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ABSTRACT:  

 

    The depth separated wave equation in underwater acoustics is a non-selfadjoint 

differential eigenvalue problem with complex and discontinuous coefficients. A Galerkin 

approach using domain decomposition and a spectral method with a basis of Legendre 

polynomials leads to a complex symmetric generalized matrix eigenvalue problem. The 

eigenvector solutions are found to satisfy a weighted biorthogonality condition that 

assures the proper normalization of the corresponding acoustic modes and the acoustic 

field. 

 

I. INTRODUCTION: 

 

    The depth separated wave equation for the normal modes in underwater acoustics
1
 can 

be solved by both Fourier-Galerkin and Legrendre-Galerkin methods
2
.  This terminology 

requires a more generic explanation. The name Galerkin is associated with a method for 

solving a differential equation that is applied to a partially integrated form of the 

equation. It is especially well suited to non-selfadjoint problems where a variational form 

is not available. The application of the Galerkin method involves the projection of the 

problem onto a subspace spanned by a finite dimensional basis. The basis elements are 

required to satisfy the boundary and interface conditions associated with the differential 

equation and the projection yields a problem in linear algebra. In contrast to finite 

elements the basis elements are global rather than localized in space. The linear algebra 

problem is usually smaller with global elements. 

 

   The basis elements are constructed using the spectrum of a differential operator with 

readily computable spectral elements. When these elements are trigonometric functions, 

the term Fourier-Galerkin is used. When these elements are orthogonal polynomials, the 

Galerkin method inherits the name of the class of orthogonal polynomials. This is the 

case with Legendre polynomials. Both Legendre-Galerkin and Fourier-Galerkin are 

special cases of spectral methods pioneered by Gottlieb and Orsag
3
. A historical 

background for spectral methods is found in Canuto et al.
4
. The Legendre-Galerkin 

method is of particular interest since the underlying differential operator is singular, 

rendering an enhanced rate of convergence for the spectral expansion
3
. 

 

   The trigonometric functions and orthogonal polynomials will not automatically satisfy 

the boundary and interface conditions, so a form of basis recombination
5
 and domain 

decomposition must be used. Enforcing the boundary and interface conditions in the 

Fourier-Galerkin method requires the solution of a transcendental equation while this can 

be accomplished algebraically in the Legendre-Galerkin method. 
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II. STATEMENT OF PROBLEM: 

 

  The depth separated wave equation, for the harmonic acoustic pressure, has the form of 

a differential eigenvalue problem given by
1
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where 2κ  is a separation constant whose values are determined by the coefficients in the 

differential equation, the boundary conditions at the ends of the interval Hz ≤≤0  and 

the interface conditions at hz =  where Hh < . The geometry of the problem is shown in 

Fig. 1. The separation constant is the square of the horizontal wave number. The 

boundary conditions used are 0)0( =φ  and 0)( =Hφ . The boundary conditions 

correspond to a free (pressure release) surface at 0=z  and H . The function ρ  is the 

density and )]log40/(1)[/( 10 eick παω +=  is the complex wave number, where ω  is the 

circular frequency, c  is the sound speed and α  is the attenuation in dB  per wavelength.  

 

                                     
 

Figure 1. Sound speed and density profiles for the depth separated wave equation. 

 

   The functions ρ  and 2
k  can be discontinuous at the bottom of the water column, at the 

interface where hz = . The continuity of pressure and particle velocity dictate that 

)()( +− = hh φφ  and =−− dzhdh /)()](/1[ φρ dzhdh /)()](/1 ++ φρ  where the superscripts – 

and + indicate limits from above and below, respectively. The differential eigenvalue 

problem consisting of Eq. (1) and associated boundary and interface conditions is non-

self-adjoint because the wave number squared is complex. The eigenvalues and 

eigenfunctions are generally complex. It is assumed that the attenuation is small enough 
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so that the eigenvalues are simple roots of the characteristic equation. The problem is an 

analytic perturbation
6
 of the real selfadjoint case, without any attenuation. 

