
Computational Ocean Acoustics

�

Problems and Exercises

F� B� Jensen

W� A� Kuperman

M� B� Porter

H� Schmidt

February ��� ����



Preface

Computational Ocean Acoustics is intended both as a tool for the practicing re�
searcher and as a textbook for graduate and senior undergraduate students spe�
cializing in underwater acoustics� However� several of our colleagues have pointed
out that as a textbook a key component is missing � a problem set� This issue
was discussed among the authors at an early stage� but it was decided to publish
the book without a problem set� Instead we decided to make a separate booklet
with problems and exercises that would be made available at no or very limited
cost to instructors of courses in ocean acoustics�

The most important purpose of the problem set is to aid the student in un�
derstanding the fundamental concepts described in the textbook� As a new book�
Computational Ocean Acoustics had not yet been used for teaching purposes at
the time it went into print� and a consistent and complete problem set suitable
for being �frozen� into the book did not exist� A good problem set develops
over time� adjusting to the needs of students and further clarifying material not
covered in detail in the body of the text�

At this time� Computational Ocean Acoustics has been used as a textbook in
several courses given by the authors� As a result� a rather complete� although
not perfect� problem set has been developed� suitable for publication as the �rst
edition of Computational Ocean Acoustics � Problems and Exercises� By pub�
lishing the problem set as a separate booklet� we allow for future modi�cations
re	ecting the experience of the authors and others using the book for teaching�

The present problem set mainly contains problems and exercises focusing on
the fundamental mathematical and physical concepts of ocean acoustics� Some
problems concern the basic numerical aspects associated with the various numer�
ical techniques� Even though several problems require computer coding� there
are no problems directly requiring the students to build full scale propagation
models� The development of such working codes requires the integration of all
the theoretical and numerical concepts covered in the book�

Therefore� it is highly recommended that the traditional homework problems�
such as the ones in this volume� are supplemented with �hands on� projects






�

involving direct model development� The student can then learn a great deal
by addressing fundamental problems of a physical nature� similar to the ones
covered by the numerical examples in the book� The recipes provided at the end
of Chapters ��
 should provide a suitable guide for developing such models�

We would like to stress once again that the present problem set is not a
�nal product� but is expected to develop signi�cantly in the future� A crucial
component of such an improvement process is the feedback from instructors and
students using it� Therefore� we would highly appreciate receiving any comments
and suggestions for improvement� preferably by e�mail to coa�keel�mit�edu�

August 
��� Finn B� Jensen

William A� Kuperman

Michael B� Porter

Henrik Schmidt
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� CHAPTER �� FUNDAMENTALS OF OCEAN ACOUSTICS


�
� In a deep ocean with constant salinity ���� the water temperature distri�
bution is assumed to be exponential in depth�

T � T� exp��z����� �

where T and T� are in degrees Celsius� and z is in meters�

a� What is the minimum surface water temperature for which a deep
sound channel �SOFAR� will exist�

b� Determine the depth of the channel axis and the associated sound
speed as function of the surface temperature�


��� Consider a ���� m deep ocean with constant salinity ����� The water tem�
perature distribution is assumed to be exponential in depth�

T � 
� exp��z����� �

where T is in degrees Celsius� and z is in meters�

a� At approximately which latitude would you expect to �nd such an
environment�

b� For a source at 
�� m depth� discuss the existence of the various ray
paths �RR� RSR� RBR and SRBR� in this environment�

c� What is the surface temperature for which no pure RSR and RBR
paths exist�


��� In air acoustics� the conventional reference for decibels is dB re ������
dyn�cm� as opposed to dB re 
�Pa used in ocean acoustics�

a� A human whisper and shout have acoustics powers of about 
���� and

��� watts� respectively� Express their dB levels using both conven�
tions� What would be the dB levels if the whole world shouted at once
�in the same place�� Compare that to a jet or rocket in air or various
types of ships in water�

b� If a rock band played at the pain threshold� of about 
�� dB� what is
its power output in watts� What is its corresponding sound pressure
level in water�

c� For a 
�� dB source in water �measured one meter from the source��
what would its dB level be at ranges 
� 
� and 
�� km assuming spher�
ical spreading� cylindrical spreading� The loudest whales have source
levels of about 
�� dB� Compare this to a rock band�



�


��� An omnidirectional source of frequency f is placed at a distance zs from an
in�nitely rigid wall bounding a 	uid halfspace with constant sound speed
c�

a� Describe the radiation pattern in the limit of zs � ��

b� Derive the expression for the number of Lloyd�mirror beams�

c� Derive the asymptotic �eld decay parallel to the wall� and compare to
the corresponding pressure�release surface result�


��� Estimate the convergence zone �CZ� separation for an Arctic environment
with the sound speed pro�le given below� Assume linear sound speed vari�
ation between the pro�le depths�

Depth �m� Sound speed �m�s�

� 
�����

��� 
�
���

���� 
�
���


�
� Write a program for computing and displaying the magnitude and phase of
the re	ection and transmission coe�cients for the interface separating two
	uid halfspaces�

a� Use your code to illustrate the concept of a critical angle by properly
choosing the sound speeds and densities�

b� For grazing angles of incidence smaller and larger than critical� discuss
the depth�dependence �direction perpendicular to the interface� of the
re	ected and transmitted �elds�

c� Discuss the behavior of the phase of the re	ection coe�cient for inci�
dent grazing angles less than and larger than critical�

d� Create an example illustrating the concept of an intromission angle�


��� Derive the expression for the re	ection coe�cient for a 	uid layer overlying
an in�nitely rigid halfspace� Give a physical explanation for the frequency
and grazing angle dependence of the magnitude and phase�
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� CHAPTER �� WAVE PROPAGATION THEORY

