressed as

Y(r+Ar) = O(r)g(r) . (18)

To propagate the solution out in range requires a representation of the propagator ®(r) . There
are three common methods of computing PE solutions: (1) the split-step Fourier (PE/SSF)



method,[®! (2) the implicit finite difference (IFD-PE) method,!®! and (3) the finite element (FEPE)

method.[18 The primary strengths of the PE/SSF implementation of the PE areits speed and
simplicity. The computational efficiency of the PE/SSF algorithm is well-known in range-
dependent media. Other PE algorithms have been shown to produce more efficient resultsin

range-independent medial® However, the primary reason for working with PE approximationsis
the treatment of general range-dependent environments in which the PE/SSF algorithm retains
effectively the same level of efficiency asin range-independent scenarios.

Since the MMPE model uses the first technique, we shall isolate our discussion to the
implementation of the PE/SSF method. Thisis easily accomplished by approximating the
propagator function by

q)(r) ~ e—ikoﬁop(l’)Al’ (19)

where

0 1 r+ar :

Hop(r) = Eﬁ* "dr'Ho(r') (20)
The formal solution, using a Dyson time evolution operator,[lo] would be

r+Ar
—ikOI dr'Hop (1)

W(r+Aar) = le n W(r) (21)

where

r+Ar
—iko[ drHg(r) '
o, - 1_ik0ﬁ+Ardr'Hop(r')—k3ﬁ+mdr'ﬁ dr"Hop(r")H (1)

+(higher order terms) . (22)

Thus, from Egs. (21) and (22), the lowest order correction to Eq. (19) could be evaluated. This
author is unaware of any such error analysis having been performed in a range-dependent
environment, however.

Finally, the SSF algorithm is based upon the observation that the operators Hop and Qop
are not ssimply scalar operators but instead are a combination of scalar and differential operators.
However, each individual operator within H op CaN be efficiently applied by asimple
multiplication in the appropriate domain. Thus, it is essential to the SSF algorithm that the
different terms within H op be separated. This requires an approximation to the square-root

operator, of which there are numerous forms. Within the MMPE model, it is assumed that the
azimuthal coupling term is small, and that a binomial expansion is sufficient to incorporate
azimuthal coupling. For the remaining terms within the square root, the wide-angle PE



approximation of Thomson and Chapman[ll] iIsemployed. Thus, the full approximation for the
Hamiltonian operator is

Hop = Top + Uop + Vop (23)
where
211/2
10
T,=1-|1+=—| , (24)
* { k3622:|
Upp = ~(n-1), (25)
and
2
v o=_—1 0 (26)

op _2k(2,r20¢7

In thisform, both differential operators have been separated from the index of refraction term as
required for implementation with the SSF technique.

For the remainder of this discussion, we shall employ the UNCA approximation in which
Vop = 0 identically. The treatment of this operator within the SSF algorithm follows a similar
approach asthe T, operator and has previously been described in detail.1*4113] The operator
Uop
Top
wavenumber space, however, the corresponding operator Top isdiagonal. Itisdesirable,
therefore, to separate the application of each operator, one in z-space and one in k,-space. Using

issimply a multiplication operator in z-space and, hence, is adiagonal matrix. The operator
Is not diagonal in z-space so different depth eigenfunctions are coupled. In vertical

the Baker-Campbell-Hausdorff expansion, !l we may write
eA+B = eAgBelA B] +[A [A B]] +[B,[B A]] +... (27)

where A = —ikyArT,y, and B = —ikyArU,,. Sinceboth T,, and U, are small then we assume

their products are of second order and negligible. Ananalysis of the lowest order error due to this
approximation in range-dependent media has also never been performed. Finally then, we have

. Ar o Ar
_Ikoiuop(r + Ar)e_i kOArTope_l ko? Uop(r)

d(r) = e (28)



where error analysis[15] shows that this “centered step” scheme provides third order accuracy in
Ar, and is the method used in the MMPE implementation.

Note from Eq. (28) that if there are no losses present l(riféop =1ImUg,, =0 ) then
eIl =1, (29)

and ®(r) is a unitary operator. Therefore, the normalization condition for the complete 3-D (or
Nx2-D) field function is

W)l = J’lllJ(f,Z,¢)|2dZd¢ = congtant . (30)

Tapperi:lﬁ] has shown this implies, because of the formulation of the propagator, that the PE/SSF
scheme is conservative. Specifically, since

W% = rpiQy,p (31)
then

[ pQ,,pdz2mrde = constant (32)

which shows conservation of the radial component of acoustic power. Thus, there are no intrinsic
losses due to the numerical scheme and energy conservation is not a concern in this formulation.

The general algorithm behind the PE/SSF implementation is then as follows. The PE field
functiony is specified at some rangén thez-domain. A multiplication of the-space operator

. Ar
=ik S U, . . . . . . .
e o Vel defined at the beginning of the range-step is applied. A transformation is then made

to thek,-domain followed by a multiplication of thg-space operat(:eff‘”(OArT"p . The result is
then transformed again to tkelomain followed by a multiplication of treespace operator

. Ar
—iko5 Ugp(r +A . . : . ;
e o Deplr 7 80) defined at the end of the range-step. The final result is the field function at

r + Ar. The discrete fast Fourier transform (FFT) subroutine employed in the numerical code
assumes the convention

W(2) = FFT(W(k,) (33)
and

P(ky) = IFFT(W(2)) . (34)



Therefore, the PE/SSF implementation can be represented by

ik Ar - . Ar
W(r +Ar,2) = e—lkoEUop(l’ +Ar,2) % FFFEB_ikOArTop(kZ) % IFI__r|:e—|k07U0p(r, 2)

<, z)}% . (35)
] ]

where, in k,-space,

~ 1/2
Top(k,) = 1-[1-%%1 . (36)

Note that modes with k, > k, are evanescent since

1/2

Top(k,>kg) = 1—i[%§—1} . 37)

In practice, only the real ocean half of the operator U, is required to multiply the real

ocean half of Y. The symmetry condition defined below in Eq. (50) can then be applied prior to
transformation to the k,-domain. Furthermore, between range steps (at the end of one and the

. Ar
— —U0
beginning of another), two separate applications of the scalar operator e 0 Yeell) are

unnecessary, and are combined into a single application with range step Ar.

MMPE Grid Sizes

Asin all models, a discretization of the environment is required and defined by the mesh
size (Ar, Az). Thefield and the propagator functions then become discretized arrays in depth of
length N which defines the size of the FFT used in the SSF algorithm, i.e.

W(r,z) O Y(r;, z,) (38)
where
r=0=DAr, i =105 (39
and
0 1 _ 4N
E %1—2%&2, n= 1,2
Z, = g . (40)
O 10 =Ny N
Da\l—n+2 z, n—2 ,



Note that the depth mesh is defined such that grid pointslie on fractional valuesof Az. This

convention was introduced to avoid carrying the zero-pressure value at z = 0 through the

calculation. Furthermore, note that half of the depth mesh values define an “image ocean” for
negative depths. This is necessary when using the full Fourier transform and has the added
benefit of enforcing the surface boundary condition (to be defined below) through symmetry of
the FFT.