 

   Suppose that the complex wave number squared and density, in Eq. (1), are defined in 

the water and bottom, separately, using 
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An example of a sound speed and density profile is shown in Fig. 1. 
 

The standard Sturm-Liouville form of the problem in Eq. (1) is obtained  as follows: 

Let }0:)(min{/max Hzzck ≤≤= ω  and subtract )(/2

max zk ρφ  from both sides of Eq. (1). 

Multiplication by negative one yields 

 

                                  
)()(

)(

)(

1

zz

zr

dz

d

zdz

d

ρ

λφ
φ

ρ

φ

ρ
=+








−                                   (2) 

 

where )()( 22

max zkkzr −=  and 22

max κλ −= k . The solutions to Eq. (2) consist of a 

countably infinite sequence of complex numbers mλ  called eigenvalues and complex 

functions mφ  called eigenfunctions (or modes) that satisfy Eq. (2) and the stated 

boundary and interface conditions. It will be assumed that the complex eigenvalues mλ  

for , ∞= ,1m  are ordered by increasing real parts. The horizontal wave numbers squared 

are mm k λκ −= 2

max

2  , ∞= ,1m .  

 

III. GALERKIN METHOD: 

 

A comprehensive overview of the Galerkin method can be found in Boyd
5
. The 

Galerkin method is presented here, specifically, as an approximation to an integrated 

form of Eq. (2). To this end, suppose that χ  is a continuous function that is piecewise 

differentiable on intervals hz ≤≤0  and Hzh ≤≤ and satisfies the same boundary and 

interface conditions as the eigenfunction φ . The name “test function” is used for the class 

of functions with these properties. Multiplying Eq. (2) by χ  and integrating by parts over 

the interval Hz ≤≤0  yields 
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   The boundary and interface conditions eliminate the boundary and interface terms in 

the derivation of Eq. (3). Equation (3) is referred to as the weak form of the Sturm-

Liouville problem in Eq. (2). Equation (3) will be abbreviated as ),(),( χφλχφ ba =  
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where ),( χφa  and ),( χφb  are the integrals on the left and right hand sides of Eq (3), 

respectively. 

 

The Galerkin method is predicated on a basis, which is a linearly independent set of 

functions that span a finite dimensional space
7
. When the space is the set of all linear 

combinations of the functions, it is sufficient that they be linearly independent. One way 

to assure linear independence is to use orthogonality, but orthogonality is not necessary. 

Requiring only linear independence simplifies the choice of a spanning set, but can result 

in very poorly conditioned matrices
8
. Boyd

5
 calls orthogonality a maximization of linear 

independence. The distinction between Galerkin methods based on orthogonal and non-

orthogonal or oblique bases is made in Chatelin
9
. 

 

In the current application of the Galerkin method, an eigenfunction of Eq. (2) is 

approximated by the expansion ∑ =
≅

M

n nnu
1

ψφ where { }Mnn ,1: =ψ  is a linearly 

independent set of test functions.  It is assumed that these test functions are real while the 

expansion coefficients may be complex. Substituting the expansion into Eq. (3), with 

mψχ = , yields the discrete eigenvalue problem ∑∑ ==
=

M

n nnm

M

n nnm ubua
1 ,1 , µ  where 

),(, nmnm aa ψψ=  and ),(, mnmn bb ψψ= and µ  is a discrete eigenvalue. Note that nma ,   is 

complex when the wave number squared is complex and mnb ,   is real since the density is 

real. The Galerkin method turns Eq. (3) into a discrete problem by restricting it to the 

subspace spanned by the basis { }Mmm ,1: =ψ  . 

 

   The bases, used in the Galerkin method, determine the accuracy of the approximations 

to the eigenvalues and eigenfunctions of Eq. (2). In particular, it is important that the 

basis functions have the same derivative discontinuity as the eigenfunctions in order to 

avoid Gibbs oscillations
3
. A systematic theoretical study of the convergence of the 

Galerkin method is found in Babuška and Osburn
10

. Examples of the asymptotic rate of 

convergence in the Fourier-Galerkin and Legendre-Galerkin approximations have been 

previously reported
2
. Since the orthogonal Fourier-Galerkin method has been described 

elsewhere
2
, the non-orthogonal Legendre-Galerkin method will be described in detail 

below. Both methods share the same features in their matrix formulation. These 

characteristics are presented first.
 