��
� Sound propagating in a moving medium is governed by a so�called convected

wave equation� Consider the case where the background 	ow velocity is
uniform in the x�direction with velocity V �

a� Following the procedure in Sec� ��
� derive the convected wave equation
for sound in a one�dimensional environment with 	ow velocity V �

�

� V �

c�

�
pxx � �V

c�
pxt � 


c�
ptt � � �

Note that setting V � � gives the usual wave equation�

b� Show that this equation can also be derived from the standard wave
equation by changing to a moving coordinate system ��� �� � �x �
V t� t��

c� What is the form of this equation in three dimensions�

���� Assume an acoustic source is designed as a small� spherical balloon of radius
a� within which the pressure is oscillating with frequency f � with maximum
pressure amplitude P �

a� Derive the expression for the acoustic pressure vs range�

b� Determine the expression for P which directly yields transmission loss�
i�e�� unit pressure at r � 
 m�

���� Derive Green�s theorem for a 	uid medium with variable density� where the
wave equation is of the form given in Eq� ���
���

���� Make a computer code for computing the magnitude and phase of the plane�
wave re	ection coe�cient at an interface separating two 	uid halfspaces�

a� As a test of your code reproduce the results of Figs� ��
� and ��

�

b� Discuss in physical terms the grazing angle dependence of the results�

c� Add a second 	uid layer in the bottom and then add frequency as
an independent variable to your computer program� Contour your
re	ection results as a function of angle and frequency� Discuss the
resulting structure of the contoured output�

���� For an ideal waveguide bounded above by a pressure�release surface and
below by an in�nitely rigid wall� derive a ray expansion for the acoustic
�eld�
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��
� Write a code evaluating the ray expansion in Eq� ���
�
� for the pressure
�eld in an ideal waveguide with pressure�release boundaries�

a� For a 
�� m deep waveguide� compute the transmission loss for both
source and receiver at depth �
 m� at every 
�� m range out to � km�
Compare your results to Fig� �����b��

b� Perform a convergence analysis for a few selected ranges and discuss
the range dependence�

���� Show that Eq� ���
��� represents the sum of the residues of the wavenumber
kernel in Eq� ���
����

���� Consider an isovelocity waveguide of thickness D� bounded above and below
by in�nitely rigid walls�

a� Derive the characteristic equation for the horizontal wavenumber of
the normal modes�

b� Sketch the vertical pressure distribution of the �rst few normal modes�

c� Derive the dispersion relation for the normal modes� Discuss the dif�
ferences compared to the waveguide with pressure release boundaries�

���� Consider an environment similar to the Pekeris waveguide in Fig� ����� but
with the bottom speed being changed to c� � 
��� m�s�

a� Make a sketch of the complex wavenumber plane for this problem
�similar to Fig� ���
�� indicating the integration contour and the EJP
branch cuts�

b� Discuss the existence of normal modes in this case� If they exist� show
their approximate positions�

c� Make a sketch of the branch cuts corresponding to the vertical wave�
number being purely imaginary� with the corresponding closed inte�
gration contour�

��
�� Consider a Pekeris waveguide with the speed of sound c� � 
��� m�s and
density �� � 
��� kg�m� in the water column� and with c� � 
��� m�s and
�� � ���� kg�m� in the bottom� The water depth is 
�� m� A line source
at depth zs is generating a plane acoustic �eld in the waveguide�

a� De�ning the slowness of the mth normal mode as

pm �
kxm
	

�




� CHAPTER �� WAVE PROPAGATION THEORY

where kxm is the horizontal wavenumber of the mode� state the upper
and lower limit of pm for modes propagating in the positive x�direction�

b� For a source frequency exciting � modes� make a sketch of the mode
functions for pressure and for the particle velocity potential� Discuss
the di�erences�

c� Derive the expression for the vertical wavelength of the modes�

d� Using the results from questions �a� and �c�� state the lower limit for
the vertical wavelength of a mode at angular frequency 	�

e� Use the result from �d� to determine how many modes you have at
frequency f � �� Hz�

��

� In Eq� ���
���� am�krm� represents a waveguide�speci�c modal excitation
function�

a� Derive the expression for am�krm� for the Pekeris waveguide�

b� Show that the modal excitation function has its maximum at the Airy
phase frequency� i�e�� the frequency where the mode has its minimum
group velocity�

c� Compute and plot vs frequency the magnitude of the excitation func�
tion for the �rst � modes in the Pekeris waveguide in Fig� ����� Discuss
the results�

��
�� A storm has created a 
 m thick surface layer with a uniform distribution
of small air bubbles� The fraction of the volume occupied by the bubbles is

����

a� What assumption�s� do you have to make to treat the bubble layer as
a homogeneous acoustic medium�

b� Under these assumptions� �nd the numerical values of the sound speed
c and density � of the bubble layer� The sound speed of water and air
are cw � 
��� m�s and ca � ��� m�s� respectively� and the correspond�
ing densities are �w � 
��� kg�m� and �a � 
�� kg�m��

c� Show that the characteristic equation for normal modes in the bubble
layer is

cot�kzh� � �
w
kz

�

�w
�







where h is the thickness of the bubble layer� and


w �

s
k�r �

�
	

cw

��
�

kz �

s�
	

c

��
� k�r �

d� Discuss the physical signi�cance of 
w and kz�

e� What is the value of the cuto� frequency below which no normal modes
can exist in the bubble layer�

��
�� In seismics� volume attenuation is often expressed in terms of the quality

factor� de�ned as the ratio between the real and the imaginary part of the
bulk modulus� i�e�� Q � K ��K �� for K � K � � iK ��� For small attenuations�
�Q� 
�� derive the relation between Q and the loss tangent �� and the loss
factor 
 in dB per wavelength�

��
�� Consider the re	ection of plane waves from a bottom with the sound speed
pro�le

c�z� �

���
��

�az � b���� � � z � 
�� m �



�� m�s� z � 
�� m �

The sound speed is continuous at the seabed �z � �� and at z � 
�� m� and
the speed of sound in the water column �z � �� is 
��� m�s�

a� Determine the constants a and b�

b� What is the critical grazing angle for waves incident from the water
column�

c� Use the WKB approximation to derive expressions for the magnitude
and phase of the re	ection coe�cient� Derive the result for grazing
angles smaller and larger than critical� Hint�

Z q

 � 
x�dx �




�

	
x
q

 � 
x� �


p



log
�
x
q

 �

q

 � 
x�

�

�

d� For a frequency of 
�� Hz� compute the phase of the re	ection coe��
cient at grazing angles of incidence ���� ���� ���� 
��� ���� ���� and make
a sketch of the result�
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� CHAPTER �� RAY METHODS

��
� Assume a deep ocean is represented by an in�nite halfspace with a linear
sound speed pro�le

c�z� � az � b� a � ��

A high frequency source is radiating from a point �r� z� � ��� h�� Consider
a ray emitted from the source at grazing angle ���

a� Derive a parameter representation for the ray path� before the �rst
surface bounce�

r � r��� ��� �

z � z��� ��� �

where � is the local grazing angle for the ray�

b� Show that the ray path describes a circular arc and that the center of
the circle falls at a depth z � zc� where zc is independent of the launch
angle ���

c� Derive the expression for the range r������ where the ray launched at
angle �� bounces o� the sea surface�

d� Derive the parameter representation for the ray in the second ray cycle�
i�e� after the �rst surface bounce�

e� Derive the expression for dr�d�� in the second ray cycle� Discuss the
physical signi�cance of the points where dr�d�� � ��

���� An acoustic waveguide has the sound speed pro�le

c�z� � c� cosh bz�

a� Show that for a source at z � �� all rays will refocus at ranges r � n�r
where n is an integer and �r is independent of the launch angle� State
the expression for �r�

b� Discuss the physical signi�cance of this phenomenon�

c� Write a simple ray code to demonstrate the refocusing�

d� Use your code to duplicate the result in Fig� ��
��

���� Consider a source at depth zs � ���� m� range � and a receiver at depth
zr � ���� m and range � km� Suppose that the sound speed depends only
on depth� and that the values at the source and receiver depths are 
��� m�s
and 
��� m�s� respectively�
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a� Use an n��linear approximation to estimate the travel time between
source and receiver�

b� If the receiver is moved farther out in range there comes a point where
the eigenray is turned before reaching the receiver� At what range does
this �rst happen�

c� Is there a range where no real ray reaches the receiver� �Assume the
water depth is in�nite��

���� Suppose we have a ��� Hz source launching a Gaussian beam in an isove�
locity ocean with sound speed 
��� m�s�

a� If the beamwidth and curvature at the source are 
�� m and zero re�
spectively� what will the approximate beamwidth and curvature be

� km away�

b� Suppose we want the beam to be as narrow as possible at 
� km� What
initial beam width and curvature will do this�

c� Suppose the initial beam curvature has to be zero� What choice of the
initial beam width will now give us the narrowest possible beam at

� km�

���� A certain SSP has a sound speed of 
��� m�s at the surface� 
��� m�s at the
source depth� 
��� m�s at the ocean bottom and 
��� m�s just below the
bottom in the sediment� We will trace a fan of rays over angles  �����!�
How should we pick � to include�

a� Only RR paths�

b� Only RR and RSR paths�

c� Only RR� RSR� and RSRBR paths striking the bottom with a grazing
angle below the critical angle�
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� CHAPTER �� WAVENUMBER INTEGRATION TECHNIQUES

��
� Consider the re	ection of a plane wave from an isovelocity 	uid layer of
thickness H overlying an isovelocity 	uid halfspace for which c� � c� � c�
and �� � �� � ���

a� What is the critical grazing angle for waves incident from medium 
�

b� If k�H � 
� show that to leading order the plane�wave re	ection coef�
�cient reduces to the plane�wave re	ection coe�cient without the layer
present�

Now� suppose that �� � �� � �� and c� � c� � c�� and that the plane wave
is incident at grazing angle �� � arccos �c��c���

c� What is the angle of the transmitted wave in the lower halfspace� and
what kind of wave is it �radiating or evanescent��

d� What is the form of the solution in the layer�

e� Derive the expression for the re	ection coe�cient in the upper half�
space and the transmission coe�cient in the lower halfspace�

f� By your intuition� what happens when k�H � �� Verify your an�
swer by examining the leading order behavior of the re	ection and
transmission coe�cients�

���� Make a direct numerical implementation of the expression in Eq� ���
��� for
the wavenumber representation of the �eld in an ideal waveguide� Allow
the horizontal wavenumber to be complex�

a� For sound speed 
��� m�s and depth 
�� m� compute the wavenumber
kernel at �� Hz for source and receiver both at depth �
 m� Sample
the kernel at ��� points equidistantly placed over the interval kr �
 kw�
��� �kw!� where kw is the water wavenumber� Let the imaginary
value of the horizontal wavenumber be �kw�
�� to avoid the modal
singularities� NOTE� Your code will crash"

b� Determine the wavenumber interval for which your code produces a
result which is qualitatively consistent with Fig� �����a��

c� Describe the nature of the numerical problem� and rewrite Eq� ���
���
into a form which remedies the problem� Implement it and compare
your result to Fig� �����a� �qualitatively��

���� In matched �eld processing for source localization the sensitivity to envi�
ronmental mismatch is a critical issue due to the fact that the environment
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is never known perfectly in a deterministic sense� The sensitivity to a sound
speed perturbation in a strati�ed or range�independent ocean depends on
the change in the depth�dependent Green#s function associated with that
perturbation� Let the wavenumber pro�le k�z� � 	�c�z� for such an ocean
be given by a set of parameters A �  A�� A�� � � � AN !� Show that the par�
tial derivatives of the depth�dependent Green#s function with respect to the
parameter Ai are given by the depth integral

�G��kr� z� zs�

�Ai
�
Z

�

�

��k��z��

�Ai
G��kr� zs� z

��G�

��kr� z� z
�� dz� �

���� The homogeneous displacement equation of motion in a homogeneous and
isotropic elastic medium has the vector form�

�� � ��r�r � u� � �r�
u � �$u �

a� Show that this equation is satis�ed by displacement �elds of the form�

u � r� �r	% �

where � is a scalar potential satisfying the equation

r��� 


c�P
$� � � �

and % is a vector potential satisfying the equation

r�%� 


c�S
$% � � �

and where % satis�es the gauge condition r �% � ��

b� Express cP and cS in terms of the Lam&e constants � and �� and the
density ��

c� What is the physical signi�cance of the gauge condition�

d� Explain the physical signi�cance of � and %�

���� Consider a homogeneous� isotropic and elastic halfspace with compressional
speed cP � shear speed cS and density ��

a� For a plane compressional �P� wave incident on the free surface� derive
the expressions for the re	ected compression and shear potentials�
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b� Discuss the existence of total conversion �no re	ected P�wave� and no

conversion �no re	ected shear wave��

��
� Consider a homogeneous� isotropic and elastic halfspace with compressional
speed cP � shear speed cS and density ��

a� For a plane shear �SV� wave incident on the free surface� derive the
expressions for the re	ected compression and shear potentials�

b� Discuss the existence of total conversion �no re	ected SV�wave� and
no conversion �no re	ected compressional wave��

���� Consider the problem of a water halfspace with sound speed c� and density
�� overlying an elastic halfspace with compressional speed cP � shear speed
cS� and density ���

a� Show that the depth�dependent Green#s function for a point source in
the water� at height H above the interface� has a denominator of the
form�

d�kr� � ��k�r � k�S�� � �k�rkz���z�� � k�S
��kz��
��kz��

�

where kS is the shear wavenumber in the solid halfspace� kr is the
horizontal wavenumber and kz�� and kz�� are the vertical wavenumbers
for compressional waves in the two media� and �z�� is the vertical
wavenumber for shear waves�

b� Show that d�k� always has a real root kSCH�

kSCH � max k�� kS! �

where k� is the wavenumber for acoustic waves in the water� The wave
associated with this pole is called the Scholte wave�

c� Describe the frequency dispersion characteristics of the Scholte wave�

d� Make a sketch of the particle displacement associated with the Scholte
wave on the surface of the elastic medium�

e� Assume the source is placed just above the bottom H 
 �� and emits
a broadband signal� The �eld is measured by means of a bottom
mounted vertical array far away from the source� where the �eld is
dominated by the Scholte wave� If the frequency spectrum measured
at the receiver on the interface is F �	�� what is the frequency spectrum
at height h above the interface�
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���� The denominator of the depth�dependent Green#s function for the 	uid�
elastic halfspace problem described in the previous problem also has a sym�
metric pair of complex roots which become important for the propagation
characteristics in certain cases�

a� Employ a numerical root �nding scheme �e�g�� a complex Newton�
Raphson scheme� to determine the complex root with positive real
value� �Warning� take care how you choose the branch cuts for the

square root��

b� Assuming the sound speed in water to be 
��� m�s and a water density
of 
��� kg�m�� compressional speed ���� m�s and density ���� kg�m�

in the solid� map the position of the root as function of shear speed in
the range 
�������� m�s�

c� Discuss the physical signi�cance of the real and imaginary part of the
root�

���� An in�nite elastic plate of thickness �h is made of an elastic material with
wave speeds cP and cS for compressional and shear waves� respectively� and
density �S� The plate is assumed to have free surfaces�

a� Show that the characteristic equation for the modes in the plate has
the form

tan��zh�

tan�kzh�
� �

	
�k�rkz�z

��k�r � k�S��


��
�

where the ��� corresponds to symmetric modes and the ��� corre�
sponds to antisymmetric modes� kS is the shear wavenumber� and
kz and �z are the vertical wavenumbers for compression and shear�
respectively� kr is the horizontal wavenumber�

b� Show that in the low frequency limit�

' �
�h	

�cS
� � �

the characteristic equations reduce to�

sinh �� � �� � � �

where � is a dimensionless horizontal wavenumber�

� �
�hkr
�

�
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c� Solve the frequency equation numerically and graphically represent the
	 � kr relations for the �rst �fundamental� symmetric and antisym�
metric modes for the elastic plate�

d� Discuss the cuto� properties and the static limits of the phase and
group velocities for the two fundamental modes�

��
�� Equation ���

�� represents a DGM formulation for the Pekeris waveguide�

a� Is the direct numerical solution of Eq� ���

�� by Gaussian elimination
numerically stable for all values of the horizontal wavenumber�

b� Modify Eq� ���

�� to make the solution unconditionally stable�

��

� Consider an ocean waveguide similar the the Pekeris waveguide� but with
an n��linear sound speed pro�le c��z� � �az�b��� in the water column� Set
up the corresponding global coe�cient matrix in numerically stable forms
for downward�refracting �a � �� and upward�refracting �a � �� pro�les�

��
�� Assume you have to make a simple wavenumber integration code for prop�
agation in Pekeris waveguides�

a� Make a subroutine which computes the wavenumber kernel� or depth�
dependent Green#s function� along a contour below the positive real
wavenumber axis� Make sure your code is numerically stable for large
wavenumbers� kr � �k�� k���

b� Check your code by qualitatively reproducing the kernels shown in
Fig� ����a��

You decide to use FFP integration with a contour o�set equal to the wave�
number sampling interval �kr�

c� What is the associated minimum attenuation of the wrap�around�

d� Using this o�set� perform a numerical convergence analysis for the in�
tegration by computing the transmission loss at �
 m depth and 
� km
range for the Pekeris waveguide in Fig� ����� assuming an attenuation
of ��� dB�� in the bottom� Note� You don#t have to use FFT integra�
tion for this� use simple trapezoidal rule integration�

e� Repeat the convergence analysis without contour o�set� and discuss
the di�erence in convergence rate�



��

��
�� Develop an adaptive Filon integration scheme for general wavenumber in�
tegrals based on the FFP approximation �large argument Hankel function
approximation��

a� Implement and test your algorithm using the Green#s function subrou�
tine developed for the previous problem�

b� Using the number of Green#s function calculations as a performance
measure� compare this approach to the simple direct trapezoidal rule
integration in terms of computational e�ciency for cases where the
�eld is to be determined at a single range only�

c� Discuss qualitatively the performance of the adaptive scheme relative
to use of an FFT to compute transmission loss at a large number of
ranges�
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�
 CHAPTER �� NORMAL MODES

��
� Write a simple code to calculate the modes in a channel with a pressure�
release surface and a rigid bottom� Compare your model results to those
shown for the Munk pro�le in Fig� ��
��

���� Consider a ��� m deep Pekeris waveguide with ocean sound speed of 
��� m�s
and sediment sound speed of 
��� m�s�

a� For a source frequency of ��� Hz� how many trapped modes are present�
What are the horizontal wavenumbers for the �rst two modes�

b� What is the cut�o� frequency�

c� What will the modes look like� �Sketch��

���� For a certain frequency there is a mode for the Munk pro�le in Fig� ��� with
phase speed 
��� m�s� Does it have an upper and lower turning point� If
so� at what depth�s��

���� Suppose we wish to write a normal mode code using Numerov#s method�

a� Write down a di�erence scheme to handle the ocean�sediment inter�
face�

b� What is the form of the �nal matrix of di�erence equations� �Assume
a pressure�release surface and perfectly rigid bottom��

c� Discuss how you might solve the resulting algebraic eigenvalue prob�
lem�

���� How will the modes change across the eddy whose SSP is shown in Fig� ��
�
�Sketch��

��
� Consider the following eigenproblem�

u�� � ��u � � �

u��� � u���� � � �

u�
� � u��
� � � �

The exact eigenvalues are �k � k�� If we solve this problem using �nite
di�erences with the standard formula� we will get approximations to these
eigenvalues 
k�N� � �N sin k�

�N
where N is the number of points in the mesh

and k � 
� � � � � N � 
�



��

a� How can we use our formula for 
k�N� to obtain a similar result for
the approximate eigenvalues of an isovelocity acoustic problem�

b� Calculate 
��
��� 
������ 
������

c� Use Richardson extrapolation to estimate 
��N� from these numbers
in the limit N ���

d� Roughly� how large would N have to be to obtain this value by simple
mesh re�nement�

e� How much slower would the mesh re�nement be� �Solving the �nite
di�erence equations for 
�N� requires roughly ��N operations��

���� Ray�mode analogy� Consider a isovelocity waveguide bounded above and
below by pressure�release surfaces�

a� Draw a diagram �see Fig� ���� with a �ray� re	ecting with phase change�
�rst from the bottom� and then from the surface� Construct a wave�
front perpendicular to this ray such that it intersects both the ray when
it is incident on the bottom and after it is re	ected from the surface�
What is the condition for angle and frequency that this wavefront be
the result of perfect constructive interference�

b� What are the normal modes and eigenvalues of a waveguide with the
above boundary conditions� �Note that Sec� ��� discusses the rigid
bottom case��

c� Compare the two results�

d� Now assume that the bottom is a 	uid and consider a ray more grazing
than critical� It will be perfectly re	ected but will undergo a phase
change at the bottom given by the results in problem 
��� What is the
condition for perfect constructive interference� Compare this result
with Eq� �������

e� Which is a better approximation of a shallow water environment� a
waveguide with a rigid or pressure�release bottom�

���� An alternative to using standard perturbation theory to compute the mode
attenuation coe�cients is to use a re	ection coe�cient argument� For an
isovelocity waveguide� assume the magnitude of the bottom re	ection coef�
�cient to be close to unity� i�e�� approximately jRj � 
� ��

a� Derive an expression for the cycle distance associated with a mode�
Using this cycle distance� express the change in the acoustic �eld as a
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function of the acoustic �eld itself� the cycle distance and the loss per
bounce� This simple di�erential equation gives the modal attenuation
coe�cient�

b� What happens for the non�isovelocity case� Compute a skip distance
by taking advantage of the fact that the horizontal wavenumber of a
mode is constant whereas the vertical wavenumber varies with depth�

���� Another technique to compute bottom attenuation� which works for non�
isovelocity cases is to assume a thin isovelocity layer just above the bottom�
In this layer� normal modes are represented by up and down going waves
with a re	ection coe�cient which includes the bottom attenuation term
as in the problem above� The �eld and its derivative must be continuous
in the water column� Take the limit of zero layer thickness to obtain the
ratio of the normal mode to its derivative in terms of the re	ection coe��
cient� Assume the modes and wavenumbers are complex and write down
the eigenvalue equation and its complex conjugate� Multiply these equa�
tions by their complex conjugate mode function� respectively� Taking the
di�erence of these two equations and integrating by parts will yield a re�
lation connecting the imaginary part of the wavenumber with the normal
mode and its derivative� Use this method to derive an expression for the
modal attenuation coe�cient�

��
�� The technique of the last problem can be used to approximate the e�ects
of a low�shear�speed bottom� In this case� a shear wave is an additional
mechanism to transmit sound out of the water column� hence� it acts as a
loss mechanism�

a� Use a small parameter expansion of the 	uid�elastic re	ection coe��
cient to derive the e�ective modal attenuation coe�cient due to the
existence of a low shear speed cS in the bottom sediment�

b� At what shear speed do you expect this approximation to break down�

��

� Ocean currents a�ect sound propagation� For simplicity consider sound
from a line source propagating in a laminar 	ow velocity V �z� parallel to
the ocean bottom and in the positive x�direction� Linearizing about the
background state as in Sec� ��
 one can derive the following convected wave
equation�

� �ut � V ux � wVz� � �px �
� �wt � V wx� � �pz �



��

pt � V px � c�� �ux � wz� � � �

where u and w are the acoustic particle velocities in the x and z�directions�
respectively�

a� Show that the normal modes of this equation satisfy

	



�	 � kV ��
�z



z

�

	



c�
� k�

�	 � kV ��



� � � �

Note that V �z� � � gives the usual modal equation�

b� Ocean currents will satisfy a no�slip condition implying that the 	ow
velocity vanishes at the bottom� Nevertheless� consider an ocean with
uniform 	ow� uniform sound speed and with a perfectly rigid bottom�
What is the dispersion relation� Plot representative curves for di�erent
modes and 	ow speeds� Include the asymptotes�
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�
� The standard parabolic wave equation can be derived by introducing a
narrow�angle approximation to a modal representation of the �eld in a
waveguide� Let the modal solution be given by

p�r� z� �
X
m

am%m�z�
eikmrp
kmr

�

where the eigenfunctions %m�z� satisfy the depth�separated wave equation

d�%m�z�

dz�
�
h
k�
�
n��z�� k�m

i
%m�z� � � �

Here k� is the reference wavenumber and n�z� � k�k� the index of refraction�
By assuming the modal eigenvalues to cluster around k� �a narrow�angle
approximation� and to be given in the form km � k��
� �m����� where �m is
small compared to unity� show that to leading order in �m the �eld solution
can be written in the form p�r� z� � ��r� z� exp�ik�r���k�r�

���� where the
envelope function ��r� z� satis�es the standard parabolic equation �
����


��� Derive a three�dimensional parabolic wave equation in cylindrical coordi�
nates �r� �� z� and show that it reduces to Eq� �
��� for no azimuthal depen�
dence of the refraction index n�


��� The e�ect of earth curvature on long�range propagation in the ocean can
be easily accounted for in acoustic models via a modi�cation of the local
sound�speed pro�le�

a� With r being the horizontal range from a source and R the earth radius�
show that the sea surface on a sphere is displaced by �z 
 r���R�

b� By introducing the transformation

��r� z� � ���r� z�� exp

	
ik�r

�
z�

R
� r�


R�

�

� z� � z ��z �

and substituting into Eq� �
���� derive a parabolic wave equation in
���r� z���

c� Discuss the form of this equation and show that the earth curvature
e�ect can be accounted for by a small linear increase in sound speed
with depth�

d� Estimate the percentage change in convergence�zone ranges due to
earth curvature�



��


��� Rayleigh#s principle for one�way wave propagation asserts that the average
kinetic energy in the wave must be equal to the average potential energy�
i�e�� Z 


�

�
juj� � jvj�

�
dz �

Z 


�
�c��jpj� dz �

Here u is the horizontal particle velocity� v the vertical particle velocity� and
p the pressure� This energy conservation formula can be used to determine
a �natural� reference wavenumber k� for propagation in any of the parabolic
approximations to the Helmholtz equation�

a� Derive an approximate expression for k� in terms of integrals of �eld
quantities satisfying the standard parabolic equation �
��
��

b� For a single mode propagating in an ideal� pressure�release waveguide
show that the �natural� wavenumber found in �a� equals the modal
eigenvalue�

c� Discuss the implications of multi�mode propagation for the choice of a
reference wavenumber� particularly in lossy environments with mode
stripping�

d� Consider next the alternative PE form given by Eq� �
����� Derive the
approximate expression for k� and show that for single�mode propaga�
tion in an ideal� pressure�release waveguide the �natural� wavenumber
now equals the water wavenumber�


��� Consider upslope propagation in an isovelocity wedge as illustrated in Fig� 
�

�

a� Under the assumption of no bottom attenuation� derive an expression
for the number of modes present in such a Pekeris waveguide� Hint�

Use the information given in Sec� ������

b� Calculate the nominal cuto� ranges �depths� for the three propagating
modes in Fig� 
�

 and compare with the PE�generated �eld solution�
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��
� For a two�dimensional �nite di�erence grid of spacing h in x and y� derive
an O�h�� �nite di�erence approximation to the derivative

��u

�x�y
�

���� Consider the one�dimensional wave equation

��p�x� t�

�x�
� 


c�
��p�x� t�

�t�
� � �

subject to the boundary conditions

p��� t� � P �t� �

�p�x� t�

�x







x�D

� 
p�D� t� � � �

You may assume the sound speed and density is constant for x �  �� D!�

a� Show that the boundary condition at x � D represents the re	ection
from a plane interface separating two 	uid media�

b� Assume  �� D! represents an acoustic medium with c � 
��� m�s and
� � 
��� kg�m�� and that D represents an interface to an acoustic
halfspace with c� � 

�� m�s and �� � 
��� kg�m�� Find the corre�
sponding value of 
�

c� Assume the boundary pressure P �t� is of the form

P �t� �

������
�����

�� t � �


� cos����tc�D�� t � D���c�

�� t � D���c� �

Derive the analytical solution for p�x� t� for t �  �� �D�c!�

���� Make a �nite di�erence code for solving the previous problem for D �

��� m� Choose a simple explicit scheme similar to that described in Sec� ������

a� Perform a numerical convergence analysis and compare your results to
the analytical result�

b� Show that the convergence rate is consistent with the order of the �nite
di�erence approximations used�



��

���� Assume you want to solve the one�dimensional Helmholtz equation �������
with homogeneous boundary conditions p��� � p�D� � �� using FEM with
global trial functions�

a� Determine the set of trial functions which yield a diagonal coe�cient
matrix for a homogeneous medium�

b� Determine the FEM solution for a point source at x � xs in the case
of a homogeneous medium�

c� Discuss the relation between this solution and the normal mode solu�
tion for an ideal waveguide� Sec� ������

���� Consider a 	uid waveguide similar to the Pekeris waveguide� but with a
continuously varying sound speed c�z� in the water column�

a� Using the simple linear elements shown in Fig� ���� formulate the FEM
equations for the depth�separated wave equation� You may assume
the sound speed to be linear �but not constant� within each element�

b� Discuss the factors a�ecting the choice of element size for this problem�

c� Implement the formulation and perform a numerical convergence anal�
ysis for the isovelocity Pekeris waveguide� Compare your results to the
analytical solution  e�g�� by solving Eq� ���

��!�

��
� Assume a �nite element mesh is composed of triangular elements which
are all identical� but rotated versions of the one shown in Fig� ���� When
setting up the global �nite element equations� all node displacements must
be aligned with the coordinate axes as shown in Fig� ����

a� Assume the sti�ness matrix k for one of the elements has been deter�
mined� Show that the sti�ness matrix for another� rotated element
can be determined by an expression of the form�

k
� � A

T
kA �

b� Derive the expressions for the coe�cients of A for an element rotated
by an angle ��

���� Assume you have to write a �nite element code solving the Helmholtz equa�
tion in a rectangular domain using the following mesh of simple� triangular
elements with nodes in the corners�
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a� Describe the strategy you would use for setting up the local element
matrices�

b� Select a local element numbering for your elements� and determine the
global node numbering which yields the minimum bandwidth of the
global coe�cient matrices�

c� Write out the topology matrix L corresponding to the numbering you
selected�
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��
� De�ning the bandwidth of a source wavelet as the total width of the main
lobe of its frequency spectrum� show that the bandwidth of the wavelet

S�t� �

���
��

�

�
sin ��fct �
� cos �

�N
fct� for � � t � �N�fc

� else �

is equal to fc�N �

���� Using Fourier synthesis you have to compute a �eld produced by the source
wavelet

S�t� �

���
��

sin���fct�� �

�
sin���fct� for � � t � 
�fc

� else �

a� Determine the frequency spectrum S�f� of this wavelet�

b� At which frequency fmax would you truncate the computation of the
Green#s functions� Justify your answer�

c� The maximum time duration of the impulse response is TI � 
��fc�
What is the frequency sampling required to avoid wrap�around in the
computed response�

���� Assume you have a code for computing the transfer function p�r� z� 	� for
the re	ection problem in Fig� ���� which you want to use together with
Fourier synthesis to model the transient response on a horizontal receiver
array 
�� m above the interface� The array has 

 elements at a spacing of
�� m� with the �rst element at r � ��

a� Which array elements will record the head wave�

b� If you use a �xed time window� starting at time t � �� determine
the minimum length Tf of the time window necessary to avoid wrap�
around of the response of any of the receivers�

c� Similarly� determine the minimum length Tr of the time window if you
allow the starting time tmin to be receiver�dependent �running time
window��

d� In general� the computation time for the Fourier synthesis is insigni��
cant compared to that associated with the computation of the transfer
functions� Determine in relative terms the computational advantage
of using the running time window for this problem�



�


e� Would there be any computational advantage in using a receiver�
dependent length of the window as well�

���� Write a computer program for solving the re	ection problem described in
Problem 
 above� You may use library routines where feasible�

a� Discuss your selection of time and frequency sampling�

b� Make a plot of the stacked time series using a running time window
with tmin � r������

c� Identify the various arrivals on the plot� and discuss any possible dif�
ferences in pulse shape�

���� A source and a receiver are moving horizontally in a horizontally strati�ed
ocean with velocity vectors vs and vr� respectively�

a� Show that in the frequency domain� the �eld observed by the receiver
is given by the expression

��r� � vrt� z� 	� �



��

Z
d�kre

ikr�r�S�'k�G�kr� z�	 � kr �vr� �

where 'k is the Doppler shifted source frequency

'k � 	 � kr � �vs � vr� �

b� Discuss the computational advantages of using this representation to�
gether with Fourier synthesis to determine the time domain solution�
rather than using Eq� ������ directly�

c� Derive the modal representation for the frequency domain solution�

��
� It is desired to send out an n�cycle CW pulse of center frequency fc in
shallow water such that the modes are temporally separated at range r�
Using group velocity arguments� determine the relationship between fc� n
�taken together� bandwidth� and r for the onset of this mode separation�
Con�rm this with a numerical computation�
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��
� Let the ocean be a semi�in�nite isovelocity halfspace bounded above by a
uniform distribution of monopole sources radiating with an intensity per
unit area at a unit distance� What is the depth dependence of the intensity
of the noise �eld� Now assume that the spreading law is cylindrical rather
than spherical� What additional physical parameter must be included to
give physically sensible results�

���� De�ne directionality of the noise �eld to be the noise intensity per unit
solid angle� Derive an expression for the noise directionality in the ocean
described in the above problem� How does the result change if the sources
are dipoles rather than monopoles� �Take the intensity radiation pattern
for a dipole to be proportional to cos� � where � is the angle measured from
the normal to the surface��

���� The cross�spectral density and the directionality are related by a Fourier
transform� What are the Fourier conjugate variables� Compare the monopole
and dipole results derived in the last problem with the Cron and Sherman
results discussed in Sec� ������

���� Consider a sonar receiver array with ba(ed sensors which individually have
a beam pattern W ��� �� � W����W����� where � is the vertical angle and
� is the azimuthal angle� The sonar is used in a strati�ed ocean with a
uniform distribution of surface noise sources�

a� Derive an expression for C��r�� r�� z�� z��� the cross�spectral density
function for the ambient noise as seen by the array�

b� Show that your result is consistent with the result of Kuperman and
Ingenito for W ��� �� 
 
�

���� Develop an algorithm for generating a realization of noise time series for
a receiver array in a strati�ed ocean with ambient noise generated by a
homogeneous distribution of surface noise sources�
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��
� Assume you are using a long horizontal array for passively detecting a sound
source in the ocean� The array characteristics are as follows�

Length� ���� m

Element spacing� �� m

Number of elements� ��

To estimate the source bearing in deep water it is often a good approxi�
mation to perform the beamforming assuming the source and the array are
at equal depth in an in�nite� homogeneous medium with the sound speed
equal to the one existing at the array depth �assume 
��� m�s��

a� Under such conditions write a linear beamformer algorithm for esti�
mating source bearing� and use it to compute the beamformer response
to a 
��Hz point source at bearing ��� o� broadside� at a range of �� km
from the center of the array�

b� Discuss the features of the beamformer response�

c� Compute the corresponding beamformer response at �� Hz� and discuss
the result�


���� Assume you have to use the array from the previous problem in an isove�
locity �
��� m�s�� shallow water environment with water depth 
�� m� and
with an in�nitely rigid bottom� Assume you are towing the array at 
��m
depth� and that the source is at 
��m depth as well�

a� For a 
��Hz source at ��� bearing� and ���km range� write an algorithm
for computing the �eld on the elements of the array in terms of a modal
expansion�

b� Use the linear beamformer developed for Problem 
 to compute the
response�

c� Discuss the features of the beamformer response and provide a physical
explanation for the performance�

d� How do you suggest to modify the beamformer to yield a correct bear�
ing estimate�

e� Implement the modi�cation and discuss the performance�



��


���� From problem ��� we learned that directionality is related to the Fourier
transform of the cross�spectral density� In this chapter� we note that plane
wave beamforming is a �nite spatial Fourier transform of the acoustic �eld
with sensor spacing being one of the conjugate Fourier variable� Using a
vertical array� beamform on a range�independent shallow water noise �eld
with su�cient resolution to show that there is a �horizontal notch�� Phys�
ically� why must such a notch exist�


���� For an acoustic �eld in a waveguide� how would you take advantage of the
orthogonality of normal modes to construct a modal� rather than plane
wave beamformer� Use a vertical array�


���� Write down an expression in terms of discrete normal modes for the �eld
of a point source received on a vertical array� Take the complex conjugate
of this result and use the result to represent a distribution of point sources�
With this source distribution and the known Green#s function of this prob�
lem� propagate the resulting �eld outward� �With this range independent
geometry� outward is the same as �backward���

a� What happens at the position of the original point source�

b� How does the vertical array geometry a�ect the results�

c� This method is called backpropagation� Is there a di�erence between
this method and Bartlett matched �eld processing�


