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Introduction:

   The stability of procedures for finding internal wave eigenvalues and modes can 
present an obstacle to the simulation of sound speed variations caused by internal waves. 
This problem can be overcome by an adaptation of the techniques used in the acoustic 
normal mode program Kraken [1] that are described in this memo. The techniques are a 
finite difference approximation of the applicable differential equation, the application of 
the Sturm sequence [2] and bisection to find the eigenvalues, and inverse iteration to find
the eigenvectors or modes.

   Once the internal wave eigenvalues and modes are found, they can be used to generate 
realizations of displacements caused by the internal wave. A procedure to generate 
displacements with statistics provided by the Garrett-Munk power spectrum [3] is 
described in this memo along with a formula of Munk and Zachariasen [4] for converting
the displacements into sound speed realizations.

   These procedures have been implemented in a Fortran computer program called Wave. 
Sample results are presented to complement the description of the computational 
techniques.

Internal Wave Eigenvalues and Modes:

   The internal wave eigenvalues and modes are determined by the water depth H in 
meters and the buoyancy frequency profile )(zN  and inertial frequency I  in rad/s. 
The internal wave modes )(zW j  satisfy the eigenvalue problem
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where 0)()0(  HWW jj  and k  is a known spatial wave number in rad/m. The 

quantities Jjj ,1,2   are the eigenvalues that are related to the eigen-frequencies by the 

equation 2222 / jIj k    [5]. The internal wave modes are normalized so that
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multiplies the eigenvalue in Eq. (1), is assumed to be positive. An alternative formulation
of the internal wave boundary value problem, which treats the temporal frequency   as 



known and attempts to find a discrete set of spatial wave numbers k  as eigenvalues, has 
a weight function that can be both positive and negative.  This form is not suitable for the
Sturm sequence method.

   A finite difference approximation of the eigenvalue problem in Eq. (1) is obtained by 
dividing the interval ],0[ H  into N  parts of size NHz / . First restate Eq. (1), 
suppressing the dependence on j, as
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where 0)()0(  Hww , 222 )()( IzNzb   and 2  . Then by defining

)(22 znbbn   and )( znwwn   for Nn ,0  and applying three point central 
differencing to Eq. (2) one obtains
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where 00  Nww . 

   A matrix equation, of the form wBwA
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that the weight function is positive is critical to this step, since the entries in the diagonal 
matrix 1B  are )/(1/1 22
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IC   is suitable for the application of the Strum sequence, which is a stable recursion 
for its determinant. Overflow and underflow are avoided, in the recursion, by applying 
the roof and floor logic (scaling) from Kraken. The zeroes of the determinant of the 
matrix IC   approximate the eigenvalues of Eq. (1).

  The eigenvalues of Eq. (1) are bounded below by  222 )(max/ IzNk   as can be 
established using an extension of the argument in [6]. The eigenvalues are found by 
starting at  222 )(max/ IzNk  , taking small steps of size   until a zero crossing of

]det[ IC   is found, and then applying bisection [7]. The value 1.  (s/m)2  seems 
to work well, for the examples considered so far. The process is repeated until J  
eigenvalues 2

jj    , Jj ,1  are found.
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some scaling factor. The eigenfunctions, on the depth grid, are found using
JjuBw jj ,1,1   

. They must be normalized to obtain JjW j ,1,  .

Displacements:

   The complex internal wave displacements, with real and imaginary parts in meters, are 
taken to have the form [5]
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where the 2k  dependence of the internal wave modes and eigen-frequencies are 
indicated explicitly. The expansion coefficients )(kA j  are identically distributed 
complex Gaussian random variables with zero mean. Their variance is given by the 
Garrett-Munk power spectrum defined in Flatte’, et. al. [3] as
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where jBNFk Ij )/( 0 , B=1300 m, 30 N  cycles/hour and 40 E .0. The quantity

IF  is the inertial frequency computed using )12/1(IF sin(latitude) with units of 
cycles/hour. The power spectrum is normalized so that 
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for large J , where the energy density factor 0E  is chosen to yield a depth integrated 
value of 3100.4 x  Joules/m2 with a seawater density of 3100.1 x  kg/m3. 0E  is divided
by the density because the density is not included in the normalization of the internal 
wave modes as it is in Flatte’, et. al. [3].