  

A. Matrix Eigenvalue Problem: 

 

Let A  and B  be MxM  matrices whose entries are nma ,  and nmb , , respectively. If a 

column vector is defined by ),1,( Mnucol n ==u , then the discrete problem can be 

written as the generalized matrix eigenvalue problem 

  

                                                       BuAu µ=                                                  (4) 

 

where A  is a complex symmetric (not Hermitian symmetric) matrix and B  is a real 

symmetric matrix. The eigenvalues of Eq. (4) approximate the eigenvalues of Eq. (2). 
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The eigenvectors of Eq. (4) provide the expansion coefficients for approximates of the 

eigenfunctions of Eq. (2). 

 

   Equation (4) can be turned into a standard matrix eigenvalue problem by multiplying on 

the left by 1−B , but this destroys the symmetry of the problem. If B  is positive definite, 

then Eq. (4) can be replaced by the complex symmetric eigenvalue problem 

  

                                                         wCw µ=                                                    (5) 

 

where 1)−−= TA(LLC 1 , uLw T= , and TLLB =  is the Cholesky decomposition of B . 

The superscript T  stands for transpose (without complex conjugation) and L  is a lower 

triangular matrix, making the calculation of C  relatively easy
11

. Note that Tu  is a row 

vector and its product with the column vector ),1,( Mjvcol j ==v  is the scalar  

∑ =
=

M

j jj

T
vu

1
vu . Again, there is no complex conjugation in the transpose of the vector. 

 

   To see that B  is positive definite, let ),1,( Mjxcol j ==x  be a real vector and define 

the real function ∑ =
=

M

j jjxf
1

ψ . Since the basis functions are linearly independent, the 

function f
 
cannot be identically zero, unless 0x = . It also follows that 

 
BxxT

H

dzzzf =∫0
2 )](/)([ ρ  . Consequently, 0>BxxT , unless 0x = . 

 

    If the complex symmetric matrix C  in Eq. (5) is diagonalizable
12

, then TWΛWC =  

where ),1,( Mmdiag m == µΛ  and W is an orthogonal matrix (not unitary) such that 

IWW =T  is the MxM  identity matrix. The columns of ),1,( Mmrow m == wW  are the 

eigenvectors of C . The orthogonality of W  implies that mnm

T

n ,δ=ww . The eigenvectors 

of Eq. (4) are recovered by solving mm

T wuL =  and consequently mnm

T

n ,δ=Buu , when 

W  is orthogonal. For the sake of comparison, it is assumed that the approximate 

eigenvalues },1,{ Mmm =µ  are ordered by increasing real parts. 

 

   The complex symmetric matrix eigenvalue problem in Eq. (5) can be tackled by several 

methods. The Jacobi technique, due to Anderson and Loizou
13

, has the advantage that the 

resulting matrix W is a product of rotations and is, consequently, orthogonal. The Jacobi 

technique is not the most efficient, but it is simple and convergent, assuming that C  is 

diagonalizable. 

 

   The generalized matrix eigenvalue problem in Eq. (4) can also be solved by using the 

Matlab procedure )(][ BA,DV, eig= . A matrix formulation of the eigenvalue problem 

associated with Eq. (1) can be obtained using differentiation matrices based on 

Chebyshev polynamials
14

. The Matlab approach, using a spectral collocation scheme, has 

been employed to computed eigenvalues and the corresponding dispersion relationships 
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for layered elastic media
14,15

. Field calculations require the construction and appropriate 

normalization of the eigenfuntions. 

 

B. Biorthogonality: 

 

   The construction of the fundamental solution of the two dimensional Helmholtz 

equation, by separation of variables, requires that the eigenfunctions be properly 

orthonormal
1
. When the complex eigenfunctions are used, the orthogonality condition is 

replaced by a biorthogonality condition. The weighted biorthogonality property of the 

complex eigenfunctions, is given by 
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Although Eq. (6) is indistinguishable from the real orthogonality condition, the term 

biorthogonality is used because of the non-selfadjoint nature
16

 of Eq. (1). In short, it 

means that the complex conjugate that would normally appear on one of the complex 

functions in the integrand is omitted. This conforms to the definition of the scalar product 

of two complex vectors, already introduced. The biorthogonality of the Galerkin 

approximates of the complex eigenfunctions is demonstrated as follows. 

 

   Consider two approximate eigenfunctions of Eq. (2) defined  by ∑ =
=

M

j jjmm u
1 , ψϕ  and 

∑ =
=

M

j jjnn u
1 , ψϕ , where mu  and nu  are two eigenvectors of Eq. (4). The integral in Eq. 

(6) can be evaluated by substitution of these two expansions to obtain  
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The biorthogonality of the approximate eigenfunctions follows from mnm

T

n ,δ=Buu , 

since W  is assumed to be orthogonal. 

 

C. Acoustic Field: 

 

   The approximations of the eigenvalues of Eq. (2) determine approximations of the 

separation constants in Eq. (1), and ultimately the normal modes appearing in the 

acoustic field. The calculation of the acoustic field relies on approximating the horizontal 

wave numbers mκ   by mm k µν −= 2

max , Mm ,1= . The square root is taken to have a 

positive imaginary part to assure the proper attenuation with range. The fundamental 

solution of the 2d Helmholtz equation is approximated
1
 by 
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 where ),( zr  is the receiver range and depth, in meters, and sz  is the source depth.  

  

IV. LEGENDRE POLYNOMIAL BASIS: 

 

  A basis is a spanning set of linear independent functions. Linear independence assures 

that the projection onto the finite dimensional subspace is well defined (unique). The 

Legendre polynomial spanning set to be constructed is not manifestly independent, so the 

term basis is held in reserve. The construction of the real Legendre polynomial spanning 

starts with a choice of the maximum order of the polynomials: N . This will depend on 

the number of modes needed including the propagating and bottom interacting modes. A 

single set of Legendre polynomials cannot span both the water and bottom sediment, 

since it will not have the required derivative discontinuity at water-sediment interface. It 

is advisable to use the domain decomposition method of Li and Gottleib
17

.  

 

   The set { }11;,0:)( ≤≤−= ξξ NkPk  of  Legendre polynomials is employed where the 

normalization is determined by )12/(2)(
1

1
+=∫− kdPk ξξ , 1)1( =kP  and k

kP )1()1( −=− .  

 

   The domain decomposition takes the form 

     ∑
=

=
N

k

wkkw Pcz
0

)()( ξψ , hz ≤≤0  , )]2/()[/2( hzhw −=ξ  ,                       (8) 

and  

    
∑

=

=
N

k

bkkb Pdz
0

)()( ξψ ,  Hzh ≤≤ ,  { }]2/)[()]/(2[ hHzhHb +−−=ξ .     (9) 

 

   The boundary conditions 0)0( =wψ  and 0)( =Hbψ  and the interface conditions 

=− )(hwψ )( +
hbψ  and  =−−

dzhdh w /)()](/1[ ψρ dzhdh b /)()](/1 ++ ψρ  yield four 

equations that determine four of the coefficients of the two highest order polynomials. 

The solutions of these equations yield expressions for the higher order coefficients in 

terms of the lower order coefficients and is a form of basis recombination
5
. 