Because the depth mesh influences the wavenumber increfkgnta the FFT, we may
define a default value fd¥z, hence the transform si& by considering a lower limit on
allowable angles of propagation. Sil¢evavenumber values will be spread over the range
+K; max 10 Kz max it follows that

= Dk, ok, = 21, (41)

Z, max
2 T

k

wherez; is the total computational depth (including both real and image ocean), so

K, o= I (42)

Z, max ZT
Furthermore, the vertical wavenumbers are related to the angles of propagation by
k, = kpsin® . (43)

It follows that for a given maximum angle of propagation, the minimum transform size required
must satisfy

KoZr .
Nimin 2 Tsmemax ' (44)
To define an upper bound on the range step Aizg,, , TEfﬂ)peEtd the analogy of
physical optics to obtain an expression for the upper limit on the range step size
A < —2 (45)
KoSIN?6, 4y
A similar analysis suggests that the maximum vertical mesh size is given by
pz <2p 2 (46)

max S o U
Ko KoSINO,

which can be shown to yield roughly the same order for the transform size as Eq. (44).

10



From the above analysis, it isobviousthat if aparticular problem isknown to contain only
small angle propagation, the mesh size (Ar, Az) may beincreased and, subsequently, the run-
time will be reduced. Conversely, for problemswhere very large angle propagation is expected to
be important asmall mesh size may be required. To allow for the highest angles of propagationin

typical environments, weset 6,,,,, = 6 = 30° in Egs. (44) through (46) and obtain

critical
Az 2\ (47)
and
AF o 04N (48)

In other words, accurate solutions should be obtained when both Ar and Az are on the order of a
few acoustic wavelengths. Note that this mesh size is considerably larger than that needed by
other numerical algorithms based on finite difference or finite element approximations to the
differential operators in range-dependent environments. Asthisanaysiswill show, smaller grid
sizes, on the order of awavelength in range and a fraction of a wavelength in depth, are required
to achieve optimal accuracy in shallow water environments with strong bottom interactions.

MM PE Boundary Conditions

The MMPE model treats the surface as a perfect reflector due to a pressure release
boundary. ThisisaDirichlet boundary condition defined by

Y(z=0) =0 . (49)

A popular technique used in PE/SSF models to achieve thisis the image ocean method. With this
method, we assume an identical image ocean overlaysthe real ocean for negative values of depth
and, furthermore, the acoustic field is exactly equal but of opposite sign in the image ocean, i.e.

W(-2) = -Y(2) . (50)
The boundary condition (49) isthen satisfied automatically.

In our numerical implementation, therefore, we must define our field array to be twice as
long (i.e., twice as deep) as necessary to describe the real and image acoustic field. Within each
range step, the MM PE model assures this symmetry by simply imposing condition (50) on the
imagefield for z < 0 after multiplying by the z-space operator in the real ocean (thus removing the
need to actually define the image environment). This formulation allows direct implementation
of the split-step Fourier algorithm given by Eq. (35) using the full FFT transformations from z-
space to k,-space.

The MM PE model treats the bottom as afluid of contrasting sound speed and density from
that of water. In addition, the MMPE model alows for an additional bottom layer to exist on top
of the basement to allow for effects of sediment layersto be included. Within either bottom

11



volume, the PE environmental potential function, Uop(z) , Isdefined as before in terms of the

local acoustic index of refraction, n(z) = % , Where c(2) now includes the sound speed
within the bottom volume. The effect of approximating the bottom as afluid is the neglect of
shear wave propagation. When the true bottom does support shear waves, the conversion of
compressional energy incident on the interface into downward propagating shear energy istreated
asaloss. Inthis manner, the bottom properties are replaced by equivalent fluid properties that
produce the correct reflection from the interface. Thisis discussed further at the end of this
section.

We assume the interface between the bottom of the water column and the top of the
basement, or sediment, layer is characterized by a sharp contrast in sound speed. In anumerical
code with finite sampling and recurrent use of FFT’s, it is desirable to use smoothly varying,
continuous functions to avoid artificial reflections, aliasing, and noise from entering into the
calculation. Therefore, we seek to find a smooth, continuous function of variable scale which can
accurately reproduce the physical effects of a discontinuous jump in sound speed at the water/
bottom interface.

We write the interface condition for the sound speed as
c(2) = ¢ (2) +[cy(2) —c,(D]IH(z-17,) (51)

where we shall assume that the sound speed above the intefacezgt has a constant value of
¢, and below the interface has a vatye The Heaviside step function is defined by

10 {<0
|

H(() = E,E (=0 (52)
U1, >0

where( =z-z, . From the theory of generalized functidfsye may replacel({) by any

smooth function within a class of generalized functions that produces the same overall effect (i.e.,
has similar moments).

One such function satisfying the above criteria involves the hyperbolic tangent function,

o7y = L ¢ 0

H(Q) = ilﬂanh%rcm} (53)
or, equivalently,

H) = 1+e¥yt (54)

12



Thisfunction has the properties

H@) - 0, Z«O0;

HQ =3 ¢=0

and

H@Q) - 1, I»0.
Furthermore, the derivative of the Heaviside function is
H'(¢) = 3(()

where 8(() isthe Dirac-delta function and is characterized by

0

Jo(@)de =1 .

Similarly, the derivative of Q(Z) IS

H'() = 8(2) = 7i-sech?heD

and it is easy to show that

00

[3@Q) =1

(55)

(56)

(57)

(58)

(59)

(60)

(61)

isalso satisfied. This mixing function ﬁ(Z) Is parameterized by a characteristic mixing length,

L. Itisobviousfrom the above analysis that
lim H(Z) = H()
L.~ 0

and

lim 8(¢) = 3() .
L.~ 0

13
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Thislimiting equality can be shown to hold for higher derivatives as well.

We have now introduced an additional parameter into our model, the sound speed mixing
length, L. This can be adjusted by the user in an attempt to create the most realistic interface

condition for reflections from a sound speed discontinuity. The MM PE code then employs Eq.
(54) to mix the sound speed profiles above and below the interface (or interfaces) at z = z,.
Experience has shown that the most accurate results are gained by defining L. as afraction of an
acoustic wavelength, specifically, A/10. However, in order to maintain a smooth shape and proper
sampling of the PE potential function U(2), a default minimum value for L has been set at

Lein = Az. Thissuggeststhat the most accurate solutions are obtained when the depth mesh Az

isless than a wavelength. Thus, one should look for convergence of the solution as the depth
mesh is decreased.

