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1 Introduction

This report documents the theory and numerical implementation of a method
to invert underwater acoustic measurements for geo-acoustic parameters. The
inversion is accomplished by searching for the parameter values that produce
the best match between simulated data and observed data. An error function,
usually called the cost function, is de�ned to measure the di�erence between
the observed data and the simulated data. Since the number of unknown pa-
rameters is often large, searching for the optimal values which minimize the
cost function can be time consuming. Additionally, the parameter landscape
(the surface of the cost function, as a function of the parameters) is usually
riddled with local minima that must be avoided. The simulated annealing
search method presented here is designed to overcome the problem of local
minima, which are often mistaken for global minima when gradient optimiza-
tion methods are employed.

Another di�culty often encountered for a limited data set is that the op-
timal solution may not be unique. Some parameters may be coupled (their
values can be changed in a coordinated way without a�ecting the cost func-
tion), or the cost function may not be sensitive to the values of some parame-
ters. To address this di�culty, an option to search for the optimal parameter
values using a rotated coordinate system is included. In addition to speeding
the search, this rotated coordinate system provides an indication of the pa-
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rameter couplings and the parameter hierarchy (i.e. which parameters can be
reliably resolved and which cannot). In obtaining a solution, it is important
to know which parameters have been uniquely determined, and which are only
known in an \e�ective manner;" the parameter couplings and hierarchy are
good indicators of this information.

The only way to overcome problems with non-uniqueness is to use more
data. However, for some applications, an \e�ective" set of parameters might be
su�cient. Typically, a data set obtained with a �xed source/receiver geometry
at a single frequency with a high signal-to-noise ratio is used in the inversion.
If necessary, more parameters can be determined by processing additional
frequencies. This User's Guide describes a method for combining several single-
frequency inversions to obtain estimates for a larger set of parameters than
is usually possible with a single frequency. An alternative approach would be
to de�ne a wide-band cost function. In either case, the coordinate rotation
provides an indication as to which parameters can be uniquely determined.

In the next Section an outline of the theory is presented; it relies heav-
ily on previous publications. Section 3 describes the computer implementa-
tion and provides an accompanying illustrative example. Sample input �les
are included in Appendix A, \Make�les" and installation instructions are in
Appendix B, and descriptions of the FORTRAN codes are in Appendix C.
Copies of the FORTRAN codes are available from an anonymous ftp site
[www.acoustics.nrl.navy.mil].

2 Theory

The simulated annealing optimization technique implemented is discussed in
detail in [Collins et al., J. Acoust. Soc. Am. 92, p. 2770]. The procedure is
an iterative one, started by initializing values for all of the unknown parame-
ters, using a forward propagation model to compute a simulated data set, and
evaluating the cost function. In each subsequent iteration, the parameters are
perturbed, the forward propagation model again computes a simulated data
set based on the new values, the cost function is evaluated and the perturbed
parameter values are accepted or rejected in a probabilistic manner. If the
cost function is reduced, the perturbed values are always accepted. If the cost
function is increased, the new values might still be accepted following evalu-
ation of a random function that depends on the size of the increase, and an
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arti�cial \temperature" parameter related to the iteration number. If the in-
crease in the cost function value is large, or the iteration number high, the new
parameter values are less likely to be accepted. This possibility of accepting
\uphill" moves through the parameter landscape helps to prevent the search
from getting stuck in local minima. Because the problem of local minima is
so common, it is wise to repeat the multi-iteration simulated annealing search
between 10 and 20 times; each search should have a di�erent set of initial
parameter values or a di�erent seed for the random number generator, so that
the search progresses through a di�erent sampling of the parameter space 
.

In the Subsections that follow, we discuss the di�erent stages in the itera-
tion process: (1) perturbation of the parameters, (2) forward modeling, (3) the
cost function, and (4) accepting/rejecting the perturbation. A �fth Subsection
describes the method for combining single-frequency results.

2.1 Perturbation of Parameters

The geo-acoustic environment is described by a set of parameter values, x.
These are conveniently grouped by layers, each including a layer thickness and
the sound speed, density, and attenuation at the top of the layer. The sound
speed, density, and attenuation values for the bottom of the layer are assumed
to be the same as the values for the top of the next layer. This, in e�ect,
produces a continuous pro�le for sound speed, density, and attenuation. In
order to introduce a discontinuity without changing the source code, on should
simply include an arti�cial \thin" layer (� one-tenth of a wavelength) between
true layers. The bottom layer is a \basement," or half-space, with constant
sound speed, density and attenuation.