 

   The coefficients of the highest order polynomials are given by 

 

( )∑
−

=

+=
2

0

,,

N

k

kknkkNN dfcec ,   

( )∑
−

=

+=
2

0

,,

N

k

kknkkNN dhcgd ,  

( )∑
−

=

+
− +−+=

2

0

,,1 ])1([
N

k

kknk

Nk

kNN dfcec ,  



8 

 

( )∑
−

=
− ++−=

2

0

,,1 ]1[
N

k

kknkkNN dhcgd  

where 

{ }211

, /)]1()1)(1([)1()](2[ NkkNNrNkrrre
Nk

w

N

bbwkN ++−−−−+= +−−
 , 

 

{ }21

, /])1)(1()1)(1([)](2[ NkkNNrNkrrrf
kN

bbbwkN −++−−−+= −

 

, 

 

{ }21

, /])1)(1()1)(1([)](2[ NkkNNrNkrrrg
Nk

wwbwkN −++−−−+= −

 

, 

 

{ }211

, /])1)(1()1([)1()](2[ NkkNNrNkrrrh
Nk

b

N

wbwkN

+−− −++−−−+=
 

 

 

with ])(/[1 hhrw

−= ρ ,  )])((/[1 hHhrb −= +ρ  and kNNk )1()1( −+−= . These closed 

form expressions are found by solving the four equations determined by the boundary 

and interface conditions. The solutions are different if N  is even or odd, but they are 

consolidated above with factors of N)1(− . 

 

   The boundary and interface conditions reduce the number of unknown expansion 

coefficients by four. Substitution of the expressions for NNN dcc ,, 1− and  1−Nd into Eq. 

(8) and Eq. (9) yields a test function ψ  defined by 
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                   ∑∑
−

=
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=

+=
2

0

2

0

)()()(
N

k

kbk

N

k

kbkb dLbdcLbcz ξξψ ,                               (11) 

where 

 

)()(])1([)()( ,1, wNkNwN

Nk

kNwkwk PePePLwc ξξξξ +−++= −
+ , 

)]()([)( 1, wNwNkNwk PPfLwd ξξξ += −   

 

and 

 

])()([)( 1, wbNbNkNbk PPgLbc ξξξ −−= , 

)(]1[)()()( 1,, bNkNbNkNbkbk PhPhPLbd ξξξξ −+−+= . 

 

The remaining expansion coefficients can be chosen as arbitrary complex numbers 

resulting in a wide range of complex test functions. The two highest order Legendre 

polynomials are not eliminated from Eq. (10) and Eq. (11); they are included with 

coefficients that assure that the boundary and interface conditions are satisfied. The 

actual choice of the expansion coefficients is determined in the application of the 

Galerkin method to the approximation of the solutions of Eq. (2).  
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   The spanning set used in the Legendre-Galerkin method is obtained by singling out the 

real polynomials multiplying the complex expansion coefficients in Eq.’s (10) and (11):  

Define the following real test functions 
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where 1,1 −= Nk  (note the index translation by 1). The Legendre-Galerkin spanning set 

is the union of the two sets{ }1,1: −= Nkckψ  and { }1,1: −= Nkd kψ  with a total of
 

22 −= NM  functions. The unknown expansion coefficient vectors 

)1,1:( 1 −== − Nkccol kc  and )1,1:( 1 −== − Nkdcol kd  are stacked into a single 

22 −= NM  dimensional column vector ),( dcu col= . It will be convenient to 

sequentially re-index the Legendre-Galerkin spanning set: { }Mjj ,1: =ψ . 

 

   The linear independence of the Legendre-Galerkin spanning set can be characterized as 

follows: Suppose a function is defined by ∑ =
=

M

j jj zuzf
1

)()( ψ . If the expansion 

coefficients are uniquely determined by f , then the spanning set is linearly independent. 

(The only way to expand the zero function is with all zero coefficients.) The expansion 

can be integrated to obtain 
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zz
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z
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1 00
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ρ
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Define the vector f  by the entries ∫=
H

mm dzzzzff
0

)](/)()([ ρψ . Equation (12) becomes 

fuB = , where the matrix B  is the same as the one in Eq. (4). The expansion coefficients 

are uniquely determined if B  is invertible.   

 

   Two assumptions have been made in the development of the Legendre-Galerkin 

method. They are the linear independence of the spanning set and the diagonalizability of 

the resulting matrix C . These assumptions are both tested by failure or success in the 

numerical implementation. 