The effect of density on acoustic propagation has not yet been considered. In fact, the
variation of density wasignored in the original form of the Helmholtz equation. In afluid with a
variable density p, one can easily show that the previous form of the Helmholtz equation, Eg. (3)
or (6), can be obtained if the index of refraction n is replaced by an “effective” index of refraction
given by

2 Al 3
n'2 = n2+2k5[pD2p—2Epr J : (64)

Solutions for the pressure fieft(r, z) , now defined by

p(r,2) = Py /Z—Rngé/zw(r,z)e”‘or, (65)
0
may be obtained by marching the solution of the PE fundion z) out in range with the
definition
Ugp(2) = Uy(2) + Uy(2) (66)

whereU,(2) is the same environmental potential function previously definedlgajlaccounts

for the effect of the density discontinuity. Note that a reference depgity, 1.0 glem® , has
been introduced to keep the leading factor in Eqg. (65) dimensionless.

If we assume thap = p(z) only, then the density is defined by

P(2) = Pyt (Pr—PWH(z—2) (67)

14



where H() is the Heaviside step function described previously, and p,, and p, are the densities

(assumed constant) of the water column and bottom sediment, respectively. Obvioudly, the
function U,(2) isnon-zero only in the vicinity of the interface. Asbefore, we wish to spread this

discontinuity over some finite region in terms of smooth generalized functions. Thisisamore
critical problem than before because U,(2) depends not on the density but on the derivatives of the

density. Asbefore, it isnecessary to define a mixing function, with its subsequent derivatives, to
describe the interface condition. However, thisintroduces a density mixing length L, the choice

of which has always been somewhat ambiguous in this definition.

Tappert8! has shown that a good approximation for U(2) is

e 9°

UZ(Z):_kg 372

H(z-z,) (68)

where

_ 2
. {1 (Pu/ Pp)Y } . (69)

1+(p,/ Pp)?

For small density contrasts, thisis equivalent to neglecting the last term in Eq. (64). The main
argument used to justify this approximation is that because we are using generalized functions to
represent the density discontinuity, the function U,(z) must aso be defined in terms of generalized

functions. However, the last term in (64) contains the square of a generalized function,

specifically %(Z') , whichisnot ageneraized function. This detailed analysis by Tappert, which
attempted to remove as much singularity as possible from the solution in the vicinity of the
density discontinuity, showed that Eq. (68) isthe best expression to use. Furthermore, this

formulation inherently produces the best resultswhen L, isminimized, i.e. as Lp - 0. Notethat
L, must still be large enough such that the finite depth mesh adequately samples the function
U,(2) (which isnot asimple jump as U; was).

For purposes of defining a mixing function which completely localizes the extent of the
function to within afinite distance from the interface, we choose a cubic spline over the finite

interval L= (< Ly- In designing a cubic spline approximation for H({), we have used four

sub-intervals of length L,/2. Requiring continuity of the function and its first and second
derivatives, we define

15
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Thefirst derivative of thisfunction isthen
E 0 {<-L,
Uog .27 Lo
E‘—_p%Hq)D —Lpsls—
O
- < 01 L L
H'(Q) = 8(Q) = 0 L—[l—za%q -Ssls . (71)
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O
025 4rF Lo
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- Lp%l LpD 2 P
E 0 .zl
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Notethat 512 = 5%11295 = Z—ip and 3(0) = L—lp  oitis obvious that
[8(Q)dz =1 (72)
and, therefore,
Llimo5(Z) = 0(() (73)
o -
asrequired.

Finally, the second derivativeis
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Combining (74) with (68) gives the formulafor computing the density potential function by
employing a cubic spline polynomial smoothing function.

Asbefore, we definealower limit defaultof L, .= 2Az, and when thislimitisreached
the mixing function is centered on the mesh nearest the true interface depth. Smaller values than
thiswill not properly sample the mixing function. Analysis has shown that accurate solutions can
be obtained by applying the condition Lp 02A, which yields the condition Az, OOA. Thisisa
stronger condition than before and suggests that twice the former transform size is needed to
utilize the mixing function. However, because of the finite nature of this representation, this
condition may be relaxed slightly. A good rule of thumb for either mixing function is Az, OA

when sound speed and density discontinuities are important for computing the correct reflection
from the interface. Again, tests for convergence should be applied.

Finally, this author would like to note that it is thistreatment of the bottom interface which
remains the weak point of this model. In deep ocean problems, where bottom interactions are less
significant, this model has been quite effective.’® However, with the current emphasison
shallow water propagation, more work needs to be done to improve this treatment of the bottom
boundary condition and to understand the implications of generating such mixing functions. At
the present time, thisis the only method for dealing with the bottom interface within the context
of the SSF algorithm. Other investigators have also developed a successful hybrid SSF/finite-

difference approach to solve for the density term in the effective index of refracti on.l2% But other
potential treatments should be investigated.

M M PE Source Function

We now define theinitial conditions for the PE field function, Y(r = 0, z) . Previoudly,
we have assumed the relationship between () and the acoustic pressure, ignoring the effect of
density and the WKBJfactor, is of the form

p =P, ﬁoweikof . (75)
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We obviously cannot define p at ranger = 0 from this expression. Thisis analogousto the
undefined amplitude of a point source Green’s function at the source location. Therefore, we
choose to define the source amplitude relative to that at some small but finite distance from the
source. Specifically, we choose

p(r=Ry) = Py . (76)
Consistent with reference values used in most sonar equations, we define the reference range
Ry=1m (77)

and the source level, 9, is related to Py by
SL = 20Iog[&)DdB rePR, . (78)
p,0 o

The dB units of S_ are explicitly stated relative to areference pressure value of P, = 1 pPa at
the reference range R,

We are still left with the task of determining aform for the source field y(r = 0,z) . We
begin by writing Eq. (75) as

bir. e = J%p(r,z) (79)
from which it follows that
Wr=0,2) = lim= |p(r,2) . (80)
r—»OPO RO

In the vicinity of a point source, we know the pressure field takes the form of the spherical
Green'sfunction. Thus, we write

p = A%eikoR, R=4Jr2+22, a = PyR, (82)

P
where a isdefined by requiring |p| = ﬁ a R = R,. Werepresent the source at (0, z5) asa

point source by defining

P(r=0,2) = ad(z-zg) , (82
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where a isanormalization factor. Integrating both sides of Eq. (80) over all (real) depths, and
taking the far-field approximation, yields

L
a = Fko (83)

It isdesirable to begin the calculation by specifying the source in the k-domain. Including
the influence of the image source, a straightforward Fourier transform of Eq. (82) yields

W(r =0, k) = o [ [8(z-2g) - 8(z+ z)]e %z = —2iasin(k,zg) . (84)

—00

which indicates that the wavenumber representation of the starting field has a constant amplitude
modulated by a phase due to the interaction of the source and itsimage. This constant amplitude
is consistent with the notion of an omnidirectiona point source which puts equal energy into all
wavenumbers (i.e., all directions).

