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Preface

Computational Ocean Acoustics is intended both as a tool for the practicing re-
searcher and as a textbook for graduate and senior undergraduate students spe-
cializing in underwater acoustics. However, several of our colleagues have pointed
out that as a textbook a key component is missing — a problem set. This issue
was discussed among the authors at an early stage, but it was decided to publish
the book without a problem set. Instead we decided to make a separate booklet
with problems and exercises that would be made available at no or very limited
cost to instructors of courses in ocean acoustics.

The most important purpose of the problem set is to aid the student in un-
derstanding the fundamental concepts described in the textbook. As a new book,
Computational Ocean Acoustics had not yet been used for teaching purposes at
the time it went into print, and a consistent and complete problem set suitable
for being “frozen” into the book did not exist. A good problem set develops
over time, adjusting to the needs of students and further clarifying material not
covered in detail in the body of the text.

At this time, Computational Ocean Acoustics has been used as a textbook in
several courses given by the authors. As a result, a rather complete, although
not perfect, problem set has been developed, suitable for publication as the first
edition of Computational Ocean Acoustics — Problems and FEzercises. By pub-
lishing the problem set as a separate booklet, we allow for future modifications
reflecting the experience of the authors and others using the book for teaching.

The present problem set mainly contains problems and exercises focusing on
the fundamental mathematical and physical concepts of ocean acoustics. Some
problems concern the basic numerical aspects associated with the various numer-
ical techniques. Even though several problems require computer coding, there
are no problems directly requiring the students to build full scale propagation
models. The development of such working codes requires the integration of all
the theoretical and numerical concepts covered in the book.

Therefore, it is highly recommended that the traditional homework problems,
such as the ones in this volume, are supplemented with “hands on” projects



involving direct model development. The student can then learn a great deal
by addressing fundamental problems of a physical nature, similar to the ones
covered by the numerical examples in the book. The recipes provided at the end
of Chapters 3-6 should provide a suitable guide for developing such models.

We would like to stress once again that the present problem set is not a
final product, but is expected to develop significantly in the future. A crucial
component of such an improvement process is the feedback from instructors and
students using it. Therefore, we would highly appreciate receiving any comments
and suggestions for improvement, preferably by e-mail to coa@keel.mit.edu.

August 1994 Finn B. Jensen
William A. Kuperman
Michael B. Porter
Henrik Schmidt
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CHAPTER 1. FUNDAMENTALS OF OCEAN ACOUSTICS

In a deep ocean with constant salinity 3.5% the water temperature distri-
bution is assumed to be exponential in depth,

T = Ty exp(—2/500) ,
where T and Tj are in degrees Celsius, and z is in meters.

a. What is the minimum surface water temperature for which a deep
sound channel (SOFAR) will exist?

b. Determine the depth of the channel axis and the associated sound
speed as function of the surface temperature.

Consider a 4000 m deep ocean with constant salinity 3.5%. The water tem-
perature distribution is assumed to be exponential in depth,

T = 10 exp(—2/500) ,
where T is in degrees Celsius, and z is in meters.

a. At approximately which latitude would you expect to find such an
environment?

b. For a source at 100 m depth, discuss the existence of the various ray
paths (RR, RSR, RBR and SRBR) in this environment.

c. What is the surface temperature for which no pure RSR and RBR
paths exist?

In air acoustics, the conventional reference for decibels is dB re 0.0002
dyn/cm? as opposed to dB re 1uPa used in ocean acoustics.

a. A human whisper and shout have acoustics powers of about 10! and
105 watts, respectively. Express their dB levels using both conven-
tions. What would be the dB levels if the whole world shouted at once
(in the same place)? Compare that to a jet or rocket in air or various
types of ships in water.

b. If a rock band played at the pain threshold, of about 140 dB, what is
its power output in watts. What is its corresponding sound pressure
level in water?

c. For a 120dB source in water (measured one meter from the source),
what would its dB level be at ranges 1, 10 and 100 km assuming spher-
ical spreading; cylindrical spreading? The loudest whales have source
levels of about 190 dB. Compare this to a rock band.



1.4. An omnidirectional source of frequency f is placed at a distance z; from an
infinitely rigid wall bounding a fluid halfspace with constant sound speed
c.

a. Describe the radiation pattern in the limit of z;, — 0.
b. Derive the expression for the number of Lloyd-mirror beams.
c. Derive the asymptotic field decay parallel to the wall, and compare to

the corresponding pressure-release surface result.

1.5. Estimate the convergence zone (CZ) separation for an Arctic environment
with the sound speed profile given below. Assume linear sound speed vari-
ation between the profile depths.

Depth (m) Sound speed (m/s)

0 1438.0
300 1460.0
4000 1519.2

1.6. Write a program for computing and displaying the magnitude and phase of
the reflection and transmission coefficients for the interface separating two
fluid halfspaces.

a. Use your code to illustrate the concept of a critical angle by properly
choosing the sound speeds and densities.

b. For grazing angles of incidence smaller and larger than critical, discuss
the depth-dependence (direction perpendicular to the interface) of the
reflected and transmitted fields.

c. Discuss the behavior of the phase of the reflection coefficient for inci-
dent grazing angles less than and larger than critical.

d. Create an example illustrating the concept of an intromission angle.
1.7. Derive the expression for the reflection coefficient for a fluid layer overlying

an infinitely rigid halfspace. Give a physical explanation for the frequency
and grazing angle dependence of the magnitude and phase.
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CHAPTER 2. WAVE PROPAGATION THEORY

2.1. Sound propagating in a moving medium is governed by a so-called convected
wave equation. Consider the case where the background flow velocity is
uniform in the z-direction with velocity V.

a. Following the procedure in Sec. 2.1, derive the convected wave equation
for sound in a one-dimensional environment with flow velocity V':

V2 2V 1
1—§ pm—c—prt—gptt:O-

Note that setting V' = 0 gives the usual wave equation.

b. Show that this equation can also be derived from the standard wave
equation by changing to a moving coordinate system (£,7) = (z +
Vi, t).

c. What is the form of this equation in three dimensions?

2.2. Assume an acoustic source is designed as a small, spherical balloon of radius
a, within which the pressure is oscillating with frequency f, with maximum
pressure amplitude P.

a. Derive the expression for the acoustic pressure vs range.
b. Determine the expression for P which directly yields transmission loss,

i.e., unit pressure at r = 1 m.

2.3. Derive Green’s theorem for a fluid medium with variable density, where the
wave equation is of the form given in Eq. (2.13).

2.4. Make a computer code for computing the magnitude and phase of the plane-
wave reflection coefficient at an interface separating two fluid halfspaces.

a. As a test of your code reproduce the results of Figs.2.10 and 2.11.
b. Discuss in physical terms the grazing angle dependence of the results.

c. Add a second fluid layer in the bottom and then add frequency as
an independent variable to your computer program. Contour your
reflection results as a function of angle and frequency. Discuss the
resulting structure of the contoured output.

2.5. For an ideal waveguide bounded above by a pressure-release surface and
below by an infinitely rigid wall, derive a ray expansion for the acoustic
field.



2.6.

2.7.

2.8.

2.9.

2.10.

Write a code evaluating the ray expansion in Eq. (2.136) for the pressure
field in an ideal waveguide with pressure-release boundaries.

a. For a 100 m deep waveguide, compute the transmission loss for both
source and receiver at depth 36 m, at every 100 m range out to 2km.
Compare your results to Fig.2.23(b).

b. Perform a convergence analysis for a few selected ranges and discuss
the range dependence.

Show that Eq. (2.147) represents the sum of the residues of the wavenumber
kernel in Eq. (2.143).

Consider an isovelocity waveguide of thickness D, bounded above and below
by infinitely rigid walls.

a. Derive the characteristic equation for the horizontal wavenumber of
the normal modes.

b. Sketch the vertical pressure distribution of the first few normal modes.

c. Derive the dispersion relation for the normal modes. Discuss the dif-
ferences compared to the waveguide with pressure release boundaries.

Consider an environment similar to the Pekeris waveguide in Fig. 2.25, but
with the bottom speed being changed to ¢, = 1300 m/s.

a. Make a sketch of the complex wavenumber plane for this problem
(similar to Fig.2.26), indicating the integration contour and the EJP
branch cuts.

b. Discuss the existence of normal modes in this case. If they exist, show
their approximate positions.

c. Make a sketch of the branch cuts corresponding to the vertical wave-
number being purely imaginary, with the corresponding closed inte-
gration contour.

Consider a Pekeris waveguide with the speed of sound ¢; = 1500m/s and
density p; = 1000kg/m? in the water column, and with ¢, = 1800 m/s and
po = 2000kg/m? in the bottom. The water depth is 100m. A line source
at depth z, is generating a plane acoustic field in the waveguide.

a. Defining the slowness of the mth normal mode as

k:vm

Pm = )
w
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where k,,, is the horizontal wavenumber of the mode, state the upper
and lower limit of p,, for modes propagating in the positive z-direction.

b. For a source frequency exciting 3 modes, make a sketch of the mode
functions for pressure and for the particle velocity potential. Discuss
the differences.

c. Derive the expression for the vertical wavelength of the modes.

d. Using the results from questions (a) and (c), state the lower limit for
the vertical wavelength of a mode at angular frequency w.

e. Use the result from (d) to determine how many modes you have at
frequency f = 30 Hz.

2.11. In Eq.(2.170), @ (k,m) represents a waveguide-specific modal excitation
function.

a. Derive the expression for a,,(k,,) for the Pekeris waveguide.

b. Show that the modal excitation function has its maximum at the Airy
phase frequency, i.e., the frequency where the mode has its minimum
group velocity.

c. Compute and plot vs frequency the magnitude of the excitation func-
tion for the first 3 modes in the Pekeris waveguide in Fig. 2.25. Discuss
the results.

2.12. A storm has created a 1 m thick surface layer with a uniform distribution
of small air bubbles. The fraction of the volume occupied by the bubbles is
1073,

a. What assumption(s) do you have to make to treat the bubble layer as
a homogeneous acoustic medium?

b. Under these assumptions, find the numerical values of the sound speed
¢ and density p of the bubble layer. The sound speed of water and air
are ¢, = 1500m/s and ¢, = 340 m/s, respectively, and the correspond-
ing densities are p, = 1000kg/m?* and p, = 1.2 kg/m3.

c. Show that the characteristic equation for normal modes in the bubble
layer is

cot(k,h) = _Gw P

k. pw’
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where h is the thickness of the bubble layer, and

2
w
Cuw

- <3>2—kz.
C

d. Discuss the physical significance of «,, and k,.

e. What is the value of the cutoff frequency below which no normal modes
can exist in the bubble layer?