   A calculation of internal wave displacements requires a numerical approximation of 
integral in Eq. (4). This starts with a choice of a maximum wave number maxk to bound 
the interval that contains the majority of the energy in the internal wave spectrum. For 
the Garrett-Munk power spectrum this is around .5 cycles/km converted into rad/m. The 
interval ],0[ maxk  is divided into M  parts of size Mkk /max . The discrete 
horizontal wave numbers, used in the internal wave eigen-frequency calculations, are 



taken to be kmkm  , Mm ,1 . The integral in Eq. (4) is approximated, using both 
positive and negative values of m, by
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where both the real and imaginary parts of mjG ,  are Gaussian random variables with 
zero mean and unit variance. Independent realizations of mjG ,  are generated by calling 
the subroutine “GASDEV” [8] separately for the real and imaginary parts and for each
j  and m  (both positive and negative). 

   Verification of the amount of energy in the internal wave field is an important check.
It is confirmed by showing that the depth integrated energy density satisfies
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The superscript asterisk stands for complex conjugation and the factor of 2 occurs 
because both real and imaginary parts of the displacement are included. The angular 
brackets represent an ensemble average over realizations of displacement. Substitution of
Eq. (6) into the ensemble average gives 
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Evaluating the depth integrated energy density gives
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because of the modal normalization and the normalization of the Garrett-Munk power 
spectrum.

Sound Speed Fluctuations:

  The displacement fields obtained from Eq. (6) are converted into sound speed 
fluctuations using the relation from Munk and Zachariasen [2]
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where dzdc p /  is the potential sound speed gradient in (m/s)/m. The potential sound 
speed gradient is computed from the temperature and salinity profile, and the equation 
for sound speed, using

dz

dS

S

c

dz

dT

dz

dT

T

c

dz

dc
ap


















      .    

It depends on the adiabatic temperature gradient dzdTa / , the gradients of temperature T
and salinity S with respect to depth, and the partial derivatives of sound speed c with 
respect to temperature and salinity. Also see pg. 4-5 in Flatte’, et. al. [3].

Example:

  A computer program called Wave performs the calculations described in the last three 
sections. The inputs and outputs are described in an ASCII text file called Wave.txt that 
accompanies the Fortran source code. This section provides the results of a sample 
calculation for a temperature and salinity profile (called #336) taken from the North 
Pacific in a water depth of 4100 meters. The temperature and salinity was provided at 26 
depths and most of the samples were in the upper 1000 m of the water column.

  The buoyancy frequency profile was generated on a uniform mesh, with a depth 
increment of 2z  m, for the purpose of computing the internal wave modes and 
eigen-frequencies. The top 1000 m of the buoyancy frequency profile is shown in Fig. 1, 
with a peak at about 120 m. A wave number sampling increment of 01.k  cycles/km 
was used with 50 samples between .01 and .5 cycles/km and another 50 at negative wave 
numbers. A total of 20 internal wave modes and eigen-frequencies were computed at 
each of the 50 positive wave numbers. The dispersion relations, between the wave 
numbers and eigen-frequencies, are plotted in Fig. 2. 

   An energy density factor of 40 E  was used to generate realizations of displacements.
Sound speed profiles were obtained by adding the fluctuations in Eq. (7) to the 
background sound speed profile, computed from the temperature and salinity. Sound 
speed profiles were generated every 600 s between 0 and 3000 s and every .1 km 
between 0 and 9 km. The temporal dependence of the sound speed is shown in Fig. 3, for
a single realization of the internal wave field. The spatial dependence is shown in Fig. 4. 

   The range dependence of the sound speed profile is the most important consequence, of
the internal waves, on the temporal and spatial scales selected. The effects are confined 
to the top 200 m of the water column in this case.
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Figure 1. Buoyancy frequency profile 
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Figure 2. Internal wave dispersion relations
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Figure 3. Six sound speed realizations in 50 minutes, ten minutes apart.
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Figure 4. Ten sound speed realizations in 9 km, .1 km apart.
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