For the wide angle PE approximations, it is tempting to allow the amplitude of this
function to be unity for all wavenumbers, thereby equally populating al directions of
propagation. However, even the wide angle approximations are assumed valid only up to angles

of 40° or so. Additionally, the finite FFT size will restrict how large k,/ k, can be. Therefore, a
smooth taper isincluded at high absolute wavenumber values to limit the angular width of the

source function and to reduce the influence of sidelobes. Thomson and Bohun(?Y! have also
shown that a wide angle source needs to be modified by the factor

o —1/4

O Z
F(kz) - %ﬂ-_k_g)% ) (|kz‘ <k0) (85)

to produce the correct solution in the far-field. This results from proper treatment of the WKBJ
factor in the definition of the starting field. Notethat k, = k, correspondsto 6 = 90°, so
|k

Z| >k, representsimaginary angles of propagation (evanescent modes). It isrequired then that

I(Z

Ko

the source function be tapered within the limits of <1.

Note that in order to accommodate the so-called “1/2 mesh symmetry” as defined by the
depth gridding given in Eg. (40), it is also necessary to add a phase term in the wavenumber
ik Az

| Z . . . . .
domain ofe "2 . Thus, the final form for the wavenumber domain starting field for the wide
angle point source is now given by
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- =174 A
B(r=0,k) = -2i |8 gk zS)EIL—k—ZZE o2 (86)
y Nz 2 4 0 k2 )

Tk, 500

Other MM PE Implementation Tricks
There remain numerous other tricks within the MM PE model which should be noted.

Volume attenuation within the water column and sediment layers, a(z), istreated smply by
damping the solution in the z-domain by the factor

e_i KoArUoe(2) — e2ra(2) (87)

which defines the introduction of an additional term in the z-space propagator function,
[
Ujoss(2) = —k—a(z) . (88)
0

In terms of transmission loss, this reduces the field by
TL, = —20log(e ') = 8.68@\ra dB . (89)

The MMPE model assumes values input for volume attenuation have units [dB/m/kHz].
Internally, these values are multiplied by the frequency of the calculation (in kHz) which produces
values equivalent to 8.686a. These can then be used to define the loss function given in Eq. (88).
Empirical expressions for the volume attenuation in seawater are generally used in the model, but
were removed from the calculations for the SWAM’99 test cases which assumed no loss in the
water column.

As mentioned previously, the treatment of shear within the MMPE model is simply in
terms of defining an equivalent fluid bottom. Both the compressional attenuation and density are

given effective values based on the analysis of Tindle and i?%n@his provides a reasonable
approximation to both the phase and amplitude of the reflection coefficient for low grazing
angles. Specifically, a bottom with compressional and shear speaadc,, respectively,

densityp, and compressional and shear attenuatigrenda,, respectively, can be represented
by an equivalent fluid bottom with compressional spggéffective density

Py’ EII. ZCSZE (90)
=p —2=
b bD C%D

and effective attenuation
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I

(91)

o 4c3(cg-c2) .\ w(cz—c2)Y?(c2 —032)1/2}
b

b S
cp(c3 —2c2)? ChCa

Note that Eq. (91) requiresthat c < c,, <c,. Incaseswhere ¢, > c,, itisunrealistic to expect

anything but very small shear speed values, and so they are assumed to be zero in such cases.
These formulae are implemented in the MMPE model at each interface with the understanding
that the upper layer istreated asthe fluid and the lower layer istreated asthe solid. A more recent

analysis of the parameters of an equivalent fluid bottom by Zhang and Ti ndlel?®! showed an
improvement over this method by defining a complex effective density. This treatment works

better at higher shear speed values and higher grazing angles. The necessary equations are

currently being implemented into the MMPE model and should be available by the time of
publication of this paper. However, during the SWAM’'99 Workshop, it was apparent that the
introduction of shear into some of the environments had negligible effect. Therefore, the
treatment of shear will not be analyzed in this paper.

The way in which environmental inputs are treated should also be noted. Within the
MMPE model, every input sound speed profile is first run though a simple interpolation routine to
define the value of the sound speed on the grid points in depth. This interpolated profile is then
smoothed by using a simple 1-2-1 smoothing routine. This is to wash out any unrealistic “kinks”
in the sound speed profile interpolation which may result in numerical scattering. Then, at each
range step, a linear interpolation between these smoothed sound speed profiles at each grid point
in depth is performed. This is done even at depths greater than the bottom depth. Only after this
final interpolated sound speed profile is created is it combined, via the previously defined mixing
functions, with the bottom sound speed profile. Note that the bottom profile, which could be left
equally as general as the water column, is simply defined by a value at the interface and a constant
gradient within the sediment. Naturally, this treatment of the environment will not have any
impact on the results generated for the isospeed water column test cases.

This combination of the water column sound speed and bottom sound speed, as well as the
density mixing function, are defined at the depth of the bottom interface. This bathymetry data is
also input in a range-dependent manner, and bottom depths at intermediate ranges are defined by
a simple linear interpolation between given range points. Note that the bottom interface depth
need not fall exactly on a grid point since the mixing functions generally extend over several grid
points in depth. The center of these mixing functions is, by definition, at the given bottom
interface depth. Thus, more accurate solutions may require smaller mesh sizes in depth to better
characterize the true location of the bottom interface.

Another set of implementation tactics employed in the MMPE model relates to undefined
filters, or “sponges”, employed to remove acoustic energy from very deep depths in the bottom
(from which no energy is expected to return) and from very high angles of propagation. The most
obvious need for a filter we first recognize is the radiation condifi¢(r) - 0 z -a% o
Because the computational depth is finite, however, we must force the field amplitude to zero at
the maximum depth. Note this also serves to eliminate wrap-around between the real and image
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oceans. This must be done in a smooth and relatively “slow” manner to avoid reflections from the
filter function itself. The MMPE model applies a sine-squared filter function to the bottom third

of the computational depth of the real ocean. Because there is no energy at these depths at the
initial range, it is not necessary to create a filter which goes from unity all the way down to zero.
Rather, since this filter is applied at every range step anyway, it is only necessary to reduce the
field by some fractional amount at the deepest depths. After multiple applications of such a filter,
the deepest part of the signal will be greatly reduced. Thus, the sine-squared filter is designed to
range from unity down to only 0.5. Without reducing the level completely to zero in a single step,
this has the advantage of reducing the numerical reflections often caused by this filter function.

Similarly, some type of filtering may be needed inkldomain to remove angles beyond
90°, i.e.k, >k, . As previously noted, the form of the wavenumber domain propagator function,

defined in Eq. (36), naturally provides a filter for these angles by making them evanescent. Thus,
energy is attenuated beyond this limit, assumindjtspace is sampled at such high values. If,

on the other hand, the FFT si¥as smaller such th&, ... <k, ,kg-domain filter is needed to

avoid numerical reflections &, ., . Anidentical filter as that used in-theenain is employed
for that purpose.

[11. Convergence and Sability I ssues

In this section, we apply the previously defined PE/SSF algorithm to the first flat-bottom
test case of the SWAM’99 environments. We will limit our analysis here to the 250 Hz CW
source at a depth of 30 m. A schematic of the environment is provided below in Fig. 1. This
environment has an isospeed water column overlying a flat bottom. The bottom properties are
defined every 2 km and, as described in the previous section, these are linearly interpolated in
range out to 20 km. There is no shear in the bottom, and the compressional attenuation is fixed at
0.1 dBA. The remaining bottom properties defined, sound speed, sound speed gradient, and
density, are also displayed in Fig. 1 to provide some idea of the level of variability in the bottom.