For each parameter xi, there must be a corresponding minimum value, ai,
and maximum value, bi. This set of minimum and maximum values de�ne the
parameter search space 
 = fxjai < xi < big. Generally, these bounds should
be made as tight as possible (using a priori information). If the interval is
de�ned so tight as to exclude the actual value of a parameter, then the search
results will most likely be unreliable, depending on the sensitivity of the cost
function to said parameter.

The code provides two options for the perturbation stage of the process:
(1) use the \original" coordinate system and (2) use an optimal coordinate
system. We recommend the latter option.

An optimally rotated coordinate system provides an e�cient means for a
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global optimization algorithm to navigate a parameter landscape. Addition-
ally, the technique provides a way to analyze the parameter hierarchy and
parameter couplings. As described in the previous Section, this analysis pro-
vides the user with an idea of which parameters are reliably resolved.

The cost function to be optimized (minimized) is a non-negative function
E(d;u(x)), where d is the measured acoustic data and u is the simulated data
computed based on the geo-acoustic environment described by the parameter
values, x. From here-on, the cost function is simply referred to as E. We will
discuss the cost function in more detail in Subsection 2.3.

The optimally rotated coordinate system for the minimization of E is par-
allel to the eigenvectors of the covariance matrix rE(rE)t integrated over
the parameter space [Collins and Fishman, J. Acoust. Soc. Am. 98, p. 1637].
The gradient of the cost function, rE, is evaluated over the parameter space

 = fxjai < xi < big, where ai and bi are the bounds for the ith geo-acoustic
parameter, xi, and 1 � i � n. More succinctly, the covariance matrix of
interest is

K =
Z


rE(rE)td
; (1)

where dimensions of the search parameters are removed by the normalization

x̂i =
xi

bi � ai
: (2)

Most geo-acoustic inversion applications involve large dimensional parameter
spaces, and thus K is most e�ciently estimated with a Monte Carlo method.

The eigenvectors of K, or fvjg, identify the average cost function gradient
directions for the parameter space, and also de�ne a new orthonormal basis for
the parameter space. Therefore, optimization by navigation of the parameter
landscape along the rotated coordinate system is essentially a search for the
coe�cients fyjg of fvjg which minimize E. The geo-acoustic parameter set x
is related to y by

x =
X
j

yjvj: (3)

With a single frequency inversion, it is rare for all elements of y to converge,
which implies that not all geo-acoustic parameters (fxig) are reliably resolved.

Each parameter is randomly perturbed according to
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x̂0
i = x̂i +

1

2
3jvj; (4)

where j 2 [�1; 1] is a uniformly distributed random number and fvjg is the
set of normalized eigenvectors of K. Cubing the random number provides
for small perturbations as most likely, with large perturbations still possible.
If a perturbed parameter value is generated that lies outside of the limiting
interval, the value is reected back into the interval [Collins et al., J. Acoust.
Soc. Am. 92, p. 2770]. It should be noted here that when the option to use
the original coordinate system is chosen, the vectors fvjg are replaced with
the canonical basis vectors. That is, the i-th component of fvjg is zero if i 6= j
and is one if i = j.

For each eigenvector perturbation to x̂, the cost function is evaluated, and
either accepted or rejected based on the acceptance criteria of the simulated
annealing algorithm being implemented (see Section 2.4). The acceptance
criteria is a function of the cooling schedule. The parameter set x̂0 which
produces the lowest value for E over a predetermined number of iterations
is the estimate of the optimal parameters for the data set in question. For
the inversion algorithm described here, E is evaluated for each eigenvector
perturbation.

In addition to de�ning the coordinate rotation, the eigenvectors of K also
disclose the correlations between parameters. These parameter correlations
can most readily be identi�ed by plotting fvjg. Any non-zero entry in an
eigenvector vj indicates that the parameter associated with that entry is cor-
related to other parameters with non-zero entries in the same eigenvector.