 

   When the Cholesky decomposition of the real symmetric matrix B  fails, the matrix is 

not positive definite
11

 (to within round off error). Otherwise, B  is positive definite and 

the decomposition TLLB = can be used solve linear equation fuB =  by two 

applications of backsubstitution. The matrix B  is invertible and the Legendre-Galerkin 

spanning set is a basis.  

 

   The convergence of the Jacobi iteration, used to find the eigenvalues of the matrix 
1)−−= TA(LLC 1 , is a numerical test of its diagonalizability. This requirement is necessary 
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for the Legendre-Galerkin approximation to be consistent with the diagonalizability of 

the differential operator in Eq. (1). 

 

   The implementation of the Legendre-Galerkin method in FORTRAN allows for the 

numerical verification of the assumptions just described. When the Legendre-Galerkin 

method is implemented in a higher level language, like Matlab, this type of diagnostic 

information is not always available. 

 

   The matrices A  and B  in Eq. (4) are computed using Gauss-Legendre integration with 

2+N  quadrature points in each sound speed, attenuation and density layer in both the 

water layer and bottom sediment layer. The matrices A  and B   have dimension MxM ,  

with four block sub-matrices of size xN )1( − )1( −N . The unknown expansion 

coefficients are found by solving the generalized matrix eigenvalue problem in Eq. (4). 

This provides the approximation of the eigenvalues and eigenfunctions of Eq. (2). 

 

   The errors in the approximate eigenvalues mm µλ −  , Mm ,1=  are expected
18

 to be 

very small for the first third, say, 3/2,1 Nm = . Care must be taken since the 
th

M  error
 
is 

bound
18

 to be very large. This large error is omitted from the presentation of Li and 

Gottleib
17

. 

 

A. Example: 

 

   An example of the acoustic field, approximated by the Legendre-Galerkin method, 

serves to numerically verify the algebraic construction of the Legendre polynomial basis. 

The example is taken from the previous report
2
 that shows errors, in eigenvalues, 

computed with two Galerkin methods. The errors are found by comparison with a 

benchmark calculation. 

 

   The dimensions of the water and bottom layers are determined by 200=h and 

1000=H meters. The circular frequency is fπω 2=  where Hzf 250= (this is a 

correction
2
). The water and bottom layers have constant densities. The wave number 

squared )(2
zk  is assumed to be piecewise linear within both the water and bottom layers. 

The wave number )(zk
 
is determined by the values in Tab. 1. 

 

z  (m)  c  (m/s) α  (dB/wave length) ρ  (gm/cm
3
) 

0 1520 .00 1.0 

20 1520 .00 1.0 

30 1480 .00 1.0 

200 1480 .00 1.0 

200 1600 .05 1.5 

1000 2000 .20 1.5 
 

Table 1.  Acoustic parameters of the example waveguide. Differences between different 

depths indicate gradients. The double entry at 200 m represents the discontinuity in the 
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parameters at the water-bottom interface. The attenuation gradient in the bottom layer is a 

modest artificial absorber. 

  

   The acoustic field is calculated using Eq. (7) for a source at mz s 50= .The receiver is 

at a depth of mz 100= , on the range interval 000,4=r  to m000,8 . There are around 50  

propagating modes, so a value of 100=N  is used in the Legendre-Galerkin calculation. 

The problem is also solved using the Fourier-Galerkin method
2
 with 198=M . 

Transmission loss
1
 is computed using )),(4(log20),( 10 zrpzrTL π−= ,

 
with both 

methods. The comparison of two methods, in terms of transmission loss, is shown in Fig. 

2. 

 
 

Figure 2.  Transmission loss versus range on the interval 4 to 8 km is computed using the 

Fourier-Galerkin and the Legerdre-Galerkin methods. The agreement of these two 

methods is a test of the validity of the construction of the Legendre-Galerkin basis. 

  

V. CONCLUSION: 

 

   The Legendre-Galerkin method provides a relatively simple procedure for solving the 

non-self-adjoint differential eigenvalue problem in Eq. (1). The method uses a basis that 

can be constructed algebraically. The Fourier-Galerkin method requires the solution of a 

transcendental equation, in construction of the orthogonal basis. 
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