In seismics, volume attenuation is often expressed in terms of the quality
factor, defined as the ratio between the real and the imaginary part of the
bulk modulus, i.e., Q = K'/K" for K = K' —iK". For small attenuations,
(@ > 1), derive the relation between ) and the loss tangent ¢, and the loss
factor a in dB per wavelength.

Consider the reflection of plane waves from a bottom with the sound speed
profile
(az+b)Y, 0<2<100m,

o(2) =
1600 m/s, z>100m .

The sound speed is continuous at the seabed (z = 0) and at z = 100 m, and
the speed of sound in the water column (z < 0) is 1500 m/s.

a. Determine the constants a and b.

b. What is the critical grazing angle for waves incident from the water
column?

c. Use the WKB approximation to derive expressions for the magnitude
and phase of the reflection coefficient. Derive the result for grazing
angles smaller and larger than critical. Hint:

/\/Oz+ﬂx2da; = % [x\/oz+ﬁx2 + %log (x\/ﬁ—l— \/oz—l—ﬂxZ)l :

d. For a frequency of 100 Hz, compute the phase of the reflection coeffi-
cient at grazing angles of incidence 30°,40°, 50°, 60°, 70°, 80°, and make
a sketch of the result.
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CHAPTER 3. RAY METHODS

3.1. Assume a deep ocean is represented by an infinite halfspace with a linear
sound speed profile

c(z) =az+b, a>0.

A high frequency source is radiating from a point (r,z) = (0, ). Consider
a ray emitted from the source at grazing angle 6.

a.

Derive a parameter representation for the ray path, before the first
surface bounce,

r = r(0,6),
z = 2(0,0y),

where 6 is the local grazing angle for the ray.

Show that the ray path describes a circular arc and that the center of
the circle falls at a depth z = z., where z. is independent of the launch
angle 6.

. Derive the expression for the range r;(6y), where the ray launched at

angle 6y bounces off the sea surface.

Derive the parameter representation for the ray in the second ray cycle,
i.e. after the first surface bounce.

. Derive the expression for dr/df, in the second ray cycle. Discuss the

physical significance of the points where dr/df, = 0.

3.2. An acoustic waveguide has the sound speed profile

¢(z) = cg cosh bz.

Show that for a source at z = 0, all rays will refocus at ranges r = nAr
where n is an integer and Ar is independent of the launch angle. State
the expression for Ar.

Discuss the physical significance of this phenomenon.

c. Write a simple ray code to demonstrate the refocusing.

d.

Use your code to duplicate the result in Fig. 3.19.

3.3. Consider a source at depth z, = 2000 m, range 0 and a receiver at depth
zr = 4000 m and range 2km. Suppose that the sound speed depends only
on depth, and that the values at the source and receiver depths are 1500 m/s
and 1530 m/s, respectively.
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a. Use an n?-linear approximation to estimate the travel time between
source and receiver.

b. If the receiver is moved farther out in range there comes a point where
the eigenray is turned before reaching the receiver. At what range does
this first happen?

c. Is there a range where no real ray reaches the receiver? (Assume the
water depth is infinite.)

3.4. Suppose we have a 500 Hz source launching a Gaussian beam in an isove-
locity ocean with sound speed 1500 m/s.

a. If the beamwidth and curvature at the source are 100 m and zero re-
spectively, what will the approximate beamwidth and curvature be
10 km away?

b. Suppose we want the beam to be as narrow as possible at 10 km. What
initial beam width and curvature will do this?

c. Suppose the initial beam curvature has to be zero. What choice of the

initial beam width will now give us the narrowest possible beam at
10km?

3.5. A certain SSP has a sound speed of 1530 m/s at the surface, 1500 m/s at the
source depth, 1550m/s at the ocean bottom and 1800 m/s just below the
bottom in the sediment. We will trace a fan of rays over angles [—6,+6)].
How should we pick 6 to include:

a. Only RR paths.
b. Only RR and RSR paths.

c. Only RR, RSR, and RSRBR paths striking the bottom with a grazing
angle below the critical angle.
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4.1. Consider the reflection of a plane wave from an isovelocity fluid layer of
thickness H overlying an isovelocity fluid halfspace for which c¢; < ¢; < ¢3
and p; < p2 < ps.

a. What is the critical grazing angle for waves incident from medium 17

b. If koH < 1, show that to leading order the plane-wave reflection coef-
ficient reduces to the plane-wave reflection coefficient without the layer
present.

Now, suppose that p; = p3 < py and ¢; = ¢3 < ¢g, and that the plane wave
is incident at grazing angle 6; < arccos (c1/c2).

c. What is the angle of the transmitted wave in the lower halfspace, and
what kind of wave is it (radiating or evanescent)?

d. What is the form of the solution in the layer?

e. Derive the expression for the reflection coefficient in the upper half-
space and the transmission coefficient in the lower halfspace.

f. By your intuition, what happens when kyH — o00? Verify your an-
swer by examining the leading order behavior of the reflection and
transmission coefficients.