A completely uncorrelated parameter space would yield the standard basis
vectors, as illustrated in Fig. 1(A). Figure 1(B) illustrates a case where the
�rst two parameters are correlated with each other, while the third parameter
remains uncorrelated from the rest. Furthermore, the ordering of the eigenvec-
tors fvjg by the size of each associated eigenvalue illustrates the parameter
hierarchy, with the eigenvector with the largest associated eigenvalue being
�rst and at the bottom of each plot. The eigenvectors of K with the highest
associated eigenvalues are often referred to as the \top eigenvectors." The rel-
ative sizes of the eigenvalues of K indicate the relative sizes of the average cost
function gradient in the rotated coordinates. The \top eigenvectors" identify
the parameter combinations which most signi�cantly a�ect the cost function
value. Similarly, the directions (or eigenvectors) associated with the smallest
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Figure 1: (A) Three completely uncorrelated parameters. (B) Parameters 1
and 2 are correlated; parameter 3 is uncorrelated.

eigenvalues have little e�ect on the cost function. In Fig. 1, the example
eigenvalues of K are noted in a column to the right of the eigenvector plots.
In Fig. 1(A), all parameters are uncorrelated, and parameters 1 and 2 are
more signi�cant to the value of E than parameter 3. In Fig. 1(B), parameters
1 and 2 are correlated and more signi�cant to the value of E than parameter
3. Parameters which only contribute to the lowest eigenvectors may be held
�xed at reasonable values, or taken out of the inversion problem in some other
way, as their values have a small impact on the value of E. This decreases
the necessary computation time for the inversion and increases the reliability
of the results. It is also important to note that only the parameter combina-
tions which are contained in the top eigenvectors can be reliably resolved via
inversion. A concrete example of this will be presented in Section 3.

It is important to note that the covariance matrix K depends on both the
cost function E and the search space 
. If a change is made that e�ects E (such
as changing frequency or source position) or 
 (such as adding parameters or
changing parameter windows) thenK must be recomputed prior to performing
the inversion. It is not necessary, however, to recompute K if a new search is
initiated using a new initial guess for the parameter set or a new seed for the
random number generator.

Another important consequence of the dependence of K on 
 is that the
ranking of a particular parameter in the parameter hierarchy (and therefore its
resolvability) depends not only on the bounding interval for that parameter,
but also on the bounding intervals for all of the parameters.

Inversions using di�erent data sets (for example di�erent frequencies) can
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be combined using a least-squares method which takes parameter hierarchy
into account. This method will be described in Section 2.5.

2.2 Forward Modeling

For the forward modeling we use the RAMGEO code available via anonymous
ftp at www.acoustics.nrl.navy.mil. This is a slight variation of the original
Range-dependent Acoustic Model (RAM) based upon the split-step Pad�e so-
lution for the parabolic equation [Collins, J. Acoust. Soc. Am. 93, p. 1736].
The variation is that the sediment layers are de�ned relative to the bathymetry,
instead of the ocean surface. This is a more useful option for geoacoustic in-
version, where the sediment structure is often de�ned by layer thicknesses.

2.3 Cost Function

The cost function supplied with the code matches normalized complex pressure
for the case of a vertical array, and matches amplitudes for the case of a
horizontal array:

E(d;u(x)) =
q
1:0� ju(x) � dj2: (5)

Here u(x) is the modeled normalized complex pressure (vertical array) or the
modeled amplitude (horizontal array), and d is the measured data of the same
form. Other appropriate non-negative cost functions may be used in place of
eq. 5; only a simple modi�cation of the subroutine energy.f is necessary for
incorporation into this package.

2.4 Accepting or Rejecting Perturbations

For the code presented here, each perturbation to x is accepted if

� exp(
�E

T
) � 1:0; (6)

where � is a random number uniformly distributed between 0 and 1, �E =
E(x̂0) � E(x̂), and T is the simulated temperature, which is lowered with
each iteration according to a chosen cooling schedule. The cooling schedule
chosen for inversion.f is T = 1=iter, where iter is the iteration counter. This
acceptance criteria (eq. 6) always accepts perturbations that decrease the
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value of E, and sometimes accepts perturbations which increase the value of
E. Allowing the value of E to increase is necessary in order to escape from
local minima in the cost function space, and is a main de�ning feature of a
simulated annealing algorithm.