Figure 2 displays the full, CW field at 250 Hz for the source at 30 m, includinty tife
cylindrical spreading loss. It also shows the TL trace at a receiver depth of 35 m out to a range of
20 km. This calculation was performed with an FFT sizd 8f4096 and a computational depth
of z,ax = 400 m, corresponding to a depth mesh size of about 0.2 m (including the image ocean).
At 250 Hz, this provides a depth sampling of roughly B.0Bhe range step size was chosen to be
Ar =5 m, on the order of a wavelength. These values were found to produce the best curve, as
will be shown in more detail below. It should be noted that all calculations were made on a 500
MHz Pentium based PC. For these values of the calculation parameters, this single frequency run
took approximately 1 minute to complete.

Reciprocity

First, let us examine this result under the context of the reciprocity test. As stated
previously, if an identical point source is placed in the environment at the 20 km range at a depth
of 35 m, and the field propagating through the reciprocal (range-reversed) environment is
computed, then the solution back at the original source location should be the same. Specifically,
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pi(r =20km,z=35m) = p.(r = 0km,z=30m) (92)

wherep; is the “forward propagating” field due to a point source,at 0 km, z, = 30 m and

p, is the “reciprocal propagating” field due to a point source.at 20 km,z, = 35m . The

results of such a reciprocity test are displayed in Fig. 3, where it is observed that reciprocity is
obeyed to within less than a tenth of a dB in transmission loss (less than a 1% error in amplitude)
and less than two-tenths of a degree in phase.

In fact, the accuracy used in the depth mesh was not necessary to achieve this level of
confirmation of reciprocity. Smaller FFT sizes in the PE/SSF algorithm can still produce
reciprocal results, even though the solution may have not yet converged. Thus, it is important to
recognize that, although this reciprocity test is a necessary one to evaluate the validity of the
model, it is not sufficient to guarantee an accurate solution.

Convergence

We shall now focus on the issues relating to convergence, and thereby examine in detail
the structure of the solution and the propagators employed in the calculation. As the baseline
calculation, we shall consider the parameters stated previously, an FFTISize40606, a
computational depth &5 = 400 m, and a range step sizé\ot= 5 m. Figure 4 compares the

TL trace at a receiver depth of 35 m for various valuég tiie FFT size. Note that the range has
been expanded to enhance the first and last 5 km of the run.

These results suggest that convergence has essentially been reached at an FNFEsize of
4096. This is a bit misleading, though, and should be clarified. The real reabbn 124 data
does not match up as well as the other curves is because of the mixing lengths at the bottom

interface. Specifically, foN = 1024, the depth meshAs = 0.78125 m=0.13A . Thus, the
minimum sound speed mixing length conditioy . . = Az just exceeds the optimal value of

L. = A/10. For all higher values i, the latter value is used. Upon closer inspection, we find

that values higher thaxwi= 4096 do produce slightly different results. However, these differences
are less than a dB in level and, at very high valué§ begin to introduce numerical noise in the
SSF algorithm.

Just from this analysis, we are already confronted with a convergence issue. If we relaxed
the condition on the optimal sound speed mixing length.taA , we wouldydivetal
convergence in the solution at smaller valueN,afround 256. This corresponds to a depth mesh
of Az = 3.125 m= 0.5\ . Higher values dNl would be found to change the solution slightly, but
only due to more accurate interpolation between grid points to the desired depth of 35 m. This is

consistent with the use of FFT’s in the algorithm, i.e. sampling smalleAtBatoes not provide
any real additional information, and so does not improve the general solution.

Since the model definds, = max(Az, A/10) , this is a crucially important point.
General convergence will not be obtained ufik A/ 10 , requiring larger valuésuod
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longer runtimes. For the current calculation, with therange step fixed at Ar = 5 m, theruntime
for N = 4096 is roughly 1 minute as compared to N = 256 which completes the calculation in
under 3 seconds. The significance of this difference is even more obvious when one begins to
consider broadband cal culations which scale linearly with the number of frequencies computed.

So why define L, = max(Az, A/10) rather than L, = max(Az A) ? To address this

issue, we set N = 4096 and vary the size of L relativeto A. (L, isfixed at 2A.) Figure 5 displays
theresultsfor several values of L. The upper two panels display the TL trace at 35 m for the first

and last 5 km of the calculation, as before. However, in this case, thereis no clear convergence
near the final ranges. All four values of L. produce slightly variable results. Thus, it is not clear

that convergence is even possible due to this ambiguity in the sound speed mixing length. Asa
means of determining which value is “best”, the third panel of Fig. 5 displays only the first 2 km

of the calculation. There, we see that the results do appear to convergélfof 10 . Note that
discrepancies begin at roughly 0.5 km. This is presumably due to the interaction of low modes
which are more sensitive to this choice of mixing length. Other fractional wavelength values
were chosen, and. [JA/10  consistently seemed to provide the best convergence.

Fixing the sound speed mixing lengthLatlIA/ 10 ahd 4096, we now examine the

convergence with respect to the density mixing length. The results are displayed in Fig. 6. Itis
clear from this figure that there is a limit to how small this mixing length can be to produce
accurate results. Itis unclear whether this is merely a numerical issue, a problem with the form of
the mixing function, or whether it is something more fundamental in the approximate form of the
density treatment as defined in Eq. (68).

For the three larger values of density mixing length used, the middle panel shows a
considerable amount of variability in solutions with no clear convergence occurring. Again, we
focus our attention on the lower panel where the results of the first 2 km of the calculation are

displayed. It appears that a “stable” solution begins to appearhzyﬁéﬁ)\ . The term “stable”
rather than “convergent” is used since this is not a limiting effelct &sincreased or decreased
indefinitely. For values af, much greater or less than this, the solution appears to degrade, as

seen in the middle panel ﬂlrp = AN/5

We now consider the final free parameter, the range stefArsiz&s noted previously, the
algorithm is based on the centered-step scheme which is third order accirat@lis implies
that as the range step is continually decreased, the solution should continue to improve in
accuracy until it converges to a stable solution. This is true in most PE models, including those
based on implicit finite difference or finite element methods. However, this is not the case when
the SSF algorithm is employed.

In Figs. 7 and 8, the solutions are displayed for several different values of range step size.
The solution appears to be converging in Fig. Zrafl5 m . The smaller valireof2 m
does not significantly change the solution. We would expect that even smaller values would also
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not change the solution. However, as observed in Fig. 8, this does not hold true. The solutionis
seen to degrade for smaller values of Ar. Thus, the solution does not converge with decreasing Ar
but rather reaches a stable solution at finite Ar. From thisanalysis, it appears that the solution
reaches such a stable solution at Ar [JA. Note, asis often one of the stated advantages of the PE/
SSF model, the range step can be several wavelengths and still achieve accurate solutions at
shorter ranges. For longer ranges, it appearsthat arange step on the order of awavelength may be
necessary.