4.2. Make a direct numerical implementation of the expression in Eq. (2.143) for
the wavenumber representation of the field in an ideal waveguide. Allow
the horizontal wavenumber to be complex.

a. For sound speed 1500 m/s and depth 100 m, compute the wavenumber
kernel at 20 Hz for source and receiver both at depth 36 m. Sample
the kernel at 200 points equidistantly placed over the interval k, €
[k /100, 2k, where k,, is the water wavenumber. Let the imaginary
value of the horizontal wavenumber be —£,,/100 to avoid the modal
singularities. NOTE: Your code will crash!

b. Determine the wavenumber interval for which your code produces a
result which is qualitatively consistent with Fig. 2.23(a).

c. Describe the nature of the numerical problem, and rewrite Eq. (2.143)
into a form which remedies the problem. Implement it and compare
your result to Fig.2.23(a) (qualitatively).

4.3. In matched field processing for source localization the sensitivity to envi-
ronmental mismatch is a critical issue due to the fact that the environment



4.4.

4.5.

19

is never known perfectly in a deterministic sense. The sensitivity to a sound
speed perturbation in a stratified or range-independent ocean depends on
the change in the depth-dependent Green’s function associated with that
perturbation. Let the wavenumber profile k(z) = w/c(z) for such an ocean
be given by a set of parameters A = [A;, Ay,... Ay]|. Show that the par-
tial derivatives of the depth-dependent Green’s function with respect to the
parameter A; are given by the depth integral

0G, (ky, 2, 25) _ /00 O(k?(2))

N N 77 ! * ! /
0A; 0A; Gw(kryzs,Z)Gw(kT,Z,Z)dZ .

The homogeneous displacement equation of motion in a homogeneous and
isotropic elastic medium has the vector form,
A+ u)V(V -u) + pVu = pii..
a. Show that this equation is satisfied by displacement fields of the form,
u=Vop+VxVU,

where ¢ is a scalar potential satisfying the equation
1 .
V2 - _2¢ =0 )
Cp

and W is a vector potential satisfying the equation

1
2
Cs

VI - 0 =0,

and where U satisfies the gauge condition V - U = 0.

b. Express cp and cg in terms of the Lamé constants A and p, and the
density p.

c. What is the physical significance of the gauge condition?
d. Explain the physical significance of ¢ and W.

Consider a homogeneous, isotropic and elastic halfspace with compressional
speed cp, shear speed cg and density p.

a. For a plane compressional (P) wave incident on the free surface, derive
the expressions for the reflected compression and shear potentials.
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b.
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Discuss the existence of total conversion (no reflected P-wave) and no
conversion (no reflected shear wave).

4.6. Consider a homogeneous, isotropic and elastic halfspace with compressional
speed cp, shear speed cg and density p.

a.

For a plane shear (SV) wave incident on the free surface, derive the
expressions for the reflected compression and shear potentials.

Discuss the existence of total conversion (no reflected SV-wave) and
no conversion (no reflected compressional wave).

4.7. Consider the problem of a water halfspace with sound speed ¢; and density
p1 overlying an elastic halfspace with compressional speed cp, shear speed
cs, and density po.

a.

Show that the depth-dependent Green’s function for a point source in
the water, at height H above the interface, has a denominator of the

form,

k.,
d(k,) = (2k2 — K2)? + 42k, ok 0 + KA L22
kazJ

where kg is the shear wavenumber in the solid halfspace, k, is the
horizontal wavenumber and k,; and k, » are the vertical wavenumbers
for compressional waves in the two media, and k,5 is the vertical
wavenumber for shear waves.

Show that d(k) always has a real root kscn,
kSCH >'HlaX{k1,k5],

where k; is the wavenumber for acoustic waves in the water. The wave
associated with this pole is called the Scholte wave.

c. Describe the frequency dispersion characteristics of the Scholte wave.

Make a sketch of the particle displacement associated with the Scholte
wave on the surface of the elastic medium.

Assume the source is placed just above the bottom H ~ 0, and emits
a broadband signal. The field is measured by means of a bottom
mounted vertical array far away from the source, where the field is
dominated by the Scholte wave. If the frequency spectrum measured
at the receiver on the interface is F'(w), what is the frequency spectrum
at height h above the interface?
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4.8. The denominator of the depth-dependent Green’s function for the fluid—
elastic halfspace problem described in the previous problem also has a sym-
metric pair of complex roots which become important for the propagation
characteristics in certain cases.

a. Employ a numerical root finding scheme (e.g., a complex Newton—
Raphson scheme) to determine the complex root with positive real
value. (Warning: take care how you choose the branch cuts for the
square root).

b. Assuming the sound speed in water to be 1500 m/s and a water density
of 1000 kg/m?, compressional speed 5000m/s and density 2500 kg/m®
in the solid, map the position of the root as function of shear speed in
the range 1500-3500 m/s.

c. Discuss the physical significance of the real and imaginary part of the
root.

4.9. An infinite elastic plate of thickness 2h is made of an elastic material with
wave speeds cp and cg for compressional and shear waves, respectively, and
density ps. The plate is assumed to have free surfaces.

a. Show that the characteristic equation for the modes in the plate has
the form »
tan(k,h) 42k K,
tan(k,h) | (2k2 — k2)? ’

where the “4” corresponds to symmetric modes and the
sponds to antisymmetric modes. kg is the shear wavenumber, and
k, and k, are the vertical wavenumbers for compression and shear,
respectively. k, is the horizontal wavenumber.