2.5 Consolidation of multi-frequency inversion results

Parameter hierarchies often di�er from frequency to frequency. Consequently,
when possible, it is bene�cial to determine the optimum parameter rotation
and perform the geo-acoustic inversion for several very di�erent frequencies.
This results in a frequency dependent set of eigenvectors and the correspond-
ing estimates of the optimum coe�cients (y), leading to frequency-dependent
estimates of the original geo-acoustic parameters (x). Ideally, each frequency
will have a di�erent parameter hierarchy, and therefore each frequency will
reliably resolve a di�erent subset of the geo-acoustic parameters. The multi-
ple sets of results can be combined using a least squares method in order to
obtain one estimated value for each geo-acoustic parameter. This consolidated
estimate of the geo-acoustic parameter set should yield a relatively low value
of E for data at the frequencies used in the inversions.

Let the set fwig contain the eigenvectors associated with the largest eigen-
values for all frequencies. If yi is the estimate of the coe�cient of fwig found
by inversion, then the \consolidated" estimate of the original parameters, x,
is determined from the expression wt

ix � yi. In matrix notation, where the
rows of A are the vectors fwig, this is Ax � y, and an estimate of x is found
using the singular value decomposition. If AtA has s small eigenvalues, then
the number of resolved parameters is approximately n� s. Which parameters
are reliably resolved is de�ned by the parameters that contribute to the \top
eigenvectors" of AtA, �.e. those eigenvectors with relatively large associated
eigenvalues. An example of this analysis is given in Section 3.4.

3 Implementation with Illustrative Example

This Section contains step-by-step instructions for using the RAMGEO based
geo-acoustic inversion with rotated coordinates and for analyzing and under-
standing the results of each step, accompanied by an illustrative example.

The main program is inversion. If a rotated coordinate system is to be
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Figure 2: Example problem

used, then landscape must be run prior to inversion. The input �le, f grad.in,
should always be the same for the two programs.

The example chosen involves a known source at a depth of 20m and a
known horizontal receiver array at a depth of 85m, with phones spanning 5m
to 5km in increments of 5m. (This source and receiver arrangement was one
of the options used in the ONR/SPAWAR Inversion Techniques Workshop
[ftp://itworkshop.nrlssc.navy.mil/pub].) The example environment involves a
at bottom and two isovelocity sediment layers over a reecting layer (see Fig.
2).

This example assumes reasonable a priori information: a known sound
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i Parameter (xi) True Min (ai) Max (bi) �xi for rE

Layer 1:
1. h1 Thickness (m) 7.30 3.00 30.0 2dz
2. c1 Sound Speed (m=s) 1485 1450 1600 5.0
3. �1 Density (gm=cm3) 1.50 1.0 1.80 0.05
4. �1 Attenuation (dB=�) 0.30 0.10 0.40 0.02

Layer 2:
5. h2 Thickness (m) 14.3 5.00 50.0 2dz
6. c2 Sound Speed (m=s) 1600 1550 1700 5.0
7. �2 Density (gm=cm3) 1.80 1.30 2.00 0.05
8. �2 Attenuation (dB=�) 0.85 0.10 0.90 0.02

Reecting Layer:
9. c3 Sound Speed (m=s) 1800 1700 1900 5.0
10. �3 Density (gm=cm3) 2.10 1.80 2.30 0.05
11. �3 Attenuation (dB=�) 0.10 0.01 0.50 0.02

Table 1: Parameterization of the environment for example.

speed pro�le for the water column, a known bathymetry, and a known number
of sediment layers. The remaining unknown parameters de�ne the inversion
problem: each sediment layer's thickness, sound speed, density and attenu-
ation. These parameters are detailed in Table 1, along with the parameter
bounds. The last column of the Table, \�xi for rE," refers to the compu-
tational step size for each parameter when using a Monte Carlo method to
compute rE. In this column, notice that 2dz is indicated as the computa-
tional step size for the thickness parameters; dz is the computational depth
grid in RAMGEO, and is a frequency-dependent value. The value of 2dz is
chosen because a �xi smaller than the RAMGEO computational grid size
would yield a false zero gradient in that direction.

3.1 Problem de�nition

The �rst step in the inversion process is to de�ne the problem by selecting a
cost function and the parameters to be inverted for. The cost function is the
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same as eqn. 5, and the parameters to be inverted for are those detailed in
Table 1.

3.2 Obtaining rotated coordinate system

Once the problem de�nition has been established, the rotated coordinate sys-
tem can be estimated. The code that estimates K (eq. 1) is landscape.f
(named so because it explores the parameter landscape), and its correspond-
ing input �le is f grad.in.