But what is the cause of this non-convergence at small range steps? Thisisalittle known
feature of the SSF algorithm, and is related to the structure of the propagator functions. For the
same range step sizes used above, the environmental propagator function, ek Vos(":2) '\where
Uop(r, Z) isgiven by Eqg. (25), isdisplayed in Figs. 9 and 10. The corresponding wavenumber

propagator function, e~'kATer(k) \where Top(k,) is given by Eq. (36), isdisplayed in Figs. 11

and 12. Note that the magnitude of the environmental propagator exhibits the decay of the
solution at deep depths down to 0.5, and the wavenumber propagator decays exponentially
beyond k, > K, .

Based on the previous conclusion that a range step of Ar 15 m provided the most stable
solution, the shapes of the propagator functions suggest the following. For large Ar, the SSF
algorithm attemptsto put alot of phase information into asingle range step. If Ar istoo large, this
generates errors in the solution. On the other hand, for small Ar, thereisllittle phase information
in each range step. And if Ar istoo small, there is not enough phase information to produce a
stable, accurate solution. Also note that, for small Ar, the exponential decay of high

wavenumbers beyond k, >k, does not occur as effectively, and such non-realistic energy may
creep into the solution as noise.

The general conclusion we may draw from this analysis of the propagator shapesis that
stable, accurate solutions occur at range steps where there isafull cycle of phase information in

each propagator. This appearsto occur when Ar A in this shallow water environment.

Solutions close to this stable solution may also be obtained using range steps of afew
wavelengths, particularly in deeper water or at shorter ranges.

In this section, we have clearly seen the difficulty in obtaining convergent, accurate
solutions with the SSF/PE model. However, for the remainder of this section, we shall fix the free

parameters, unless otherwise noted, as Ar A, Az<A/10, L, = max(Az A/10), and

Lp = max(5Az, 2)\) . Thelatter two conditions defining the mixing lengths are explicitly written

into the MM PE model, and Ar and Az will be adjusted depending on the frequency and depth of
the problem.

Comparison With Other Solutions
Based on the previous analysis of the FLATa environment at 250 Hz, the best solution is
obtained when arange step of Ar = 5 m and an FFT size of N = 4096 are used. To check the
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true accuracy of this calculation requires a benchmark solution. However, no formal benchmark
solutions were generated for the SWAM’'99 test cases. This was intentional so that each different
model’s results could be compared for consistency or differences without the aid of a true solution
to guide the modeler. Fortunately, there were two different models, those developed bydrooke,

al.124 and Mikhirt2® which showed excellent agreement for several test cases. Thus, for the
purposes of benchmarking, we shall assume that these results represent the “true” solutions.

Figure 13 displays the results from Dmitry Mikhin’s model and the MMPE model for the
FLATa case at 250 Hz for a source depth at 30 m and a receiver trace at 35 m. In this figure, the

MMPE model used values éfr = 5m  ahd= 4096. The maximum computational depth was
Znax = 400 m, so the depth mesh size was = (2z,,,,)/N=0.03A . The comparison is

reasonably good, in this author’s opinion. The larger scale structures, fluctuating with range
scales of ~ 0.5 km, appear to agree throughout most of the range. It should also be noted that the
agreement is quite good for ranges less than 2 km. Still, one may argue that the MMPE solutions
seem to contain more numerical noise. The differences at longer ranges may simply be due to the
treatment of the bottom interface for which the MMPE model has introduced the mixing functions
previously described. A proper test of the accuracy of the MMPE model may then require a
solution of this modified environment. However, the purpose of this exercise is to determine the
model’s ability to generate solutions to the prescribed environment, and these differences should
be accepted as limitations of the current technique.

During the course of our convergence/stability analysis, we observed that larger FFT sizes
appeared to reach convergent solutions, although very large FFT sizes introduced some small
scale numerical noise. Thus, we may expect this to be partly to blame for this effect. To test this,
we should reduce the FFT size. However, because of our condition on sound speed mixing

length,L, = max(Az A/10) , increasindz beyond’10  will begin to degrade the solution.

So as a limiting case, we now chodse 1024 which corresponds &z = 0.13A , approximately
matching the limiting value allowed fag. The comparison of these results with the converged

solution of Mikhin’s is displayed in Fig. 14.

The results are seen to improve noticeably at all ranges, particularly with the removal of
some of the small-scale numerical noise. This is also advantageous because it reduces the run-
time of the calculation from roughly one minute down to about 12 seconds, nearly a factor of six
improvement. Thus, it appears that the MMPE generates the most accurate and efficient solution
whenAr OA andAz[OA/10 . These conditions will be used throughout most of the remainder of
this paper to produce the most accurate MMPE solutions.

Finally, before we accept that this resolution is needed in general, let us examine one more
solution when we relax our grid conditionsZo [IA axwlIA/ 2 . For the current
environment, that means reducing the FFT si2¢+@®56. Note that this run can be completed in
roughly 3 seconds. The comparison of the results with Mikhin’s solution is given in Fig. 15.
Obviously, the accuracy of the solution has been severely degraded at larger ranges. However, the
results are still quite good at ranges less than about a km, or roughly 10 water depths. This is
likely a characteristic feature of the PE/SSF solution in shallow water: for ranges less than ~ 10
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water depths, a depth mesh of Az [JA/ 2 isadequate, but for longer ranges, finer sampling in
depth is needed down to our limit of Az[OA/10.

IV. SWAM’'99 Test Case Results

Based on our analysis of the MMPE model solutions for the FL ATa environment at 250
Hz, we can now examine the accuracy of the model using a generalized approach. In most of the
following cases, the MM PE solutions have been generated using Ar CJA and Az[OA/10.
Exceptions to this are noted. The CW results are again compared with Mikhin’s solutions.

FLATa

In Fig. 16, the results for the FLATa environment are presented for a 25 Hz source at 30 m
and a receiver trace at 35 m. For this low frequency, it was found that a smaller depth mesh was
necessary to achieve the best result, specifid@fiy, A/ 20 . The difficulty with this problem
was apparently the scale of the wavelength, 60 m, compared to the scale of the waveguide, 100 m.
Thus, this density mixing lengthA2is actually larger than the waveguide itself! In light of this,
it is rather remarkable that the solution compares as well as it does. However, it does appear that
the MMPE model is not well suited for very low frequency propagation in shallow water where
only a few propagating modes exist.

The solution for the 500 Hz source is shown in Fig. 17. The level of accuracy of these
results is comparable to the 250 Hz solutions examined in the previous section. The fine-scale
structure matches well for the first few km while the larger scale features match well at all ranges.
One may expect that a comparison of range-averaged solutions would agree extremely well at all
ranges.

Finally, the 1000 Hz solutions are compared in Fig. 18. Again, we find the fine-scale
features agree well at shorter ranges while the general structure is consistent at all ranges. Similar
comparisons were consistently found for all of the FLAT environments, and will not be discussed
further. For the remainder of this section, only the 250 Hz and 500 Hz solutions will be analyzed.