“—" corre-

b. Show that in the low frequency limit,

_ 2hw
N TCs

Q —0,

the characteristic equations reduce to,
sinhmy £ my=0,

where 7 is a dimensionless horizontal wavenumber,

2hk,
V= :
™
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c. Solve the frequency equation numerically and graphically represent the
w — k, relations for the first (fundamental) symmetric and antisym-
metric modes for the elastic plate.

d. Discuss the cutoff properties and the static limits of the phase and
group velocities for the two fundamental modes.

4.10. Equation (2.165) represents a DGM formulation for the Pekeris waveguide.

a. Is the direct numerical solution of Eq. (2.165) by Gaussian elimination
numerically stable for all values of the horizontal wavenumber?

b. Modify Eq. (2.165) to make the solution unconditionally stable.

4.11. Consider an ocean waveguide similar the the Pekeris waveguide, but with
an n*-linear sound speed profile ¢?(z) = (az+b) ! in the water column. Set
up the corresponding global coefficient matrix in numerically stable forms
for downward-refracting (@ > 0) and upward-refracting (a < 0) profiles.

4.12. Assume you have to make a simple wavenumber integration code for prop-
agation in Pekeris waveguides.

a. Make a subroutine which computes the wavenumber kernel, or depth-
dependent Green’s function, along a contour below the positive real
wavenumber axis. Make sure your code is numerically stable for large
wavenumbers, k. > (kq, k).

b. Check your code by qualitatively reproducing the kernels shown in
Fig. 4.7(a).

You decide to use FFP integration with a contour offset equal to the wave-
number sampling interval Ak,.

c. What is the associated minimum attenuation of the wrap-around?

d. Using this offset, perform a numerical convergence analysis for the in-
tegration by computing the transmission loss at 46 m depth and 10 km
range for the Pekeris waveguide in Fig. 2.25, assuming an attenuation
of 0.5dB/A in the bottom. Note: You don’t have to use FFT integra-
tion for this, use simple trapezoidal rule integration.

e. Repeat the convergence analysis without contour offset, and discuss
the difference in convergence rate.
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4.13. Develop an adaptive Filon integration scheme for general wavenumber in-
tegrals based on the FFP approximation (large argument Hankel function
approximation).

a. Implement and test your algorithm using the Green’s function subrou-
tine developed for the previous problem.

b. Using the number of Green’s function calculations as a performance
measure, compare this approach to the simple direct trapezoidal rule
integration in terms of computational efficiency for cases where the
field is to be determined at a single range only.

c. Discuss qualitatively the performance of the adaptive scheme relative
to use of an FFT to compute transmission loss at a large number of
ranges.
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5.1

0.2

2.3.

0.4.

2.5.

2.6.

CHAPTER 5. NORMAL MODES

Write a simple code to calculate the modes in a channel with a pressure-
release surface and a rigid bottom. Compare your model results to those
shown for the Munk profile in Fig.5.10.

Consider a 300 m deep Pekeris waveguide with ocean sound speed of 1500 m/s
and sediment sound speed of 1800 m/s.

a. For a source frequency of 500 Hz, how many trapped modes are present?
What are the horizontal wavenumbers for the first two modes?

b. What is the cut-off frequency?
c. What will the modes look like? (Sketch.)

For a certain frequency there is a mode for the Munk profile in Fig. 5.9 with
phase speed 1535 m/s. Does it have an upper and lower turning point? If
so, at what depth(s)?

Suppose we wish to write a normal mode code using Numerov’s method.

a. Write down a difference scheme to handle the ocean/sediment inter-
face.

b. What is the form of the final matrix of difference equations? (Assume
a pressure-release surface and perfectly rigid bottom.)

c. Discuss how you might solve the resulting algebraic eigenvalue prob-
lem.

How will the modes change across the eddy whose SSP is shown in Fig.5.17
(Sketch).

Consider the following eigenproblem:
u" + Nu=0,
u(0) +u'(0) =0,
u(l)+u'(1) =0.
The exact eigenvalues are A\, = km. If we solve this problem using finite
differences with the standard formula, we will get approximations to these

eigenvalues ;(N) = 2N sin £ where N is the number of points in the mesh
and k=1,...,N — 1.
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. How can we use our formula for 3;(N) to obtain a similar result for

the approximate eigenvalues of an isovelocity acoustic problem?
Calculate f1(10), (£1(20), 31(40).

. Use Richardson extrapolation to estimate (;(N) from these numbers

in the limit N — oo.

Roughly, how large would N have to be to obtain this value by simple
mesh refinement?

. How much slower would the mesh refinement be? (Solving the finite

difference equations for S(NN) requires roughly 20N operations.)

5.7. Ray-mode analogy: Consider a isovelocity waveguide bounded above and
below by pressure-release surfaces.

a.

Draw a diagram (see Fig. 2.2) with a “ray” reflecting with phase change,
first from the bottom, and then from the surface. Construct a wave-
front perpendicular to this ray such that it intersects both the ray when
it is incident on the bottom and after it is reflected from the surface.
What is the condition for angle and frequency that this wavefront be
the result of perfect constructive interference?

. What are the normal modes and eigenvalues of a waveguide with the

above boundary conditions? (Note that Sec.5.4 discusses the rigid
bottom case).

Compare the two results.

Now assume that the bottom is a fluid and consider a ray more grazing
than critical. It will be perfectly reflected but will undergo a phase
change at the bottom given by the results in problem 1.5. What is the
condition for perfect constructive interference. Compare this result
with Eq. (5.80).

. Which is a better approximation of a shallow water environment: a

waveguide with a rigid or pressure-release bottom?

5.8. An alternative to using standard perturbation theory to compute the mode
attenuation coefficients is to use a reflection coefficient argument. For an
isovelocity waveguide, assume the magnitude of the bottom reflection coef-
ficient to be close to unity, i.e., approximately |R| =1 — e.

a.

Derive an expression for the cycle distance associated with a mode.
Using this cycle distance, express the change in the acoustic field as a
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function of the acoustic field itself, the cycle distance and the loss per
bounce. This simple differential equation gives the modal attenuation
coefficient.

b. What happens for the non-isovelocity case? Compute a skip distance
by taking advantage of the fact that the horizontal wavenumber of a
mode is constant whereas the vertical wavenumber varies with depth.

Another technique to compute bottom attenuation, which works for non-
isovelocity cases is to assume a thin isovelocity layer just above the bottom.
In this layer, normal modes are represented by up and down going waves
with a reflection coefficient which includes the bottom attenuation term
as in the problem above. The field and its derivative must be continuous
in the water column. Take the limit of zero layer thickness to obtain the
ratio of the normal mode to its derivative in terms of the reflection coeffi-
cient. Assume the modes and wavenumbers are complex and write down
the eigenvalue equation and its complex conjugate. Multiply these equa-
tions by their complex conjugate mode function, respectively. Taking the
difference of these two equations and integrating by parts will yield a re-
lation connecting the imaginary part of the wavenumber with the normal
mode and its derivative. Use this method to derive an expression for the
modal attenuation coefficient.

The technique of the last problem can be used to approximate the effects
of a low-shear-speed bottom. In this case, a shear wave is an additional
mechanism to transmit sound out of the water column; hence, it acts as a
loss mechanism.

a. Use a small parameter expansion of the fluid—elastic reflection coeffi-
cient to derive the effective modal attenuation coefficient due to the
existence of a low shear speed cg in the bottom sediment.

b. At what shear speed do you expect this approximation to break down?
Ocean currents affect sound propagation. For simplicity consider sound
from a line source propagating in a laminar flow velocity V' (z) parallel to
the ocean bottom and in the positive z-direction. Linearizing about the

background state as in Sec. 2.1 one can derive the following convected wave
equation:

P (wt + wa) = Dz,
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where u and w are the acoustic particle velocities in the x and z-directions,

respectively.

a. Show that the normal modes of this equation satisfy

[(w —lkvf“’ZL ' F w —kzwl e

Note that V(z) = 0 gives the usual modal equation.

b. Ocean currents will satisfy a no-slip condition implying that the flow
velocity vanishes at the bottom. Nevertheless, consider an ocean with
uniform flow, uniform sound speed and with a perfectly rigid bottom.
What is the dispersion relation? Plot representative curves for different

modes and flow speeds. Include the asymptotes.
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6.2.

6.3.

CHAPTER 6. PARABOLIC EQUATIONS

The standard parabolic wave equation can be derived by introducing a
narrow-angle approximation to a modal representation of the field in a
waveguide. Let the modal solution be given by

ikmr

kmr

(&

<

p(r,z) = Z VU (2)

where the eigenfunctions W,,(z) satisfy the depth-separated wave equation

d*,,(2)

e+ [ n?(2) — k2] W(2) = 0.

Here ky is the reference wavenumber and n(z) = k/kq the index of refraction.
By assuming the modal eigenvalues to cluster around ky (a narrow-angle
approximation) and to be given in the form k,, = ko(1 —€,,)"/?, where €, is
small compared to unity, show that to leading order in ¢,, the field solution
can be written in the form p(r,z) = ¢(r, 2) exp(ikor)/(kor)'/?, where the
envelope function v (r, z) satisfies the standard parabolic equation (6.8).

Derive a three-dimensional parabolic wave equation in cylindrical coordi-
nates (r, p, z) and show that it reduces to Eq. (6.8) for no azimuthal depen-
dence of the refraction index n.

The effect of earth curvature on long-range propagation in the ocean can
be easily accounted for in acoustic models via a modification of the local
sound-speed profile.

a. With r being the horizontal range from a source and R the earth radius,
show that the sea surface on a sphere is displaced by Az ~ r?/2R.

b. By introducing the transformation

! 2
W(r, z) =Y (r,2") exp [ikor (% — #)] , Z=z2—-Az,

and substituting into Eq. (6.8), derive a parabolic wave equation in
P'(r, 2').
c. Discuss the form of this equation and show that the earth curvature

effect can be accounted for by a small linear increase in sound speed
with depth.

d. Estimate the percentage change in convergence-zone ranges due to
earth curvature.
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6.4. Rayleigh’s principle for one-way wave propagation asserts that the average
kinetic energy in the wave must be equal to the average potential energy,

i.e.,
1 2 2 T
/Z(|u| + |v] ) dz-/zpc Ip|*dz .
Here u is the horizontal particle velocity, v the vertical particle velocity, and
p the pressure. This energy conservation formula can be used to determine

a “natural” reference wavenumber k, for propagation in any of the parabolic
approximations to the Helmholtz equation.

a. Derive an approximate expression for ky in terms of integrals of field
quantities satisfying the standard parabolic equation (6.26).

b. For a single mode propagating in an ideal, pressure-release waveguide
show that the “natural” wavenumber found in (a) equals the modal
eigenvalue.

c. Discuss the implications of multi-mode propagation for the choice of a
reference wavenumber, particularly in lossy environments with mode
stripping.

d. Consider next the alternative PE form given by Eq. (6.40). Derive the
approximate expression for kg and show that for single-mode propaga-

tion in an ideal, pressure-release waveguide the “natural” wavenumber
now equals the water wavenumber.