The algorithm for landscape.f involves sampling the parameter space ran-
domly to compute K by Monte Carlo integration. For each iteration, a point
in parameter the space 
 is randomly selected, and, each in turn, the following
are evaluated for that point: the modeled replica u(x) (using RAMGEO as
a subroutine), the cost function E, and the gradient of the cost function in
each direction at that point rE. The cumulative sum of rE(rE)t over all
iterations yields the estimate of the covariance matrix K.

As a rule of thumb, 200 iterations is usually su�cient to form a repre-
sentative covariance matrix K, but for parameter spaces with very largely
spaced bounds (i.e. (bi� ai) is large) more iterations may be necessary to ad-
equately sample the parameter space. The output of landscape.f is an ASCII
�le sa eig.out, which contains eigenvalues and eigenvectors of K. The param-
eter space 
 has been adequately sampled when the eigenvectors of K do
not change substantially as the number of iterations is increased nor do they
change substantially when the random number generator seed is changed. Sim-
ilarly, the eigenvectors should not change substantially for di�erent data sets
when source attributes are maintained. For example, if the source is at or
close to the same location and at the same frequency, but the data is taken at
a di�erent time, then the eigenvectors for K should be similar, assuming the
geo-acoustic environment is time-invariant. However, for obtaining optimal
results, it is safest to re-compute K for di�erent data sets.

Figure 3 is a plot of the eigenvectors of K for the example problem at 10
Hz, 25 Hz, 100 Hz, and 500 Hz. The associated eigenvalue for each eigenvector
is printed in the column to the right of each plot. Note that the eigenvectors
are numbered such that the one with the highest associated eigenvalue is �rst
and the one with the lowest associated eigenvalue is last; consequently the
eigenvector with the highest associated eigenvalue is at the bottom of the
plot.
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Figure 3: Eigenvectors for K in example problem at (A) 10 Hz, (B) 25 Hz,
(C) 100 Hz, and (D) 500 Hz.
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The eigenvectors for 500 Hz are very interesting; there is very little correla-
tion between parameters. The most signi�cant eigenvector (\top eigenvector")
for this case has signi�cant contributions from parameters 1 and 2 (the �rst
sediment layer thickness and sound speed). The three least signi�cant eigen-
vectors only have contributions from parameters 9, 10, and 11 (the sound
speed, density and attenuation of the reecting layer). This parameter hier-
archy is not surprising, as higher frequencies do not penetrate as far into the
sediments as lower frequencies; it is not expected that higher frequency inver-
sions will resolve deeper sediment layer parameter values. The relevant point
of the parameter hierarchy for this example is that inversions at 500 Hz are
expected to yield reliable values for parameters 1 and 2, but not necessarily so
for parameters 9, 10 and 11. The results of the 500 Hz inversion con�rm this
expected outcome and can be observed in Table 2. This interpretation of the
eigenvectors of K shows how these eigenvectors can be a very valuable tool in
any inversion.

3.3 Inversion with the rotated coordinate system

The inversion code is inversion.f and the input �le is the same f grad.in. The
code requires the same data (d) as is required for estimating K, as well as
the eigenvectors for K. For the initialization of E(x), the algorithm randomly
selects a point in the parameter space 
. After evaluating the value of the cost
function E for this initial set of parameter values, each subsequent iteration
involves the perturbation of the parameters along the rotated coordinates, and
the re-evaluation of E at the new point in the parameter space.

Because parameters are generally coupled in a complicated way, it is di�-
cult to discern if a single geo-acoustic parameter is converging when observing
the geo-acoustic parameter history. The perturbation history of the rotated
coordinates' coe�cients (yi) are more reliable indicators of convergence. This
can be seen by comparing the coe�cient perturbation history in Fig. 4 and
the parameter perturbation history in Fig. 5; convergence is easier to identify
in Fig. 4 than in Fig. 5.

In general, the coe�cients for the top eigenvectors of K should converge,
while the convergence of the coe�cients for those with small associated eigen-
values is less likely, although still possible. In other words, the parameters
contained in the top eigenvectors are most likely to be reliably resolved. How-
ever, if the same parameters contained in the top eigenvectors also contribute
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Figure 4: Coe�cient histories for inversion using example problem at (A) 10
Hz, (B) 25 Hz, (C) 100 Hz, and (D) 500 Hz. Coe�cients are fyjg, where x =P

j yjvj with x the geo-acoustic parameter set and fvjg the set of eigenvectors
of K.
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Figure 5: Geo-acoustic parameter histories for inversion using example prob-
lem at (A) 10 Hz, (B) 25 Hz, (C) 100 Hz, and (D) 500 Hz.
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signi�cantly to eigenvectors with small associated eigenvalues, then these pa-
rameters may not be reliably resolved for the set of data in question. To
illustrate this caveat, observe the eigenvectors for 25 Hz and for 500 Hz illus-
trated in Fig. 3. Parameter x2 (the isovelocity for �rst sediment layer) appears
signi�cantly in eigenvectors 2,4,7 and 8 for the 25 Hz case. If the coe�cients
for all these eigenvectors were to converge, then x2 should be reliably resolved.
Figure 4 shows that coe�cients y2 and y4 converge, but it is not clear if y7
and y8 converge. Therefore, the value resolved for parameter x2 is not neces-
sarily reliable for this inversion result. For the 500 Hz case, parameter 2 (x2)
only appears in the �rst two eigenvectors, and the corresponding coe�cients
do converge (as seen in Fig. 4); therefore this parameter is more reliably re-
solved. The inversion results for 25Hz yield an optimal value of 1481:5 m/s for
parameter 2, and the inversion results for 500Hz yield a value of 1486:0 m/s
for parameter 2. The true value for parameter 2 is 1485:0.

The coe�cient histories are output by inversion.f to �p inv.out, while the
parameter histories are output to �p inv prm.out. The \best parameters" (the
parameters that produced the lowest value for E over the course of the inver-
sion) are output to best.dat, along with the cost function value and iteration
number of occurrence. A word of caution: do not compare actual cost func-
tion values over di�erent frequencies as a method to determine if one frequency
produces the best inversion results. Higher frequencies tend to have a larger
cost function value and this is a side e�ect of the cost function used.

3.4 Least-Squares multi-frequency consolidation of re-

sults

The �nal step of geo-acoustic inversion using a rotated coordinate system is
the consolidation of multiple resultant parameter sets. The example presented
here has four separate resultant parameter sets; the results for inversions at
10 Hz, 25 Hz, 100 Hz, and 500 Hz. These four sets of results are detailed in
Table 2, along with the consolidated parameter set. Each column of results is
accompanied by a column labeled \% err;" where %err = 100 � val�true

bi�ai
.

The code that performs the singular value decomposition described in Sec-
tion 2.5 is least squares.f. The code requires the eigenvectors for K for all
cases, as well as the \best" parameter sets for each case. The input �le is
least squares.in. The output �le sa eig.LS.out contains the eigenvalues and
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True 10 Hz 25 Hz 100 Hz 500 Hz L.S.
Param Val Val %err Val %err Val %err Val %err Val %err

1. h1 7.30 8.28 3.6 6.40 3.3 5.35 7.2 7.36 0.2 5.98 4.9
2. c1 1485 1535 34 1481 2.4 1488 2.1 1486 1.0 1489 2.5
3. �1 1.50 1.44 7.2 1.66 20 1.46 5.5 1.49 0.7 1.49 1.2
4. �1 0.30 0.23 25 0.33 9.8 0.33 9.5 0.31 4.1 0.32 6.7

5. h2 14.3 16.7 5.2 12.7 3.5 17.0 5.9 34.2 44 16.1 4.0
6. c2 1600 1623 15 1560 27 1574 17 1598 1.0 1583 6.0
7. �2 1.80 1.87 11 1.75 6.8 1.80 0.6 1.94 20 1.82 2.9
8. �2 0.85 0.82 4.1 0.86 1.7 0.73 15 0.79 7.2 0.72 16

9. c3 1800 1798 0.8 1802 1.2 1800 0.1 1888 44 1797 1.3
10. �3 2.10 2.25 31 2.18 15 2.25 29 2.00 21 2.05 10
11. �3 0.10 0.11 2.3 0.11 2.5 0.15 11 0.25 31 0.26 33