DOWNa

This environment combines bottom acoustic parameter variability with a variable
downslope bathymetry, increasing the bottom depth from 50 m at the source range to over 200 m
at 20 km. Because of this slope, we would expect more mode coupling to occur than in the FLAT
environments. Thus, accurate modeling of this propagation is expected to be more challenging.

The solutions for the 250 Hz and 500 Hz sources are displayed in Figs. 19 and 20,
respectively. As before, the results agree well at short range and begin to degrade at longer
ranges. In this case, however, we find that some phase errors begin to appear for even the large-
scale features at ranges beyond about 15 km.

IWc

This environment contains the most complicated water column sound speed structures of
all the test cases. The bottom is a simple, homogeneous half-space with a smooth interface at 200
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m. The background water column profileisalso relatively ssmple, defined using atypical shallow
water, downward-refracting canonical profile with a minimum at the bottom depth of 200 m, and
surface duct from 0 to 26 m. However, this background profile in the water column is perturbed
by atrain of five solitons superimposed upon five sinusoidal linear internal waves of scales 500 m
to 1700 m.

The solutions for the 250 Hz and 500 Hz sources are displayed in Figs. 21 and 22,
respectively. Once again, we find the results agree well at short range and begin to degrade at
longer ranges. This suggests that the MM PE model is quite capable of dealing with complicated
sound speed structuresin the water column. Thereal challenge for thismodel appearsto bein the
treatment of the bottom interface condition.

Broadband Pulse Propagation: FLATa

Finally, we examine some results from the FL ATa environment when the broadband
sourceismodeled. The sourceisagain placed at adepth of 30 m but now has a finite bandwidth.
The definition of the source spectrum was based on a Gaussian function centered at 375 Hz and a
Gaussian half-width of 80 Hz. Asstated in Section |1, the MMPE model produces single
frequency solutions which can then be Fourier synthesized to generate pulse propagation
predictions. In general, any source spectrum could be used to scale the individual frequency
components. The post-processing software of the MMPE model assumes a simple, Hanning
window form for the source spectrum. Since the specific details of the spectrum were not the
issue but rather the bandwidth and temporal resolution, the default Hanning window was used
with atotal bandwidth of 175 Hz. Thisis comparable to the defined Gaussian spectrum.

In order to avoid wrap-around of the signal in the time domain, atotal time window of
roughly 1.5 seconds was needed. Thus, a minimum of 256 single-frequency calculations was
required, evenly spaced over the bandwidth. To insure that there was no influence from wrap-
around, the following data was run with 512 single-frequency calculations. Due to the higher
frequenciesinvolved, arange step of 2.5 m was chosen while the depth mesh was set to ~ 0.4 m.
Note that the wavelength varies from roughly 5 m down to 3 m over this bandwidth, and so our
convergence and stability conditions on the mesh sizes are roughly satisfied for all frequencies.

For these settings, each CW run takes about 45 sec to complete. Thetotal time for this
pulse prediction is then roughly 6 hours. Because this scales linearly with the number of single
frequency runs completed, we are motivated to consider using smaller bandwidths. Thiswill
reduce our temporal resolution of the multipath structure, but may be worthwhile if we can
significantly reduce the run-time. Therefore, a second cal culation was done with only 128
frequencies over atotal (Hanning window) bandwidth of 80 Hz. This reduces the calculation to
just over 1 1/2 hours, a much more manageable time. The results for each of these calculations
aregiven in Fig. 23 for areceiver at range 20 km and depth 35 m.

Significant differences are noted between the two solutions which are beyond smple
temporal resolution issues. Two possible causes may be suggested. First, we assume both
solutions are accurate for their given bandwidths, and the differences arise because of effects at
the upper and lower ranges of the larger bandwidth which generate more interference and appear
to reduce the average levels near 13.6, 13.8, and 14 secs. Second, that the upper and lower ranges
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of the larger bandwidth are not as accurate as necessary due to being further away from the
optimal values of the range and depth mesh sizes. (Note that the smaller bandwidth results end
before the larger bandwidth simply due to areduction in the total time window for the latter
calculation. Thiswould not be expected to introduce the observed differences.)

Unfortunately, neither of the models of Mikhin or Brooke, et al., were used to generate
predictions of the broadband pulse propagation. So any comments on the accuracy of these
results are purely speculative. However, it should be noted that the broadband results can show
some of the same sensitivity to the computational mesh sizes asthe CW runs. An example of this
iIsgiven in Fig. 24 which compares the previous, wide bandwidth results with those computed

using an increased mesh sizeof Ar = 5m and Az= 1.6 m.

Clearly these results do not compare favorably for the later arrivals corresponding to the
higher modes. This may be consistent with the previous issues encountered with the mixing
lengths, which could be expected to effect the higher modes more significantly than the lower
modes. Still, without a benchmark solution for comparison, no formal analysis of this effect has
been performed

FL ATa: Random Perturbations

Finally, we consider avery important point regarding the accuracy of the MM PE model
predictions. Although the environments defined are considered to have “realistic” fluctuations,
they are still idealized in the sense that the environment is deftaettly. But what impact do
unknown perturbations have on the solutions, even those considered of benchmark quality?

To examine this issue, we return to the FLATa environment with the 250 Hz source
transmission. In addition to the specified environment, we now add a random 1% error to the
depth (still range-independent), the bottom sound speed and sound speed gradient, the density,
and the attenuation. A 0.1% random error is added to the water column sound speed (still
homogeneous). This was accomplished simply by generating a random number between -1 and 1
for each of the parameters affected, and then multiplying by the appropriate percentage (i.e.,
either 0.01 or 0.001). The parameter value was then altered by adding this percentage variation.

The results of two such randomized perturbations are compared to the unperturbed
MMPE solution in Fig. 25. While the discrepancies between these results are not as severe as
those compared with Mikhin’s solution, they still show a relatively high degree of variability in
the fine-scale structure at ranges beyond about 10 km. Thus, one could certainly argue that, in
real ocean environments, point-wise predictions of acoustic propagation are not possible at 100’s
of water depths in shallow water. General trends are probably possible, and PE/SSF models, if
properly used, can produce quite accurate results to this resolution. Such models also have the
advantage of being highly efficient, numerically stable, and may even be automated to produce
acceptable predictions of acoustic propagation.

Other SWAM’'99 Test Cases

Solutions for the other SWAM’99 test cases using the criteria determined from this
analysis are, at the time of this writing, still being catalogued. They will be available on the
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SWAM’99 ftp site for other investigators to examine. They can also be provided directly to
anyone by contacting the author via e-mail.