6.5. Consider upslope propagation in an isovelocity wedge as illustrated in Fig. 6.11.

a. Under the assumption of no bottom attenuation, derive an expression
for the number of modes present in such a Pekeris waveguide. Hint:
Use the information given in Sec. 2.4.5.

b. Calculate the nominal cutoff ranges (depths) for the three propagating
modes in Fig.6.11 and compare with the PE-generated field solution.
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7.1. For a two-dimensional finite difference grid of spacing h in = and y, derive
an O(h?) finite difference approximation to the derivative
0?u
0xdy

7.2. Consider the one-dimensional wave equation

Ppla,t) 1 0%p(at)

0
Oz? ¢z ot? ’
subject to the boundary conditions
p(0,1) = P(t),
Op(, )
— D;t) = 0.

z=D
You may assume the sound speed and density is constant for z € [0, D].
a. Show that the boundary condition at x = D represents the reflection
from a plane interface separating two fluid media.

b. Assume [0, D] represents an acoustic medium with ¢ = 1500 m/s and
p = 1000kg/m?, and that D represents an interface to an acoustic
halfspace with ¢; = 1600m/s and p, = 1800kg/m?. Find the corre-
sponding value of «.

c. Assume the boundary pressure P(t) is of the form

0, t<0
P(t) =1 1—cos®(4ntc/D), t < D/(4c)
0, t > D/(4c) .

Derive the analytical solution for p(z,t) for t € [0,2D/¢].

7.3. Make a finite difference code for solving the previous problem for D =
1500 m. Choose a simple explicit scheme similar to that described in Sec. 7.3.4.

a. Perform a numerical convergence analysis and compare your results to
the analytical result.

b. Show that the convergence rate is consistent with the order of the finite
difference approximations used.
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7.4. Assume you want to solve the one-dimensional Helmholtz equation (7.72),
with homogeneous boundary conditions p(0) = p(D) = 0, using FEM with
global trial functions.

a. Determine the set of trial functions which yield a diagonal coefficient
matrix for a homogeneous medium.

b. Determine the FEM solution for a point source at x = z in the case
of a homogeneous medium.

c. Discuss the relation between this solution and the normal mode solu-
tion for an ideal waveguide, Sec. 2.4.4.

7.5. Consider a fluid waveguide similar to the Pekeris waveguide, but with a
continuously varying sound speed ¢(z) in the water column.

a. Using the simple linear elements shown in Fig. 7.7, formulate the FEM
equations for the depth-separated wave equation. You may assume
the sound speed to be linear (but not constant) within each element.

b. Discuss the factors affecting the choice of element size for this problem.

c. Implement the formulation and perform a numerical convergence anal-
ysis for the isovelocity Pekeris waveguide. Compare your results to the
analytical solution [e.g., by solving Eq. (2.165)].

7.6. Assume a finite element mesh is composed of triangular elements which
are all identical, but rotated versions of the one shown in Fig.7.9. When
setting up the global finite element equations, all node displacements must
be aligned with the coordinate axes as shown in Fig. 7.9.

a. Assume the stiffness matrix k for one of the elements has been deter-
mined. Show that the stiffness matrix for another, rotated element
can be determined by an expression of the form,

k* = ATkA |

b. Derive the expressions for the coefficients of A for an element rotated
by an angle 6.

7.7. Assume you have to write a finite element code solving the Helmholtz equa-
tion in a rectangular domain using the following mesh of simple, triangular
elements with nodes in the corners:
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a. Describe the strategy you would use for setting up the local element
matrices.

b. Select a local element numbering for your elements, and determine the
global node numbering which yields the minimum bandwidth of the
global coefficient matrices.

c. Write out the topology matrix L corresponding to the numbering you
selected.
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Defining the bandwidth of a source wavelet as the total width of the main
lobe of its frequency spectrum, show that the bandwidth of the wavelet

sin 27 f.t (1 — cos 3= ft) for 0 <t <4N/f,

1

2

0 else ,
is equal to f./N.

Using Fourier synthesis you have to compute a field produced by the source
wavelet

S(t) = sin(27 f,t) — s sin(dn fet) for 0 <t <1/fe

0 else

a. Determine the frequency spectrum S(f) of this wavelet.

b. At which frequency fnax would you truncate the computation of the
Green’s functions? Justify your answer.

¢. The maximum time duration of the impulse response is Ty = 15/ f..
What is the frequency sampling required to avoid wrap-around in the
computed response?

Assume you have a code for computing the transfer function p(r, z,w) for
the reflection problem in Fig.8.2, which you want to use together with
Fourier synthesis to model the transient response on a horizontal receiver
array 100 m above the interface. The array has 11 elements at a spacing of
50m, with the first element at » = 0.

a. Which array elements will record the head wave?

b. If you use a firzed time window, starting at time ¢ = 0, determine
the minimum length 7% of the time window necessary to avoid wrap-
around of the response of any of the receivers.

c. Similarly, determine the minimum length 7;. of the time window if you
allow the starting time t.;, to be receiver-dependent (running time
window).

d. In general, the computation time for the Fourier synthesis is insignifi-
cant compared to that associated with the computation of the transfer
functions. Determine in relative terms the computational advantage
of using the running time window for this problem.
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e. Would there be any computational advantage in using a receiver-
dependent length of the window as well?