Table 2: Results of geo-acoustic inversions at 10 Hz, 25 Hz, 100 Hz, 500 Hz,
and the least squares consolidations (L.S.) of all four frequencies. Here the
error of parameter measurement is de�ned in terms of the window for each
parameter by %err = 100 � jval�truej

bi�ai
.
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eigenvectors for AtA and the resulting parameter set is output to the screen.
When running least squares, the user is asked to determine how many eigen-

vectors should be incorporated into A for each frequency. Here the user should
examine the coe�cient histories for each frequency (Fig. 4); the number of co-
e�cients that converge is the number of eigenvectors that should be included
in A. For the example presented, only y1 converges for 10 Hz, while fy1 : : : y4g
converge for 25 Hz, fy1 : : : y9g converge for 100 Hz, and fy1 : : : y6g converge
for 500 Hz. Therefore, in this example, the rows of A are the eigenvectors
associated with these coe�cients that converged, and therefore A is a 20� 11
matrix. After the eigenvalue/eigenvector decomposition of AtA is computed,
the eigenvalues are displayed. The user is then is asked to choose how many
eigenvectors to use for determining x. The eigenvectors with relatively large
eigenvalues should be incorporated, and those with relatively small eigenval-
ues should be ignored. In the example presented, the eigenvalue/eigenvector
decomposition for AtA yields nine eigenvalues which are greater than one, and
two eigenvalues which are close to zero. Therefore, the eigenvectors associated
with the top nine eigenvalues are chosen for determining x. The resulting
parameter set is shown in the last \Val" column of Table 2. This parameter
set de�nes an \e�ective environment" for the data used (10Hz, 25Hz, 100Hz,
and 400Hz).
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A Appendix: Sample input �les

A general f grad.in input �le is in Fig. 6, followed by a detailed description
of each variable in Table 3. Table 3 is a list of the order of the parameters as
expected by the code; this parameterization can be changed by modifying the
subroutine parmtr.f. The input �le for the 25Hz example described in Section
3 is in Fig. 7.

f grad.in
nter mter temp0
nsamp iseed idata
freq zs nrec dzrec zrec0
rmin rmax dr
zmax dz tabsorb
c0 np ns rs
nlayer nbathy
z1 cw1

z2 cw2

.

.

.
zn cwn

-1 -1
ict x01 �x1 a1 b1
.
.
.
ict x0npar �xnpar anpar bnpar
-1 -1 -1 -1 -1

Figure 6: Sample input �le for example problem. The �1 entries are ags that
denote the end of the sound speed pro�le and the end of the parameterization.
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Variable name Description

f grad.in ignored 1st line; used for comments or title
nter number of iterations for inversion
mter number of iterations after which the acceptance criteria are

discarded and only improvements to cost function are accepted
temp0 initial temperature; used in cooling schedule
nsamp number of samples (iterations) for computing K
iseed integer seed for random number generator rand
idata type of data

0 ) synthetic vertical array data
1 ) vertical array data read from �le pressure.dat
2 ) synthetic horizontal array data
3 ) horizontal array data read from �le pressure.dat

freq frequency (Hz)
zs depth of source (m)
nrec number of receiver depths (nrec = 1 if horizontal array)
dzrec vertical receiver spacing in depth (m)
zrec0 depth of shallowest receiver

(depth of all receivers for horizontal array)
rmin minimum range for
rmax maximum range for computations and
dr range step (m) for RAMGEO; varies with frequency

Also used as horizontal array receiver spacing; this can
be changed by adding separate receiver array variable to code

zmax \computational universe;" maximum depth (m) for RAMGEO
dz RAMGEO computational depth grid spacing (m)
tabsorb thickness of absorption layer at bottom of half-space (in m)
c0 reference soundspeed for RAMGEO
np number of pade coe�cients for RAMGEO
ns == 1; number of stability constraints; see RAM documentation.
rs == 0.0; associated with long-range propagation stability

constraints; see RAM documentation.

Table 3: Input �le variables.
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Variable name Description

nlayer number of layers for environmental description
nbathy number of bathymetry points
zi ith depth point in water column
cwi sound speed (m=s) at zi
ict parameter counter; dummy integer variable (not used)
x0i Default value for xi, only used when calculating

synthetic data, otherwise bi�ai

2
is used

�xi computational step size for evaluating rE

ai Minimum bound for parameter i
bi Maximum bound for parameter i

Table 4: Continuation of input �le variables.