V. Conclusions

In this paper, a detailed description of the Monterey-Miami Parabolic Equation (MMPE)
model was given along with an exhaustive analysis of its predictions in several shallow water
environments defined in the SWAM'99 Workshop. Much of the model development is similar to
other parabolic equation models based on other numerical algorithms. The MMPE model
employs the split-step Fourier numerical algorithm to march the solution to the acoustic field out
in range. It was shown that, while this algorithm is one of the most highly efficient numerical
approaches, it introduces other complexities which make point-wise predictions in explicitly
defined environments difficult. Much of this is related to the treatment of the bottom interface
boundary condition, which must be treated numerically in terms of smooth, generalized mixing
functions used to simulate the discontinuous nature of the boundary. Such problems do not occur

in the models developed by other researclér&>! which explicitly treat the parabolic

approximation on the boundaries of finite elements by higher order numerical methods. Not only
are these methods higher order in their approximation of the square root operator, but they
directly treat the proper boundary condition across the boundary interfaces. However, such
methods are generally more computationally intensive. They must also consider the proper
treatment of vertical boundary conditions in range-dependent environments in order to maintain
proper energy conservation. Such energy conservation is intrinsic in the development of the SSF/
PE algorithm used in the MMPE model.

The sound speed discontinuity, relatively simple to define, is treated with a smooth
hyperbolic mixing function. In order to properly sample this function, the mixing length must be
at least one depth mesh. Furthermore, the scale of the mixing length used to produce the most

accurate results was found tolbelJA/10 . The small scale relative to a wavelength is not too

surprising since we are attempting to model a step function discontinuity. However, smaller
mixing lengths were found to degrade the solution. The exact cause is unclear, but is presumably
due to either numerical problems associated with the environmental propagator function or
numerical noise resulting from the Fourier synthesis of a sharp discontinuity. In addition, larger
mixing lengths did not perform well, presumably due simply to the poor simulation of a
discontinuous interface.

The density discontinuity is a much more difficult issue to treat, particularly with mixing
functions. Part of the difficulty is in the form of the effective index of refraction which contains
both the second derivative of the density with respect to depth, but also the square of the first
derivative. It was argued that only the former can properly be modeled with generalized
functions, and should produce accurate results with small mixing lengths. However, this function
Is simulating the first derivative of a delta function, which is difficult to do over a small depth. A
well defined cubic spline function was employed to model this interface. For this function, at
least two depth meshes are required to properly sample the function. Analysis showed that the

optimal mixing length was 2A
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Finally, an analysis of the solution accuracy with range step size was performed. The best
solution was found when Ar A . Furthermore, unlike other numerical algorithms, it was shown
that solutions based on the split-step Fourier algorithm actually degrade asthe range step is
decreased further. Thisis due to the form of the propagator functions which no longer provide
enough phase information per range step for values much less than a wavelength.

Thisanalysis of optimal mixing lengths and mesh sizes proved to be a challenging
exercise. Convergence of the solutions was not obtained by continually decreasing the mesh
sizes, but rather stability was used to define the best solutions. This aso limits the accuracy of
gpatial pointswhich do not fall on agrid point to the interpolation scheme employed. Still, it was
comforting to find that the model did satisfy the requirement of reciprocity out to the longest
ranges specified to within 1% in amplitude and two-tenths of a degree in phase.

With these findings, predictions of the acoustic propagation for several of the SWAM'99
test cases were made. These results were compared to those generated by another parabolic
equation model which was thought to produce high quality solutions. It was found that these
predictions compared quite well at short range (less than ~ 10 water depths), including the small
scale fluctuations. This appeared independent of frequency, suggesting that there are specific ray-
like paths which exhibit the sensitivity to the treatment of the bottom interface condition. At
longer ranges, the larger scale features of the solutions also compared well. This was consistently
found to be true for all environments at all frequencies considered, with the slight exception of the
lowest frequency problems which contained only a few propagating modes within the waveguide.

The results did suggest potential problems with the model for very low-frequency sources
due to the finite extent of the density mixing function. In this sense, low frequency is defined in
terms of the number of wavelengths or modes which can fit within the water column. In the
FLATa case considered here, the water depth was only about one and a half times the wavelength.
Thus, the mixing function extended throughout most of the water column, significantly perturbing
the environment we were attempting to model.

The accuracy that should be required of any propagation model should be put in the
context of our ability to accurately define the environment. To address this issue, minor random
perturbations were added to one test case. It was found that the variability introduced in the
solutions due to these perturbations was of the same order as the differences between the MMPE
solutions and Mikhin’s solutions. Thus, one may conclude that the MMPE produces solutions
which are just as accurate as a benchmark quality model given a real ocean environment with
inherent uncertainties. The efficiency of this PE/SSF model in producing both CW and
broadband pulse predictions makes it an attractive and powerful tool for ocean acoustic
propagation modeling.

Results from a broadband calculation were also presented. However, due to a lack of
other model results for comparison, the accuracy of such results is unknown. It is hoped that
developers of the benchmark quality models will attempt to produce broadband results for
comparison in the future.
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Finally, potential improvements to the model should be mentioned. Because much of the
difficulty in finding stable, convergent solutions resulted from the treatment of the bottom, other
approaches should be considered. One attractive alternative may be related to the recently
developed non-local boundary treatments which are able to produce the required reflection

condition without having to directly account for the field penetrating below the interface.[28]
Unfortunately, this approach is not currently suitable for implementation within the split-step
Fourier algorithm.

Additionally, it is known that the WA PE approximation used in the model does introduce
phase errors which accumulate with range. In fact, these errors could certainly be a contributing
factor to the fine-scale mismatch observed at longer ranges. Tapgémntemsitive method has

been shown to significantly reduce these phase errors in this approxifﬁﬂti@'ﬂne addition of
this approach to the MMPE model is currently being attempted, and any improvement in the
model’s accuracy will be reported in the near future.
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Figure 1: The FLATatest case environment. The water column is homogeneous and
the range-dependent bottom acoustic parameters are shown linearly interpolated as
the model treats the input.
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Figure 18: Comparison of optimal MMPE results with Mikhin’s results for the
FLATa environment. The source corresponds to the 1000 Hz CW source at 30 m

depth.
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Figure 19: Comparison of optimal MMPE results with Mikhin’s results for the
DOWNa environment. The source corresponds to the 250 Hz source at 30 m
depth.
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Figure 20: Comparison of optimal MMPE results with Mikhin’s results for the
DOWNa environment. The source corresponds to the 500 Hz CW source at 30 m
depth.
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Figure 21: Comparison of optimal MMPE results with Mikhin’s results for the
IWc environment. The source corresponds to the 250 Hz CW source at 30 m depth.
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Figure 22: Comparison of optimal MMPE results with Mikhin’s results for the
IWc environment. The source corresponds to the 500 Hz CW source at 30 m depth.
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Figure 23: Comparison of MMPE results for different bandwidths of broadband pulse
propagation in the FLATa environment. The source spectrum is modeled as a Hanning
window with total width 175 Hz and 80 Hz, asindicated. The source depthis 30 m

and the receiver islocated 20 km away at depth 35 m.
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Figure 24: Comparison of the same broadband MM PE results for the FLATa case
for different computational mesh sizes. Both source spectra are modeled as Hanning
windows with total width 175 Hz.
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Figure 25: Comparison of MMPE results for the 250 Hz CW source in the FLATa
environment. Two of the results were computed using perturbed environments to
show variability caused by environmenta uncertainty.
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