Write a computer program for solving the reflection problem described in
Problem 1 above. You may use library routines where feasible.
a. Discuss your selection of time and frequency sampling.

b. Make a plot of the stacked time series using a running time window
with tmin = 7/2500.

c. Identify the various arrivals on the plot, and discuss any possible dif-
ferences in pulse shape.

A source and a receiver are moving horizontally in a horizontally stratified
ocean with velocity vectors v, and v,, respectively.

a. Show that in the frequency domain, the field observed by the receiver
is given by the expression

1 .
(v + it 7,0) = 5 /korelkr'rOS(Qk) Gk, 20 + Ky V) |
T
where €2 is the Doppler shifted source frequency
U =w-—-k - (vs —v,) .

b. Discuss the computational advantages of using this representation to-
gether with Fourier synthesis to determine the time domain solution,
rather than using Eq. (8.58) directly.

c. Derive the modal representation for the frequency domain solution.

It is desired to send out an n-cycle CW pulse of center frequency f. in
shallow water such that the modes are temporally separated at range r.
Using group velocity arguments, determine the relationship between f., n
(taken together, bandwidth) and r for the onset of this mode separation.
Confirm this with a numerical computation.
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Let the ocean be a semi-infinite isovelocity halfspace bounded above by a
uniform distribution of monopole sources radiating with an intensity per
unit area at a unit distance. What is the depth dependence of the intensity
of the noise field? Now assume that the spreading law is cylindrical rather
than spherical. What additional physical parameter must be included to
give physically sensible results?

Define directionality of the noise field to be the noise intensity per unit
solid angle. Derive an expression for the noise directionality in the ocean
described in the above problem. How does the result change if the sources
are dipoles rather than monopoles? (Take the intensity radiation pattern
for a dipole to be proportional to cos? § where 6 is the angle measured from
the normal to the surface).

The cross-spectral density and the directionality are related by a Fourier
transform. What are the Fourier conjugate variables? Compare the monopole
and dipole results derived in the last problem with the Cron and Sherman
results discussed in Sec.9.2.5.

Consider a sonar receiver array with baffled sensors which individually have
a beam pattern W (0, ¢) = W1 () Wa(¢), where @ is the vertical angle and
¢ is the azimuthal angle. The sonar is used in a stratified ocean with a
uniform distribution of surface noise sources.

a. Derive an expression for C,(ry,ro, 21, 22), the cross-spectral density
function for the ambient noise as seen by the array.

b. Show that your result is consistent with the result of Kuperman and
Ingenito for W (6, ¢) = 1.

Develop an algorithm for generating a realization of noise time series for
a receiver array in a stratified ocean with ambient noise generated by a
homogeneous distribution of surface noise sources.
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10.1. Assume you are using a long horizontal array for passively detecting a sound
source in the ocean. The array characteristics are as follows:

10.2.

Length: 4050 m
Element spacing: 75 m
Number of elements: 55

To estimate the source bearing in deep water it is often a good approxi-
mation to perform the beamforming assuming the source and the array are
at equal depth in an infinite, homogeneous medium with the sound speed
equal to the one existing at the array depth (assume 1500 m/s).

a.

Under such conditions write a linear beamformer algorithm for esti-
mating source bearing, and use it to compute the beamformer response
to a 10-Hz point source at bearing 45° off broadside, at a range of 80 km
from the center of the array.

. Discuss the features of the beamformer response.

Compute the corresponding beamformer response at 30 Hz, and discuss
the result.

Assume you have to use the array from the previous problem in an isove-
locity (1500 m/s), shallow water environment with water depth 120 m, and
with an infinitely rigid bottom. Assume you are towing the array at 60-m
depth, and that the source is at 60-m depth as well.

a.

For a 10-Hz source at 45° bearing, and 80-km range, write an algorithm
for computing the field on the elements of the array in terms of a modal
expansion.

Use the linear beamformer developed for Problem 1 to compute the
response.

Discuss the features of the beamformer response and provide a physical
explanation for the performance.

. How do you suggest to modify the beamformer to yield a correct bear-

ing estimate?

. Implement the modification and discuss the performance.
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From problem 9.3 we learned that directionality is related to the Fourier
transform of the cross-spectral density. In this chapter, we note that plane
wave beamforming is a finite spatial Fourier transform of the acoustic field
with sensor spacing being one of the conjugate Fourier variable. Using a
vertical array, beamform on a range-independent shallow water noise field
with sufficient resolution to show that there is a “horizontal notch.” Phys-
ically, why must such a notch exist?

For an acoustic field in a waveguide, how would you take advantage of the
orthogonality of normal modes to construct a modal, rather than plane
wave beamformer? Use a vertical array.

Write down an expression in terms of discrete normal modes for the field
of a point source received on a vertical array. Take the complex conjugate
of this result and use the result to represent a distribution of point sources.
With this source distribution and the known Green’s function of this prob-
lem, propagate the resulting field outward. (With this range independent
geometry, outward is the same as “backward.”)

a. What happens at the position of the original point source?

b. How does the vertical array geometry affect the results?

c. This method is called backpropagation. Is there a difference between
this method and Bartlett matched field processing?