Variable name Description

f(2�i�1) Range (m) for depth point i, i = 1 to nbathy
f(2�i) Depth (m) for depth point i, i = 1 to nbathy
f(i+2�nbathy) Layer thickness (m) for layer i, i = 1 to nlayer-1
f(i+1+2�nbathy) Sound speed (m/s) for layer i, i = 1 to nlayer-1
f(i+2+2�nbathy) Density (gm/cm3) for layer i, i = 1 to nlayer-1
f(i+3+2�nbathy) Attenuation (dB/�) for layer i, i = 1 to nlayer-1
f(4�(nlayer�1)+1+2�nbathy) Sound speed (m/s) for reecting layer (i =nlayer)
f(4�(nlayer�1)+2+2�nbathy) Density (gm/cm3) for reecting layer (i =nlayer)
f(4�(nlayer�1)+3+2�nbathy) Attenuation (dB/�) for reecting layer (i =nlayer)

Table 5: Order of parameters in input �le and description.
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f grad.in
500 500 1.0 nter, mter, temp0
100 1234 2 nsamp iseed idata
25.0 20.0 1 1.0 85.0 freq zs nrec dzrec zrec0
5.0 5000.0 5.0 rmin rmax dr
1250.0 1.0 500.0 zmax dz tabsorb
1500.0 5 1 0.0 c0 np ns rs
3 1 nl nbath
0.0 1495.0 z cw
300.0 1483.0
-1 -1
1 0.0 0.0 0.0 0.0 range1
2 100.0 0.0 139.0 141.0 depth1
3 7.3 1.05 3.0 30.0 thickness1
4 1485.0 5.0 1450.0 1600.0 speed1
5 1.50 0.05 1.0 1.80 density1
6 0.30 0.02 0.1 0.4 att1
7 14.3 1.05 5.0 50.0 thickness2
8 1600.0 5.0 1550.0 1700.0 speed2
9 1.80 0.05 1.3 2.0 density2
10 0.85 0.02 0.10 0.9 att2
11 1800.0 5.0 1700.0 1900.0 speed3
12 2.10 0.05 1.8 2.3 density3
13 0.10 0.02 0.01 0.5 att3
-1 -1 -1 -1 -1

Figure 7: Sample input �le for example problem at 25Hz.
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B Appendix: Make �les and installation in-

structions
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C Appendix: FORTRAN code description

There are four main routines, and most have several subroutines in common.
The four main routines are landscape, inversion, just energy, and least squares.

1. landscape is the routine that determines the optimal coordinate system
for a given data set and parameter set, and landscape.f is the calling pro-
gram. The subroutines for this routine are contained in parmtr.f, ram.f,
energy.f, and sa eig.f.

2. inversion is the routine that uses the optimal coordinate system com-
puted by landscape (or the conventional coordinate system) to navigate the
parameter landscape while optimizing a cost function of choice. The subrou-
tines for this routine are contained in setup.f, parmtr.f, ram.f, and energy.f.

3. least squares uses a singular value decomposition to determine the pa-
rameters with the least squares error using data and coordinate systems
for various frequencies (or data sets). The subroutines are rdin�le, geteigs,
getbest, lmats, svinv, lsqre, jacobi, and eigsrt, and are all contained within
least squares.f.

4. just energy computes the cost function value for a given set of parame-
ters. This is useful for determining how well parameters perform for di�erent
frequencies when determined from inversion at another frequency, or from
the consolidation of multiple frequency results.

Following is an alphabetical listing of the subroutines mentioned above,
along with a brief description of each.

1. energy.f computes the cost function.

2. parmtr.f de�nes the environmental and geometric parameterization.

3. ram.f is RAMGEO in a subroutine. All subroutines for RAMGEO have
been put into the library libramgeo.a.

4. sa eig.f �nds the eigenvalues of a covariance matrix. This routine uses
jacobi.f and eigsrt.f from Numerical Recipes [Press et al., Numerical Recipes
in FORTRAN (Cambridge University Press, Cambridge, 1992)].
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5. setup.f reads an input �le and a data �le (or computes synthetic data),
and sets up arrays necessary for RAMGEO. There is a call to the subroutine
zread ; this routine is contained in the RAMGEO library, libramgeo.a.

6. setup2.f is very similar to setup.f, except it allows the user the opportu-
nity to change some of the values that are read in from f grad.in (so that
endless editing of f grad.in is not necessary).
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